


C# Programming:
From Problem Analysis to Program Design

FiFth edition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

C# Programming:
From Problem Analysis to Program Design

FiFth edition

Barbara Doyle

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial 
review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to 

remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous
editions, changes to current editions, and alternate formats, please visit www.cengage.com/highered to search by

ISBN#, author, title, or keyword for materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product text may not be available in the eBook version.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



For product information and technology assistance,  contact us at 
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, 
 submit all requests online at www.cengage.com/permissions.

Further permissions questions can be e-mailed to  
permissionrequest@cengage.com

C# Programming: From Problem Analysis to 
Program Design, Fifth Edition

Barbara Doyle

Product Director: Kathleen McMahon

Product Team Manager: Kristin McNary

Senior Product Manager: Jim Gish

Senior Content Developer: Alyssa Pratt

Product Assistant: Abigail Pufpaff

Marketing Manager: Eric LaScola

Senior Production Director: Wendy Troeger

Production Director: Patty Stephan

Senior Content Project Manager: Jennifer 
K. Feltri-George

Managing Art Director: Jack Pendleton

Cover image: © zeljkodan/Shutterstock.com

Production Service: SPi Global

Compositor: SPi Global

© 2016, 2014 Cengage Learning

WCN: 02-200-203

ALL RIGHTS RESERVED. No part of this work covered by the 
 copyright herein may be reproduced, transmitted, stored, or used 
in any form or by any means graphic, electronic, or  mechanical, 
 including but not limited to photocopying, recording, scanning, 
digitizing, taping, Web distribution, information networks, or 
 information storage and retrieval systems, except as permitted 
under Section 107 or 108 of the 1976 United States Copyright Act, 
without the prior written permission of the publisher.

Library of Congress Control Number: 2015937761

ISBN: 978-1-285-85687-2

Cengage Learning
20 Channel Center Street
Boston, MA 02210
USA

Cengage Learning is a leading provider of customized learning 
 solutions with employees residing in nearly 40 different countries 
and sales in more than 125 countries around the world. Find your 
local representative at www.cengage.com.

Cengage Learning products are represented in Canada by Nelson 
Education, Ltd.

To learn more about Cengage Learning, visit www.cengage.com
Purchase any of our products at your local college store or at our 
preferred online store www.cengagebrain.com

Notice to the Reader
Publisher does not warrant or guarantee any of the products described 
 herein or perform any independent analysis in connection with any of the 
product information contained herein. Publisher does not assume, and 
 expressly disclaims, any obligation to obtain and include information other 
than that provided to it by the manufacturer. The reader is expressly warned 
to consider and adopt all safety precautions that might be indicated by the 
activities described herein and to avoid all potential hazards. By following 
the instructions contained herein, the reader willingly assumes all risks in 
connection with such instructions. The publisher makes no representations or 
warranties of any kind, including but not limited to, the warranties of  fitness 
for particular purpose or merchantability, nor are any such representations 
implied with respect to the material set forth herein, and the publisher takes 
no responsibility with respect to such material. The publisher shall not be  
liable for any special, consequential, or exemplary damages resulting, in 
whole or part, from the readers’ use of, or reliance upon, this material.

Printed in the United States of America
Print Number: 01 Print Year: 2015

Microsoft ® is a registered trademark of the Microsoft 
Corporation.

Unless otherwise noted all screenshots are courtesy of Microsoft 
Corporation

Unless otherwise noted all tables/figures exhibits are  
© Cengage Learning®

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

br i e F  Co n t e n t s

PREFACE xxiii

 1.  Introduction to Computing and Application Development 1

 2. Data Types and Expressions 71

 3. Methods and Behaviors 137

 4. Creating Your Own Classes 197

 5. Making Decisions 257

 6. Repeating Instructions 325

 7. Arrays 399

 8. Advanced Collections 459

 9. Introduction to Windows Programming 513

 10. Programming Based on Events 593

 11. Advanced Object-Oriented Programming Features 699

 12. Debugging and Handling Exceptions 785

 13. Working with Files 849

 14. Working with Databases 907

 15. Web-Based Applications 993

  APPENDIX A   Visual Studio Configuration 1089

  APPENDIX B   Code Editor Tools 1107

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



vi | C# Programming: From Problem Analysis to Program Design, Fifth Edition

  APPENDIX C   Character Sets 1123

  APPENDIX D   Operator Precedence 1125

  APPENDIX E   C# Keywords 1127

  GLOSSARY 1129

  INDEX 1143

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

ta b l e o F Co n t e n t s

Preface xxiii

INTRODUCTION TO COMPUTING  
AND APPLICATION DEVELOPMENT 1

History of Computers 2
System and Application Software 4

System Software 5

Application Software 7

Software Development Process 7
Steps in the Program Development Process 8

Programming Methodologies 15
Structured Procedural Programming 15

Object-Oriented Programming 18

Evolution of C# and .NET 21
Programming Languages 21

.NET 23

Why C#? 25
Types of Applications Developed with C# 26

Web Applications 27

Windows Applications 28

Console Applications 28

Exploring the First C# Program 29
Elements of a C# Program 30

Comments 30

Inline Comments 31

Multiline Comments 31

1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



viii | C# Programming: From Problem Analysis to Program Design, Fifth Edition

XML Documentation Comments 32

Using Directive 32

Namespace 35

Class Definition 36

Main( ) Method 36

Method Body Statements 38

Compiling, Building, and Running an Application 42
Typing Your Program Statements 42

Compilation and Execution Process 42

Compiling the Source Code Using Visual Studio IDE 43

Debugging an Application 50
Syntax Errors 50

Run-time Errors 51

Creating an Application 52
Coding Standards 57

Pseudocode 57

Resources 58
Quick Review 59
Exercises 61
Programming Exercises 66

DATA TYPES AND EXPRESSIONS 71

Data Representation 72

Bits 72

Bytes 72

Binary Numbering System 72

Character Sets 75

Kilobyte, Megabyte, Gigabyte, Terabyte, Petabyte. . . 76

Memory Locations for Data 76

Identifiers 77

Variables 81

Literal Values 81

2

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Table of Contents | ix

Types, Classes, and Objects 82
Types 82

Classes 83

Objects 84

Predefined Data Types 85
Value Types 86

Integral Data Types 87
Floating-Point Types 90
Decimal Types 91
Boolean Variables 92
Declaring Strings 93
Making Data Constant 94
Assignment Statements 94

Basic Arithmetic Operations 98

Increment and Decrement Operations 100

Compound Operations 104

Order of Operations 106
Mixed Expressions 108

Casts 109

Formatting Output 110
Width Specifier 115
Coding Standards 125

Naming Conventions 125

Spacing Conventions 126

Declaration Conventions 127

Resources 127
Quick Review 127
Exercises 128
Programming Exercises 134

METHODS AND BEHAVIORS 137

Anatomy of a Method 138
Modifiers 140

Static Modifier 141

Return Type 142

3

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



x | C# Programming: From Problem Analysis to Program Design, Fifth Edition

Method Name 144

Parameters 144

Method Body 145

Calling Class Methods 146
Predefined Methods 148

Write( ) Method 149

WriteLine( ) Method 150

Read( ) Method 151

ReadLine( ) Method 153

ReadKey( ) Method 154

Parse( ) Method 154

Methods in the Math Class 157
Writing Your Own Class Methods 163

Void Methods 163

Value-Returning Method 165

Types of Parameters 170
Named and Optional Parameters 175

Default Values with Optional Parameters 176

Named Parameters 177

Coding Standards 186
Naming Conventions 186

Spacing Conventions 186

Declaration Conventions 186

Commenting Conventions 187

Resources 187
Quick Review 187
Exercises 188
Programming Exercises 195

CREATING YOUR OWN CLASSES 197

The Object Concept 198
Private Member Data 200

Constructor 204

4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Table of Contents | xi

Writing Your Own Instance Methods 207
Accessor 208

Mutators 208

Other Instance Methods 209

Property 210

Auto Implemented Properties 212

ToString( ) Method 213

Calling Instance Methods 215
Calling the Constructor 215

Calling Accessor and Mutator Methods 217

Calling Other Instance Methods 218

Testing Your New Class 219

Coding Standards 244
Naming Conventions 244

Classes 244

Properties 244

Methods 245

Constructor Guidelines 245

Spacing Conventions 245

Resources 245
Quick Review 246
Exercises 247
Programming Exercises 253

MAKING DECISIONS 257

Boolean Expressions 258
Boolean Results 258

Conditional Expressions 259
Equality, Relational, and Logical Tests 260

Short-Circuit Evaluation 268

Boolean Data Type 270

if. . .else Selection Statements 271
One-Way if Statement 271

5

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xii | C# Programming: From Problem Analysis to Program Design, Fifth Edition

Two-Way if Statement 276

TryParse( ) Method 278

Nested if. . .else Statement 283

Switch Selection Statements 289
Ternary Conditional Operator ? : 294
Order of Operations 295
Coding Standards 309

Guidelines for Placement of Curly Braces 309

Guidelines for Placement of else with Nested if Statements 310

Guidelines for Use of White Space with a Switch Statement 310

Spacing Conventions 311

Advanced Selection Statement Suggestions 311

Resources 311
Quick Review 312
Exercises 314
Programming Exercises 322

REPEATING INSTRUCTIONS 325

Why Use a Loop? 326
Using the While Statement 326

Counter-Controlled Loop 328

Sentinel-Controlled Loop 334

State-Controlled Loops 345

Using the for Statement Loop 348
Using the Foreach Statement 356
Using the Do. . .while Structure 357
Nested Loops 360
Recursive Calls 365
Unconditional Transfer of Control 368

Continue Statement 369

Deciding Which Loop to Use 370
Coding Standards 384

Guidelines for Placement of Curly Braces 385

Spacing Conventions 385

Advanced Loop Statement Suggestions 385

6

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Table of Contents | xiii

Resources 386
Quick Review 386
Exercises 388
Programming Exercises 394

ARRAYS 399

Array Basics 400
Array Declaration 401

Array Initializers 404

Array Access 406
Sentinel-Controlled Access 411

Using Foreach with Arrays 412

Array Class 413
Arrays as Method Parameters 419

Pass by Reference 420

Array Assignment 423

Params Parameters 425

Arrays in Classes 426
Array of User-Defined Objects 428

Arrays as Return Types 429

Coding Standards 447
Guidelines for Naming Arrays 447

Advanced Array Suggestions 447

Resources 447
Quick Review 447
Exercises 448
Programming Exercises 455

ADVANCED COLLECTIONS 459

Two-Dimensional Arrays 460
Rectangular Array 460

Jagged Array 470

Multidimensional Arrays 470
ArrayList Class 475
String Class 479

7

8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xiv | C# Programming: From Problem Analysis to Program Design, Fifth Edition

String Methods 480

String Interpolation 484

Other Collection Classes 486
BitArray 486

Hashtable 487

Queue 490

Stack 491

Coding Standards 500
Guidelines for Naming Collections 500

Advanced Array Suggestions 500

Resources 500
Quick Review 500
Exercises 502
Programming Exercises 509

INTRODUCTION TO WINDOWS PROGRAMMING 513

Contrasting Windows and Console Applications 514
Graphical User Interfaces 516
Elements of Good Design 520

Consistency 520

Alignment 521

Avoid Clutter 521

Color 521

Target Audience 521

Using C# and Visual Studio to Create Windows-Based Applications 522
Windows Forms 526

Windows Forms Properties 526

Inspecting the Code Generated by Visual Studio 533

Comparing the Code of Example 9-1 with Example 9-2 534

Windows Forms Events 537

Controls 538
Placing, Moving, Resizing, and Deleting Control Objects 541

Methods and Properties of the Control Class 543

Derived Classes of the System.Windows.Forms.Control Class 545

9

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Table of Contents | xv

Coding Standards 581
Guidelines for Naming Controls 581

Resources 581
Quick Review 582
Exercises 583
Programming Exercises 588

PROGRAMMING BASED ON EVENTS 593

Delegates 594
Defining Delegates 594

Creating Delegate Instances 596

Using Delegates 596

Relationship of Delegates to Events 599

Event Handling in C# 599
Event-Handler Methods 600

ListBox Control Objects 601
Creating a Form to Hold ListBox Controls 601

ListBox Event Handlers 604

Multiple Selections with a ListBox Object 605

ComboBox Control Objects 612
Adding ComboBox Objects 613

Handling ComboBox Events 614

Registering other Events 615

Programming Event Handlers 615

MenuStrip Control Objects 617
Adding Menus 618

Adding Predefined Standard Windows Dialog Boxes 622

CheckBox and RadioButton Objects 630
CheckBox Objects 630

Adding CheckBox Objects 631

Registering CheckBox Object Events 631

Wiring One Event Handler to Multiple Objects 633

GroupBox Objects 634

RadioButton Objects 634

10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xvi | C# Programming: From Problem Analysis to Program Design, Fifth Edition

Adding RadioButton Objects 634

Registering RadioButton Object Events 636

Windows Presentation Foundation (WPF) 639
TabControl Objects 645
Coding Standards 686
Resources 686
Quick Review 686
Exercises 688
Programming Exercises 695

Advanced Object-Oriented Programming Features 699

Object-Oriented Language Features 700
Component-Based Development 701
Inheritance 702

Inheriting from the Object Class 703

Inheriting from Other .NET FCL Classes 703

Creating Base Classes for Inheritance 704

Overriding Methods 707

Creating Derived Classes 709

Making Stand-Alone Components 715

Creating a Client Application to Use the DLL 725

Abstract Classes 729
Abstract Methods 730

Sealed Classes 733
Sealed Methods 734

Partial Classes 734
Creating Partial Classes 735

Interfaces 735
Defining an Interface 736

Implementing the Interface 737

.NET Framework Interfaces 742

Polymorphism 744
Polymorphic Programming in .NET 745

Generics 746

11

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Table of Contents | xvii

Generic Classes 746

Generic Methods 751

Dynamic 752
Dynamic data type 752

var data type 753

Coding Standards 773
Resources 774
Quick Review 774
Exercises 777
Programming Exercises 782

DEBUGGING AND HANDLING EXCEPTIONS 785

Errors 786
Run-Time Errors 787

Debugging in C# 788

Exceptions 796
Raising an Exception 800

Bugs, Errors, and Exceptions 801

Exception-Handling Techniques 803
Try. . .Catch. . .Finally Blocks 804

Exception Object 808

Exception Classes 810
Derived Classes of the Base Exception Class 810

ApplicationException Class 811

SystemException Class 811

Filtering Multiple Exceptions 813

Exception Filters 816

Throwing an Exception 820

Input Output (IO) Exceptions 821

Coding Standards 839
Resources 840
Quick Review 840
Exercises 841
Programming Exercises 846

12

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xviii | C# Programming: From Problem Analysis to Program Design, Fifth Edition

WORKING WITH FILES 849

System.IO Namespace 850
File and Directory Classes 852

File Class 852

Directory Class 857

FileInfo and DirectoryInfo Classes 858

File Streams 860
Writing Text Files 863

Reading Text Files 869

Adding a Using Statement 873

Random Access 875

BinaryReader and BinaryWriter Classes 876
Other Stream Classes 882

FileDialog Class 883

Coding Standards 897
Resources 897
Quick Review 897
Exercises 899
Programming Exercises 904

WORKING WITH DATABASES 907

Database Access 908
Database Management Systems 908

ADO.NET 910
Data Providers 911

Retrieving Data from the Database 916

Processing the Data 920

Updating Database Data 928

Using Datasets to Process Database Records 929

Adding a DataGridView Control to Hold the Dataset 932

Data Source Configuration Tools 937
Add New Data Source 938

Dataset Object 946

TableAdapterManager 956

13

14

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Table of Contents | xix

DataSet Designer 957

Connecting Multiple Tables 968

Language-Integrated Query (LINQ) 975
Query Expressions 976

Implicitly Typed Local Variables 979

Coding Standards 982
Resources 982
Quick Review 982
Exercises 985
Programming Exercises 990

WEB-BASED APPLICATIONS 993

Web-Based Applications 994
Web Programming Model 994

Static Pages 995

Dynamic Pages 998

ASP.NET 1000
Visual Studio for Web Development 1000

ASP.NET Programming Models 1001

Web Forms Page 1002
ASP.NET Web Forms Site 1003

Master Pages 1008

Cascading Style Sheet (CSS) 1012

ASP.NET Empty Web Site 1016

Controls 1019
HTML Controls 1019

HTML Server Controls 1025

Web Forms Standard Server Controls 1029
Available Web Forms Controls 1030

Web Forms Controls of the Common Form Type 1031

Adding Common Form-Type Controls 1035

Validation, Custom, and Composite Controls 1038
Validation Controls 1038

Calendar Control 1043

15

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xx | C# Programming: From Problem Analysis to Program Design, Fifth Edition

GridView Control 1050

AccessDataSource 1060

Using Visual Tools to Connect 1060

Store Databases in App_Data Folder 1062

Setting the Visibility Property 1066

Other Controls 1068

Mobile Applications 1071
Xamarin.Forms 1073

iOS Apps 1074

Android Apps 1074

Windows Phone Apps 1075

Silverlight 1075

Universal Apps 1076

Running the App 1078

Deploying to an Emulator 1078

Coding Standards 1079
Resources 1079
Quick Review 1080
Exercises 1082
Programming Exercises 1087

APPENDIx A: VIsUAL sTUDIO CONFIGURATION 1089

Customizing the Development Environment 1089
Environment 1091

Projects and Solutions 1094

Text Editor 1095

Debugging 1099

HTML Designer 1100

Windows Forms Designer 1101

Other Options Settings 1102

Choose Toolbox Items 1102

Customize the Toolbars 1103

Configure and Save Windows Layouts 1104

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Table of Contents | xxi

APPENDIx B: CODE EDITOR TOOLs 1107

IntelliSense 1107
Syntax Coloring 1108
Colorized Tooltips 1108
Error and Warning Marks 1109
Quick Action Light Bulb Icon 1110
Peek Definition 1112
Refactoring 1112

Extract Method 1113

Rename 1114

Other Refactoring Options 1115

Code Snippets 1115
Working with Class Diagrams 1117

Class Details View 1118

Using the Class Diagram to Add Members 1120

Other Code Editor Tips 1121

APPENDIx C: CHARACTER sETs 1123

APPENDIx D: OPERATOR PRECEDENCE 1125

APPENDIx E: C# KEYWORDs 1127

GLOssARY 1129

INDEx 1143

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

Pr e Fa C e

C# Programming: From Problem Analysis to Program Design requires no previous 
introduction to programming but only a mathematical background of high-school 
algebra. The book uses C# as the programming language for software development; 
however, the basic programming concepts presented can be applied to a number 
of other languages. Instead of focusing on the syntax of the C# language, this book 
uses the C# language to present general programming concepts. It is the belief of 
the author that once you develop a thorough understanding of one programming 
language, you can effectively apply those concepts to other programming languages.

Why C#?
C# has gained tremendous popularity in the industry. C# is a true object-oriented lan-
guage that includes a rich set of instruction statements. C# was the language used for 
development of much of .NET, the Microsoft programming paradigm that includes a 
collection of more than 2,000 predefined classes that make up the Framework Class 
Library (FCL). Thus, C# has access to a large collection of predefined classes similar 
to those available to Java. C# provides tools that make it easy to create graphical user 
interfaces—similar to the tools Visual Basic programmers have employed for years. 
C# also provides the pure data crunching horsepower to which C/C++ programmers 
have become accustomed. However, unlike other languages, C# was designed from 
scratch to accommodate Internet and Windows applications. C# is an elegant and 
simple object-oriented language that allows programmers to build a breadth of appli-
cations. C# is also a great language for mobile application development. It can run on 
not only Windows platforms but is very portable and can run on Android and iOS 
devices. For these reasons, C# was chosen as the language for this book.

Going Beyond the Traditional CS1 Course
This book was written for the Computer Science 1 (CS1) student and includes all of 
the basic programming constructs normally covered in the traditional CS1 foundation 
course for the Computer Science curriculum. Readers begin developing applications 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xxiv | C# Programming: From Problem Analysis to Program Design, Fifth Edition

immediately in the first chapter. It includes lots of examples and figures illustrating 
basic concepts. A heavy emphasis on illustrating the visual tools that can be used 
to create applications is included in this edition. However, this book goes beyond 
what is traditionally found in most CS1 textbooks and, because of the inclusion of a 
number of advanced applications, this textbook could also be used in an intermediate 
course for students who have already been exposed to some programming concepts.

Advanced Topics
After building a solid programming foundation, this book presents rapid application 
development techniques that can be used to build a number of advanced types of 
applications including Windows, data-driven applications using a database, and Web 
and mobile applications for smart devices. Generics, delegates, ArrayLists, dynamic 
data types, abstract classes, interfaces, and many advanced object-oriented concepts 
are introduced. Readers retrieve data from files and store data both to sequential and 
binary files. Solutions involving multidimensional arrays and other advanced collection 
classes are demonstrated. Illustrating the drag-and-drop construction approach used 
with Visual Studio, Windows, and Web applications are created. Readers are introduced 
to the event-driven programming model, which is based on interactively capturing and 
responding to user input on Windows and Web forms. Class libraries, Windows Forms 
applications, and Windows Presentation Foundation client applications are created. 
Two full chapters are devoted to programming based on events and then those topics 
are integrated throughout the remainder of the book. Readers are introduced to ASP.
NET for Web applications and ADO.NET for working with databases.

For first-time programmers, this book is unusual in introducing applications that 
retrieve and update data in databases such as those created using Microsoft Access. 
A number of visual development tools are illustrated to connect to data sources. 
Other interesting topics include retrieving data using Language-Integrated Query 
(LINQ), developing stand-alone .dll components (class libraries), and an introduction 
to Xamarin for programming applications for mobile devices. All of these advanced 
features are discussed after the reader has gained a thorough understanding of the 
basic components found in programming languages.

Changes in the Fifth Edition
C# Programming: From Problem Analysis to Program Design, Fifth Edition, has been 
revised and updated to reflect the latest release of Visual Studio 2015 and C# 6.0. All 
examples are streamlined and unnecessary using statements are removed from each 
chapter. The new improvements to the code editor are highlighted from early chap-
ters and summarized in an appendix. Additional advanced object-oriented concepts 
are included. Each chapter includes new programming exercises not seen in previous 
editions. All example programs, exercises, and the solution set have been updated 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface | xxv

using Visual Studio 2015. All screenshots are updated to the Visual Studio 2015 IDE. 
The following summarizes some of the changes in the fifth edition.

 1. New C# 6.0 language features such as auto-properties, exception 
 filters, and string interpolation are introduced.

 2. Beginning with the first example, code is streamlined, reducing the 
amount of boilerplate code needed. References to static class mem-
bers are added to all examples throughout this edition to bring static 
class members directly into scope.

 3. Early introduction of Visual Studio 2015 user interface improvements.
 4. New debugging tools, new Windows layout features, enhanced color-

ized tooltips, simplified context menu options, and the new Quick 
Action Light Bulb editing tools are illustrated.

 5. All screenshots updated to reflect change made in Visual Studio 2015.
 6. New Programming Exercises not found in previous editions added 

to every chapter. Solutions to all exercises developed by the author.
 7. Increased and updated list of Internet sites added at the end of each 

chapter in the Resources section for readers to explore.
 8. Additional Notes added throughout the book highlighting tips and 

“catch you” types of topics.
 9. Expanded Glossary provides a reference for keywords tagged 

throughout the book.
 10. Revised Appendices include special sections, Customizing the Visual 

Studio Development Environment and Code Editor Tools, with 
updated illustrations and figures.

Approach
A problem-solving methodology based on object-oriented software development is 
introduced early and used throughout the book. Programming Examples are pre-
sented at the end of each chapter, and each example follows a consistent approach: 
analyzing the problem specifications, designing a solution, implementing the design, 
and verifying or validating the solution structures.

The author believes that the best way to learn to program is to experience program-
ming. This assumption drives the material presented in this textbook. As new con-
cepts are introduced, they are described using figures and illustrations. Examples are 
shown and discussed as they relate to the concept being presented. With a hands-on 
approach to learning, readers practice and solidify the concepts presented by complet-
ing the end of the chapter exercises. Readers are also encouraged throughout the book 
to explore and make use of the more than 2,000 classes that make up the FCL.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xxvi | C# Programming: From Problem Analysis to Program Design, Fifth Edition

Every chapter begins with a list of objectives and a short overview of the previous chap-
ter. Text in each chapter is supplemented with figures and tables to help visual learners 
grasp the concepts being presented. Each chapter is sprinkled with useful tips and hints 
as NOTES on the concepts being presented. Code snippets and numbered examples 
are embedded as new concepts are introduced in each chapter. In addition, each chap-
ter contains complete working programs illustrating an application using C#. Every 
chapter ends with a Coding Standards section, which provides a summary of acceptable 
conventions or guidelines pertaining to the chapter’s topics that focus on style issues. 
A list of websites for readers to explore is included in a special Resources section at the 
end of each chapter. A summary of the major points covered in that chapter and review 
exercises in both objective and subjective formats are included. Every chapter ends with 
programming exercises that give readers an opportunity to experience programming.

Using This Book for Two Different Courses
Although this book is primarily intended for a beginning programming course, it 
will also work well in an intermediate course. For courses introducing students to 
programming, Chapters 1 through 8 should be covered in detail. Depending on how 
quickly students are able to grasp the material, the course could end in any of the 
chapters following Chapter 8. For example, ending with Chapter 9, Introduction to 
Windows Programming, would give students an opportunity to get excited about 
continuing their work in programming in upcoming semesters.

For an intermediate course, where the first course was taught using a different lan-
guage, the last part of Chapter 1 along with Appendices A and B could be read to 
orient the readers to running an application using Visual Studio. Students could be 
encouraged to scan Chapters 2 through 7 and review Chapter 8 more extensively. 
Scanning these chapters, students could compare and contrast the details of the C# 
language with the programming languages they already know.

For the intermediate course where the first course was taught using C#, Chapters 4, 
7, and 8 should be reviewed, because topics covered in these chapters—Creating your 
Own Classes and Arrays—are often more difficult for the student to grasp. The remain-
der of the book beginning in Chapter 9 would be included for the intermediate course.

Overview of the Chapters
Chapter 1 briefly reviews the history of computers and programming languages includ-
ing the evolution of C# and .NET. This chapter explains the difference between structured 
and object-oriented programming and includes the software development methodology 
used throughout the remainder of the book. This chapter describes the different types 
of applications that can be developed using C#. It discusses the basic elements found in 
a C# program and illustrates how to compile, run, and debug an application.

The focus in Chapter 2 is data types and expressions. Readers gain an understand-
ing of how types, classes, and objects are related. They also learn how to perform 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface | xxvii

arithmetic procedures on the data, how to display formatted data, and how expres-
sions are evaluated using operator precedence. Chapter 3 extends the manipulation 
of the data through introducing methods and behaviors of the data. Readers learn to 
write statements that call methods and to write their own class methods. They learn 
how to pass arguments to methods that return values and to those that do not.

Readers learn to create their own classes in Chapter 4. This chapter introduces the 
components of a class including the data, property, and method members. Special 
methods, including constructors, are written.

Chapter 5 introduces control structures that alter the sequential flow of execution. 
Selection control constructs are introduced in Chapter 5. One-way, multiway, switch, 
and ternary operators used to make decisions are illustrated. Looping is introduced 
in Chapter 6. The rich set of iteration operators including while, for, do while, and  
foreach are explored. Recursive solutions are also explored.

Chapter 7 discusses arrays. This chapter describes how to declare and perform com-
pile-time initialization of array elements. The Array class and its many members are 
introduced. Methods of the string and ArrayList classes are included in Chapter 8. 
Multidimensional arrays and other collection classes, including stacks, queues, and 
hash tables, are also introduced in Chapter 8.

Chapter 9 presents a different way of programming, which is based on interactively 
responding to events. A number of classes in the FCL that are used to create Windows 
applications are introduced. Elements of good design are discussed in Chapter  9. 
Delegates are also explored in Chapter 9. Visual Studio’s drag-and-drop approach 
to rapid application development is introduced and used in these chapters. The 
Windows Presentation Foundation (WPF) is also introduced in Chapter 10 as an 
alternative approach to Windows Forms for creating Windows applications.

Advanced object-oriented programming features are the focus of Chapter 11. Readers 
are introduced to component-based development and learn how to create their own 
class library files. Inheritance, interfaces, abstract classes, sealed classes, generic types, 
partial classes, and polymorphic programming are discussed in detail. Advanced fea-
tures such as overriding, overloading, and the use of virtual methods are also included 
in Chapter 11. Static versus dynamic typing is also investigated in Chapter 11.

Chapter 12 discusses debugging and exception handling techniques. The chapter 
introduces one of the tools available in Visual Studio, the Debugger, which can be used 
to observe the run-time environment, take an up-close look at the code, and locate 
logic errors. The try. . .catch. . .finally block is discussed for handling exceptions. In 
addition to discussing .NET exception classes, custom exceptions are designed.

Chapter 13 presents the basics of creating, opening, closing, reading, and  writing 
files. The major classes used to work with file and directory systems are intro-
duced.  Chapter 14 introduces a number of new namespaces collectively called ADO.
NET, which consists of a managed set of library classes that enable interaction with 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xxviii | C# Programming: From Problem Analysis to Program Design, Fifth Edition

databases. The chapter illustrates how ADO.NET classes are used to retrieve and 
update data in databases. The visual programming tools and wizards available with 
Visual Studio, which simplify accessing data, are covered in this chapter. The LINQ is 
also introduced in Chapter 14.

The focus of Chapter 15 is on Web applications. Readers explore how the design 
of Web-based applications differs from Windows applications. They discover the 
 differences between static and dynamic web pages and how HTML and Web server 
 controls differ. Master pages and Cascading Style Sheets are introduced. Also 
included in Chapter 15 is an introduction to Xamarin used for mobile application 
 development. Chapter 15 illustrates how validation controls can be used to check 
users’ input values and shows how the ADO.NET classes, introduced in Chapter 14, 
can also be used with Web applications to access database records.

Appendix A presents suggestions for customizing the appearance and behavior of 
the Integrated Development Environment (IDE). Appendix B discusses the Code 
Editor features of Visual Studio. Code snippets and refactoring are described. 
These new features improve programmer productivity by reducing the number of 
 keystrokes required to enter program statements. This appendix also illustrates 
developing applications visually using class diagrams. Appendix C lists the Unicode 
and ASCII (American Standard Code for Information Interchange) character sets. 
Appendix D shows the precedence of the C# operators, and Appendix E lists the C# 
keywords.

Features
Every chapter in this book includes the following features. These features are both con-
ducive to learning in the classroom and enable you to learn the material at your own pace.

 ? Multi-color interior design shows accurate C# code and related 
comments.

 ? Learning objectives offer an outline of the concepts discussed in detail 
in the chapter.

 ? Hundreds of visual diagrams throughout the text illustrate difficult 
concepts.

 ? Syntax boxes show the general form for different types of statements.

 ? Numbered examples illustrate the key concepts with their relevant 
code, and the code is often followed by a sample run. An explanation 
follows that describes the functions of the most difficult lines of code.

 ? Notes highlight important facts about the concepts introduced in the 
chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Preface | xxix

 ? Numerous tables are included that describe and summarize information 
compactly for easy viewing.

 ? A Coding Standards section provides a summary of acceptable 
conventions or guidelines pertaining to the chapter’s topic. These 
coding/programming guidelines help ensure consistency and reduce 
the number of bugs and errors entered into programming projects.

 ? Internet sites listed including tutorials that can be used to enhance 
concepts are presented in the Resources section.

 ? Programming Examples are complete programs featured at the end of 
the chapter. The examples contain the distinct stages of preparing a 
problem specification, analyzing the problem, designing the solution, 
and coding the solution.

 ? Quick Reviews offer a summary of the concepts covered in the chapter.

 ? Exercises further reinforce learning and ensure that students have, 
in fact, absorbed the material. Both objective and subjective types of 
questions are included at the end of each chapter.

 ? Programming Exercises challenge students to write C# programs with a 
specified outcome.

 ? The glossary at the end of the book lists nearly 400 key terms in alphabetical 
order along with definitions for easy reference. Throughout this text, the 
terms set in bold indicate that they are defined in the glossary.

From beginning to end, the concepts are introduced at a pace that is conducive to 
learning. The writing style of this book is simple and straightforward, and it paral-
lels the teaching style of a classroom. The concepts introduced are described using 
examples and small programs.

The chapters have two types of programs. The first type includes small programs that 
are part of the numbered examples and are used to explain key concepts. This book 
also features numerous case studies called Programming Examples. These Program-
ming Examples are placed at the end of the chapters to pull together many of the con-
cepts presented throughout the chapter. The programs are designed to be methodical 
and workable. Each Programming Example starts with a Problem Analysis and is then 
followed by the Algorithm Design. Every step of the algorithm is then coded in C#. In 
addition to teaching problem-solving techniques, these detailed programs show the 
user how to implement concepts in an actual C# program. Students are encouraged 
to study the Programming Examples very carefully in order to learn C# effectively.

All source code and solutions have been written, compiled, and tested by quality 
assurance with Visual Studio Professional 2015.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Learning 
 objectives appear 
at the beginning 
of each chapter. 

Fe at u r e s o F t h e bo o k

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Numerous 
visual  diagrams 
throughout the 
text illustrate 
 difficult concepts.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Numerous tables 
are included 
that describe 
and summarize 
information 
compactly for 
easy viewing.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Updated screen 
shots of what 
readers see in 
Visual Studio are 
also included 
throughout the 
book.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Multi-color 
 interior design 
shows  accurate 
C# code and 
related  comments. 
Throughout the 
book, keywords are 
shown in blue and 
comments appear  
in green.

Non-keyword 
code appears in 
a  different font 
throughout the 
text so readers can 
quickly distinguish 
program statements 
from normal text. 

Numbered examples 
illustrate the key 
concepts with their 
relevant code, 
and the code is 
often followed by 
a sample run. An 
explanation follows 
that describes the 
functions of the 
most difficult lines 
of code. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Syntax boxes show 
the general form  
for different types 
of statements.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Notes provide 
short quick tips 
 highlighting 
important 
 concepts and 
 features that 
might be 
overlooked.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming 
 Examples are 
 complete programs 
featured at the 
end of the  chapter. 
The examples 
 contain the distinct 
stages of  preparing 
a  problem 
 specification, 
 analyzing the 
 problem,  designing 
the solution, 
and coding the 
implementation.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Coding/programming 
style guidelines and 
suggestions are 
 featured at the end 
of each chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A special Resources 
section at the end 
of each chapter 
offers a number of 
web sites for the 
reader to explore.

Quick Review offers 
a summary of the 
concepts covered in 
the chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exercises further 
reinforce learning 
and ensure that 
students have, 
in fact, absorbed 
the material. 
Both objective 
and subjective 
types of activities 
are included at 
the end of each 
chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming 
Exercises challenge 
students to write 
C# programs with a 
specified outcome.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Special 
 appendices 
 highlight code 
editor tools 
and provide 
 suggestion for 
configuring 
Visual Studio 
to  maximum 
productivity.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Instructor Resources
The following teaching tools are available for download at our Instructor Companion 
Site. Simply search for this text at sso.cengage.com. An instructor login is required.

Instructor’s Manual. The Instructor’s Manual that accompanies this textbook 
includes additional material to assist in class preparation, including suggestions for 
lecture topics.

Test Bank: Cengage Learning Testing Powered by Cognero is a flexible, online sys-
tem that allows you to:

 ? author, edit, and manage test bank content from multiple Cengage 
Learning solutions

 ? create multiple test versions in an instant

 ? deliver tests from your LMS, your classroom, or wherever you want

PowerPoint Presentations. Microsoft PowerPoint slides are available for each chap-
ter. These are offered as a teaching aid for classroom presentations, either to make 
available to students on the network for chapter review or to be printed for classroom 
distribution. Instructors can add their own slides for additional topics that they intro-
duce to the class.

Source Code for Examples. The complete Visual Studio project files for the exam-
ples included within each chapter are available for instructors and are also posted 
for students on CengageBrain.com. Individual source code files are stored with a .cs 
extension inside the project subdirectory.

Programming Exercises Solution Files. The complete Visual Studio project files 
for the solutions to all programming exercises included at the end of the chapters are 
provided. The individual source code files are stored with a .cs extension inside the 
project subdirectory.

Acknowledgments
I would like to express my gratitude for the opportunity to complete the fifth edi-
tion of this book. Like the other editions, it was a huge undertaking for me. Special 
thanks go out to Alyssa Pratt, Senior Content Developer, at Cengage Learning, for her 
positive comments, guidance, and support. She was a pleasure to work with again on 
this new edition. I am grateful to the Quality Assurance team members who verified 
that each of the examples and exercise solutions worked properly. Also thanks to the 
Content Manager and Copyeditor, Jennifer Feltri-George and Andrea Schein, who 
provided great suggestions as we progressed with the project.

Preface | xliii

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



xliv | C# Programming: From Problem Analysis to Program Design, Fifth Edition

I am very grateful to the following reviewers for their uplifting comments and sugges-
tions for improvements:

Wai Mok: The University of Alabama in Huntsville

Iftikhar Sikder: Cleveland State University

Leslie Spivey: Edison Community College

I hope that the reviewers will see that many of their suggestions were implemented. 
The textbook is much improved because of their contributions.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



IntroductIon to computIng 
and applIcatIon development

IN THIS CHAPTER, YOU WILL:

 ? Learn about the history of computers

 ? Differentiate between system and application software

 ? Investigate the steps of software development

 ? Explore different programming methodologies

 ? Discover why C# is being used today for software development

 ? Distinguish between the different types of applications that can be created with C#

 ? Explore an application written in C#

 ? Examine the basic elements of a C# program

 ? Compile, run, build, and debug an application

 ? Create an application that displays output

 ? Work through a programming example that illustrates the chapter’s concepts

1CHAPTER

© zeljkodan/Shutterstock.com

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2 | Chapter 1: Introduction to Computing and Application Development

Computers have become such an integral part of our lives today that many of their 
functions are taken for granted. Yet, only a few years ago, mobile apps, text messag-
ing, and cloud computing were unknown. Social media is one of the most power-
ful sources for news updates through platforms such as Twitter and Facebook. With 
today’s smartphones, many people have the computing power of mini super comput-
ers in their pockets. Video-sharing websites such as YouTube can now be accessed with 
most smartphones. Advances in computing are occurring every day.  Expectations 
are that tablet sales will grow by 200 percent through 2016. Over 100 million units 
were sold in last year. For most consumers, tablets are not replacements for their 
 conventional computers but are added devices they will purchase.

Much personal computing can now occur on smaller devices. Mobile applications, or 
apps, for smartphones, tablets, and other wireless devices are increasingly in demand. 
Today because of smartphone apps, you don’t have to worry about being lost, being 
bored, or alone. To reach this level of complexity, software development has gone 
through a number of eras, and today technical advances accumulate faster and faster. 
What new types of computer software will be integral to our daily lives in the future? 
What types of apps will be on the wearable technology such as wristwatches or 
glasses for you in the future. The focus of this book is to introduce you to application 
development. Before beginning the journey into software development, a historical 
perspective on computing is included to help you see the potential for advancements 
that awaits you.

History of Computers
Computing dates back some 5000 years. Many consider the abacus to be the first 
computer. Used by merchants of the past and present for trading transactions, the 
abacus is a simple calculating device that uses a system of sliding beads on a rack for 
addition and subtraction.

In 1642, another calculating device, called the Pascaline, was created. The Pascaline 
had eight movable dials on wheels that could calculate sums up to eight figures long. 
Both the abacus and Pascaline could perform only addition and subtraction. It was 
not until the 1830s that the first general-purpose computer, the Analytical Engine, 
was available.

Charles Babbage and his assistant, Lady Augusta Ada Byron, Countess of Lovelace, 
designed the Analytical Engine. Although it was very primitive by today’s standards, it 
was the prototype for what is known today as a general-purpose computer. The Ana-
lytical Engine included input devices, memory storage, a control unit that allowed 
processing instructions in any sequence, and output devices.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



History of Computers | 3

1

Many computer historians believe the present day to be in the fifth generation of 
modern computing. Each era is characterized by an important advancement in com-
puter technology. In the mid-1940s, World War II, with its need for strategic types 
of calculations, spurred on the first generation of general-purpose machines. These 
large, first-generation computers were distinguished by the use of vacuum tubes. 
They were difficult to program and limited in functionality. The operating instruc-
tions were made to order for each specific task.

The invention of the transistor in 1956 led to second-generation computers, which 
were smaller, faster, more reliable, and more energy efficient than their predecessors.

The third generation, 1964–1971, saw computers become smaller, as transistors were 
squeezed onto small silicon discs (single chips), which were called semiconductors. 
Operating systems, as they are known today, which allowed machines to run many 
different programs at once, were also first seen in third-generation systems.

As time passed, chips kept getting smaller and capable of storing more transistors, 
making computers more powerful and less expensive. The Intel 4004 chip, developed 
in 1971, placed the most important components of a computer (central processing 
unit, memory, and input and output controls) on a minuscule chip about half the size 
of a dime. Many household items such as microwave ovens, television sets, and auto-
mobiles benefited from the fourth generation of computing.

During the fourth generation, computer manufacturers tried to bring computing to 
general consumers. In 1981, IBM introduced its personal computer (PC). The 1980s 
saw an expansion in computer use as clones of the IBM PC made the PC even more 
affordable. We also saw the development of graphical user interfaces (GUIs) and the 
mouse as a handheld input device. The number of PCs in use more than doubled from 
two million in 1981 to 5.5 million in 1982. Ten years later, 65 million PCs were in use.

In the 1980s, the U.S. Defense Department named the Ada programming language in honor 
of Lady Lovelace. She has been called the world’s first programmer. Controversy surrounds 
her title. Lady Byron was probably the fourth or fifth person to write programs. She did 
programming as a student of Charles Babbage and reworked some of his calculations. 
 Babbage is considered the father of the computer since he conceptualized and invented 
the first mechanical computer in the nineteenth century.

According to the 2013 U.S. Census Bureau’s Current Population Survey, over 83.8% of 
 households in the United States had computers at home. Over 73% reported having a  
high-speed Internet connection at home.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4 | Chapter 1: Introduction to Computing and Application Development

Widespread use of computer networks and parallel processing, where computers 
use more than one CPU for faster processing speeds, characterize the current fifth- 
generation systems. Fifth-generation devices are still in development. Smaller devices 
with touchscreen capabilities using mobile apps are growing.

The real power of the computer does not lie in the hardware, which comprises the 
physical components that make up the system. The functionality lies in the software 
available to make use of the hardware. Computers can now accept spoken word 
instructions, imitate human reasoning through artificial intelligence, and commu-
nicate with devices instantaneously around the globe by transmitting digital media. 
By applying problem-solving steps, expert systems assist physicians in making diag-
noses. Healthcare professionals are now using handheld devices in patients’ rooms 
to retrieve and update patient records. Using handheld devices, drivers of delivery 
trucks are accessing global positioning systems (GPSs) to verify locations of custom-
ers for pickups and deliveries. Sitting at a traffic light or in a restaurant, you can check 
your text messages, make airline reservations, remotely monitor and manage house-
hold appliances, and access your checking and savings accounts. Using wireless net-
works, students can access a professor’s notes when they enter the classroom. These 
things are all possible because of the software, the applications controlling the hard-
ware devices. Because of the programmability of the computer, the imagination of 
software developers is set free to conjure the computing functions of the future. Soft-
ware developers are able to help make ideas come to reality faster. The next  section 
begins the discussion on software, which is the focus of this book.

According to the Bureau of Labor Statistics, employment of software developers is 
 projected to grow 22 percent from 2012 to 2022, much faster than the average of all 
 occupations. The Occupational Outlook Handbook also reported the median pay in 2012 
for  software developers with a bachelor’s degree and no work experience was $93,350 
per year.

System and Application Software
Software consists of programs, which are sets of instructions telling the computer 
exactly what to do. The instructions might tell the computer to add up a set of 
 numbers, make a decision based on the result of a calculation, or translate a  sentence 
from one language into another. Just as a cook follows a set of instructions (a  recipe) 
to prepare a dish, the computer follows instructions without adding extra salt to 
 perform a useful task. Instructions for computers have also gone through a number 
of stages or generations.

Machine code instructions, or programs, that were executed directly by the CPU 
were used with general-purpose machines in the 1940s. Back then instructions were 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



System and Application Software | 5

1
entered through a panel of switches. The instructions were symbolized by 1s and 
0s representing whether the switch was turned on or off. This was a tedious error 
prone endeavor. Assembly language instructions, which were tied to a particular 
computer’s architecture, were next used. Instructions still had to be converted into 
machine-readable form, but these instructions or programs could be read and written 
by humans.

In the mid to late 1950s, the software industry that we know today was born with 
the introduction of languages such as FORTRAN (Formula Translator) and COBOL 
(Common Business-Oriented Language). These languages were not hardware depen-
dent and marked the beginning of third-generation languages. They are easier to 
read, closer to human languages, and further from the machine instructions. Pro-
grams written using third-generation instructions can run on different machines. 
Most popular general-purpose languages of today are considered third-generation 
high-level programming languages.

Some computer historians identify fourth- and fifth-generation languages with fourth 
 generation being characterized by black box processing and fifth-generation languages 
designed to have the computer solve problems without a programmer.

The next sections describe the two major categories of software that can be devel-
oped using a programming language: system software and application software.

System Software
System software is loaded when you power on the computer. When thinking of system 
software, most people think of operating systems. Operating systems such as Win-
dows, Android, iOS, and Linux are types of programs that oversee and coordinate the 
resources on the machine. Included are file system utilities, small programs that take 
care of locating files and keeping up with the details of a file’s name, size, and date 
of creation. System software programs perform a variety of other functions: setting 
up directories; moving, copying, and deleting files; transferring data from second-
ary storage to primary memory; formatting media; and displaying data on screens. 
Operating systems include communication programs for connecting to the Internet 
or connecting to output devices such as printers. They include user interface (UI) 
subsystems for managing the look and feel of the system.

Operating systems are one type of system software. They are utility programs that make it 
easier for you to use the hardware.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6 | Chapter 1: Introduction to Computing and Application Development

Other types of system software include compilers, interpreters, and assemblers. 
As you begin learning software development, you will write instructions for the com-
puter using a programming language. Modern programming languages are designed 
to be easy to read and write. They are called high-level languages because they are 
written in English-like statements. The programming language you will be using is C# 
(pronounced see sharp). Other high-level computer programming  languages include 
Java, Visual Basic, C, and C++.

Before the computer can execute the instructions written in a programming  language 
such as C#, the instructions must be translated into machine-readable format. 
A  compiler makes this conversion. Compilers are considered types of system soft-
ware. Figure 1-1 shows what a machine language instruction looks like.

Just as the English language has rules for sentence construction, programming 
languages such as C# have a set of rules, called syntax that must be followed. 
Before translating code into machine-readable form, a compiler checks for rule 
violations. Compilers do not convert any statements into machine language until 
all syntax errors are removed. Code can be interpreted as well as compiled. Inter-
preters translate one statement of code into an intermediate form and then execute 
that line. They then translate the next instruction, execute it, and so on. Unlike 
compilers, which look at entire pieces of code, interpreters check for rule viola-
tions line by line. If the line does not contain an error, it is converted and immedi-
ately executed. Interpreters are normally slower than compilers. Many languages 

FIGURE 1-1 A machine language instruction

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Software Development Process | 7

1
offer both compilers and interpreters, including C, BASIC, Python, and Lisp. 
 Assemblers convert the assembly programming language, which is a low-level 
programming language, into machine code. Low-level programming languages are 
closer to hardware. They are not as easy to read or write as high-level program-
ming languages.

Application Software
Application software consists of programs developed to perform a specific task. 
The games you might play or the search engines you use on the Internet are types 
of application software. Word processors, such as Microsoft Word, are examples 
of application software. Word was written to help users create professional looking 
documents by including a number of editing and formatting options. Spreadsheets, 
such as Microsoft Excel, are types of application software designed to make numeri-
cal calculations and generate charts. Database management systems, such as SQL 
Server, Oracle, or Microsoft Access, were designed to organize large amounts of data, 
so that reports could easily be generated. Software that generates payroll checks is 
considered application software, as is software that helps you register for a class. 
E-commerce websites with database-driven shopping carts, such as eBay, are forms 
of application software. Application software is used by the banking industry to man-
age your checking and saving accounts. Application developers, or programmers, use 
development languages such as C# to write software to carry out specific tasks or to 
solve specific problems. The programs that you write from this book will be applica-
tion software.

Software Development Process
You will soon be writing programs using C#. How do you start? Many beginning 
programmers just begin typing without planning or without using any organized 
sequence of steps. This often leads to increased development time and solutions that 
might not consistently produce accurate results.

Programming is a process of problem solving. Typing the program statements in a 
language such as C# is not the hardest part of programming. The most difficult part 
is coming up with a plan to solve the problem. A number of different approaches, 
or methodologies, are used to solve computer-related problems. Successful prob-
lem solvers follow a methodical approach with each programming project. Figure 1-2 
illustrates the organized plan, or methodology, that is used to solve the problems 
presented in this book. The following section describes each step.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8 | Chapter 1: Introduction to Computing and Application Development

Steps in the Program Development Process
 1. Analyze the problem. The first step should be directed toward 

grasping the problem thoroughly. Analyze precisely what the soft-
ware is supposed to accomplish. During this phase, you review 
the problem specifications, which describe what the program 
should accomplish. Specifications often include the desired out-
put of the program in terms of what is to be displayed, saved, or 
printed. If specifications are ambiguous or need clarification, you 
might need to ask probing questions. If you do not know where you 
are going, how will you know when you have arrived at the correct 
location?

FIGURE 1-2 Steps in the software development process

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Software Development Process | 9

1

A program specification might look like Figure 1-3.

Sometimes one of the most difficult parts of the process is getting clear specifications from 
the user. Unless you know what the problem is, there is no way you can solve it. Make sure 
that you understand the problem definition.

FIGURE 1-3 Program specification sheet for a car rental agency problem
©

 C
en

ga
ge

 L
ea

rn
in

g

During this first phase, in addition to making sure that you understand the problem 
definition, you must also review the program inputs. You should ask the following 
types of questions:

 ? What kind of data will be available for input?

 ? What types of values (e.g., whole numbers, alphabetic characters, and 
numbers with a decimal point) will be in each of the identified data items?

 ? What is the domain (range of the values) for each input item?

 ? Will the user of the program be inputting values?

 ? If the problem solution is to be used with multiple data sets, are there 
any data items that stay the same, or remain constant, with each set?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



10 | Chapter 1: Introduction to Computing and Application Development

Before you move to designing a solution, you should have a thorough understanding 
of the problem. It might be helpful to verbalize the problem definition. It might help 
to see sample input for each of the data items. Figure 1-4 illustrates how the input 
data items would be determined during analysis for the car rental agency problem 
shown in Figure 1-3. Figure 1-4 shows the identifier, or name of the data item, the 
type, and the domain of values for each item.

Instead of having the user enter the full words of Economy, Intermediate, Full 
size, or Specialty Sports, the characters E, I, F, and S could be mapped to those 
categories.

FIGURE 1-4 Data for car rental agency

©
 C

en
ga

ge
 L

ea
rn

in
g

 2. Design a solution. Programmers use several approaches, or methods, 
during design. Procedural and object-oriented methodologies are the 
two most commonly used design methods. Some projects are more  
easily solved using one approach than the other. Both of these 
approaches are discussed in the next section. The selection of program-
ming language sometimes weighs in when determining the approach. 
The C# language was designed to be very object oriented.

  No matter what size the project is, careful design always leads to better 
solutions. In addition, careful design normally leads to solutions that 
can be produced in shorter amounts of time. A divide-and-conquer 
approach can be used with both methodologies. As the name implies, 
when you divide and conquer a programming problem, you break the 
problem into subtasks. Then, you conquer each of the subtasks by fur-
ther decomposing them. This process is also called top-down design. 
Detailed models should be developed as input to subsequent phases.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Software Development Process | 11

1
  Using the object-oriented approach, the focus is on determining 

the data characteristics and the methods or behaviors that operate 
on the data. These logical groupings of members (data and behavior) 
are referred to as a class. These characteristics are placed in a class 
diagram. Figure 1-5 contains a class diagram for the problem specifi-
cation given in Figure 1-3.

FIGURE 1-5 Class diagram of car rental agency

©
 C

en
ga

ge
 L

ea
rn

in
g

  Figure 1-5 is a class diagram divided into three sections with the top 
portion identifying the name of the class. The middle portion of a 
class diagram always lists the data characteristics. Data representing 
the type of vehicle to rent and the number of days for the rental are 
important to a rental car agency. The bottom portion of the class dia-
gram shown in Figure 1-5 shows what actions are to be performed 
with the data items. ComputeCharges( ) is used to determine the 
cost of the rental using the type of vehicle and the number of rental 
days. You will learn more about class diagrams later in this chapter. 
Procedural designs, which are appropriate for simpler problem defi-
nitions, use structure charts to show the hierarchy of modules, and 
flowcharts or pseudocode listings to detail the steps for each of the 
modules.

  Algorithms for the behaviors (object oriented) or processes (pro-
cedural) should be developed for both of these methodologies. An 
algorithm is a clear, unambiguous, step-by-step process for solving 
a problem. These steps must be expressed so completely and so pre-
cisely that all details are included. The instructions in the algorithm 
should be both simple to perform and capable of being carried out in a 
finite amount of time. Following the steps blindly should result in the 
same results every time.

  An algorithm for ComputeCharges( ) multiplies the number of 
rental days by the rate associated with the type of vehicle rented to 
produce the rental charge. After the algorithm is developed, the design 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



12 | Chapter 1: Introduction to Computing and Application Development

should be checked for correctness. One way to do this is to use sample 
data and desk check your algorithms by mimicking the computer; in 
other words, walking through the computer’s steps. Follow each step 
precisely, one step at a time. If the problem involves calculations, use 
a calculator, and follow your design statements exactly. It is important 
when you desk check not to add any additional steps, unless you go 
back and revise the algorithm.

  During this phase, it might also be helpful to plan and design the look 
of the desired output by developing a prototype. A prototype is a 
mock-up of screens depicting the look of the final output.

 3. Code the solution. After you have completed the design and veri-
fied that the algorithm is correct, you translate the design into source 
code. Source code consists of program statements written using a 
programming language, such as C#.

Source code statements can be typed into the computer using an editor such as Notepad 
or an integrated development environment (IDE), such as Visual Studio. IDEs include a 
number of useful development tools: IntelliSense (pop-up windows with completion options), 
debugging, color coding of different program sections, online help and documentation, and 
features for running the program.

  You must follow the syntax of the language when you code the solu-
tion. Whether you speak English, Spanish, or another language, you 
are accustomed to following language syntax, or rules. For example, 
the syntax of the English language dictates that statements end with 
periods and include subjects and verbs. When you write in English, 
you are expected to follow those rules. When you write in the C# pro-
gramming language, you are expected to follow the rule that every 
statement should end with a semicolon. It is at this third phase of 
the program development process (code the solution) that you must 
 concern yourself with language syntax.

  Many programmers use an iterative approach in the software devel-
opment process. This means that you might find it necessary to 
go back to the design stage to make modifications. There might 
even be times when additional analysis is necessary. If you analyze 
and design thoroughly before attempting to code the solution, you 
usually develop a much better program that is easier to read and 
modify.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Software Development Process | 13

1
 4. Implement the code. During this phase, the typed program state-

ments (source code) are compiled to check for rule violations. IDEs 
such as Visual Studio supply compilers within the development envi-
ronment. The output of the compiler is a listing of the errors along 
with a brief description of the violation. Before the implementa-
tion can go forward, all the syntax errors must be corrected. When 
rule violations are eliminated, the source code is converted into the 
Microsoft Intermediate Language (MSIL). All languages target-
ing the .NET (pronounced dot net) platform compile into MSIL. 
The language that you will be using in this book, C#, is a language 
introduced as part of the .NET platform. Like C#, other languages, 
such as Java, compile code into an intermediate language. Java’s 
intermediate language is called bytecode. Intermediate languages 
facilitate the use of code that is more platform independent than 
other languages that compile straight into the machine language of 
the  specific platform.

If you are using the Visual Studio IDE, you might not be aware of the MSIL’s presence. 
You simply select options to compile, build, and execute the program to see the output 
results.

  The MSIL code is between the high-level source code and the native 
code, which is the machine language code of a particular computer. 
MSIL code is not directly executable on any computer. It is not in 
the language of the computer, which means that it is not tied to any 
specific CPU platform. A second step is required before you see the 
results of the application.

  This second step is managed by .NET’s common language  runtime 
(CLR). CLR loads predefined .NET classes used by the pro-
gram into memory and then performs a second compile, called a 
just-in-time  (JIT) compilation. This converts the MSIL code into 
the platform’s native code. The CLR tool used for this is a JIT compiler 
called JITer. JITer reads the MSIL and produces the machine code 
that runs on the particular platform. Any computer that executes 
the code must have the CLR installed. The CLR is included with the 
.NET Framework. Any computer executing .NET code must have the 
.NET Framework installed. Figure 1-6 illustrates the steps that must 
be  performed for source code written in C# to be executed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



14 | Chapter 1: Introduction to Computing and Application Development

 5. Test and debug. Even though you have no compiler syntax errors and 
you receive output, your results might be incorrect. You must test the 
program to ensure that you get consistent results. The testing phases 
are often shortchanged. Only after thoroughly testing can you be sure 
that your program is running correctly.

  Plan your testing. Good programmers often build test plans at the 
same time they are analyzing and designing their solutions. This test 
plan should include testing extreme values, identifying possible prob-
lem cases, and ensuring that these cases are tested. After syntax errors 
are eliminated and results are being produced, you should implement 
the test plan verifying that the results are accurate. If the application 
is interacting with a user for input of data, run the program multiple 
times with the planned test values. For calculations, perform the same 
operations using a calculator, much as you did during the design phase 
when you desk checked your algorithm. There are software develop-
ment methodologies built around test development. For  example, 

FIGURE 1-6 Execution steps for .NET
©

 C
en

ga
ge

 L
ea

rn
in

g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming Methodologies | 15

1
Test Driven Development (TDD) is a programming methodology 
that emphasizes fast, incremental development and writing tests 
before writing code. With TDD, additional functionality is added only 
after the first tests are passed. The first cycle normally deals with very 
simple cases. After you have these very simple tests working, you add 
more functionality, a bit at a time.

  During testing, logic errors are often uncovered. Logic errors might 
cause an abnormal termination of the program or just produce incor-
rect results. These types of errors are often more difficult to locate 
and correct than syntax errors. A run-time error is one form of logic 
error. Run-time errors normally cause program crashes (stopping 
execution) and the reporting of error messages. For example, if you 
attempt to divide by zero, your program might crash. To further com-
plicate matters, a program might sometimes work properly with most 
test data, but crash when a certain value is entered. This is why it is 
so important to make sure that you thoroughly test all applications. 
When a logic error is detected, it might be necessary to go back to 
Step 1, reanalyze the problem specifications, and redesign a solution. 
As you look back at Figure 1-2, notice the figure shows that the soft-
ware development process is iterative. As errors are discovered, it is 
often necessary to cycle back to a previous phase or step.

Programming Methodologies
How do you ride a bicycle? How do you drive a car? How do you do your laundry? 
How do you prepare for an exam? As you think about those questions, you probably 
have an answer, and your answer will differ from those of other readers. However, you 
have some strategy, a set of steps, which you follow to get the job done. You can think 
of a methodology as a strategy, a set of steps, or a set of directions. Programmers 
use a number of different programming methodologies. The two most popular pro-
gramming paradigms are structured procedural programming and object-oriented 
 programming (OOP). These approaches are discussed in this section.

Structured Procedural Programming
This approach emerged in the 1970s and is still in use today. Procedural  programming 
is process-oriented focusing on the processes that data undergoes from input until 
meaningful output is produced. This approach is very effective for small stand-alone 
applications. The five steps for software development—analyze, design, code, imple-
ment, and test and debug—which were identified in the preceding section, work well 
for the structured procedural approach.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16 | Chapter 1: Introduction to Computing and Application Development

During design, processing steps are defined in terms of an algorithm. Any formulas 
or special processing steps are included in the algorithm. To think algorithmically, 
programmers use a number of tools. One such tool used is a flowchart. Figure 1-7 
shows some of the symbols used in a flowchart for the construction of an algorithm.

FIGURE 1-7 Flowchart symbols and their interpretation

©
 C

en
ga

ge
 L

ea
rn

in
g

Another tool used to develop an algorithm during design is pseudocode. As the 
name implies, with pseudocode, steps are written in pseudo or approximate code 
format, which looks like English statements. The focus is on determining and writ-
ing the processes or steps involved to produce the desired output. With pseudocode, 
the algorithm is written using a combination of English statements and the chosen 
programming language, such as C#. Verbs such as compute, calculate, sum, print, 
input, and display are used to imply what type of activity is needed to reach the 
desired result. While, do while, for, and for each are used to imply looping or that 
steps should be performed more than one time. When decisions or tests are required, 
if and if else are used. Indentation is used to show which program statements are 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming Methodologies | 17

1
grouped together. Figure  1-8 shows example pseudocode for the Rapid Ready car 
rental  problem specification.

FIGURE 1-8 Pseudocode or Structured English for the Rental Car application

Structured programming is associated with a technique called top-down design 
or stepwise refinement. The underlying theme or concept is that given a prob-
lem definition, you can refine the logic by dividing and conquering. The problem 
can be divided into subproblems, or procedures. Then, each of the subproblems 
is furthered decomposed. This continues until you reach subproblems that are 
straightforward enough to be solved easily at the subproblem level. After you arrive 
at a solution at the lower levels, these solutions are combined to solve the overall 
problem.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



18 | Chapter 1: Introduction to Computing and Application Development

As you think about breaking the Rental Car problem into smaller subprograms, 
you might consider that the data must be entered or inputted, number of days 
tested to determine whether you can rent the car or not, type of desired vehicle 
tested to determine the rate, final calculations made, and then the results displayed. 
Each of those small subprograms could be further divided into multiple program 
statements.

Programmers using the structured procedural approach normally write each of the 
subprograms as separate functions or methods that are called by a main control-
ling function or module. This facilitates the divide-and-conquer approach. With 
larger problems, the subprograms can be written by different individuals. One of the 
 drawbacks of the procedural approach involves software maintenance. When an 
application is upgraded or changed, programs written using the procedural approach 
are more difficult to maintain. Even minor modifications can affect multiple func-
tions and require additional modifications to be made. There is also less opportunity 
to reuse code than with the object-oriented methodology.

Object-Oriented Programming
OOP developed as the dominant programming methodology in the early and mid-
1990s. Today it is viewed as a excellent approach to software development. The con-
cept behind OOP is that applications can be organized around objects rather than 
processes. This methodology includes a number of powerful design strategies that 
facilitate construction of more complex systems that model real-world entities. The 
C# language was designed to take advantage of the benefits of the object-oriented 
methodology.

Consider the analogy of building a house. Using top-down design, this problem might 
be decomposed into Prepare the Land, Construct the Foundation, Frame the  Structure, 
Install the Roof, Finish the Interior, and Complete the Exterior. Then, each of these 
 subproblems could be further subdivided. An overall contractor could be hired for the 
project and then subcontractors assigned to each of the subproblem areas. Within each 
subproblem,  additional problems would be defined and separate workers assigned to that 
area. For example, Finish the Interior might be further divided into Walls, Floors, and so 
on. Walls would be  further decomposed into Hang Sheet Rock, Mud the Walls, Prepare 
for Paint, Paint the Walls, Paint the Trim, and so on. Again, each of these areas could be 
 subcontracted out.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Programming Methodologies | 19

1
With object-oriented analysis, design, and programming, the focus is on determin-
ing the objects you want to manipulate rather than the processes or logic required to 
manipulate the data. Remember that the procedural approach focuses on processes. 
One of the underlying assumptions of the object-oriented methodology is that the 
world contains a number of entities that can be identified and described. An entity 
is often defined as a person, place, or thing. It is normally a noun. By abstracting out 
the attributes (data) and the behaviors (processes on the data), you can divide com-
plex phenomena into understandable entities. An abstraction is simply a description 
of the essential, relevant properties of an entity. For example, you should easily be able 
to picture in your mind, or conceptualize, the entities of people, school personnel, 
faculty, student, undergraduate student, graduate student, vehicle, car, book, school, 
animal, dog, and poodle by describing characteristics or attributes, and behaviors 
or actions, about each of these.

Consider the case of a student. A student has these characteristics or attributes: stu-
dent ID, name, age, GPA, major, and hometown. The characteristics can be further 
described by identifying what type or kind of data might exist in each of them. For 
example, alphabetic characters would be found in the name attribute. Whole num-
bers without a decimal would be found in the age attribute, and numbers with a deci-
mal would be in the GPA attribute.

In addition to abstracting the data properties, you should also be able to think about 
some of the actions or behaviors of each of the entities identified in the previous 
paragraph. Behaviors associated with a student include actions such as Apply for 
 Admission, Enroll as Student, Get Final Grade, Change Name, and Determine GPA. 
Using the object-oriented methodology, these attributes and actions (or characteris-
tics and behaviors) are encapsulated, which means that they are combined together 
to form a class.

A class diagram is one of the primary modeling tools used by object-oriented pro-
grammers. You saw the Rental Car class diagram in Figure 1-5. Figure 1-9 illustrates 
another diagram using the Unified Modeling Language (UML) notation. The top 
portion of the diagram identifies the name of the class, which is Student. The section 
in the center contains the data members and the type of data that would be found 
in each data member. Information hiding is an important component of OOP. The 
minus symbol (−) to the left of the data member’s name refers to the access modi-
fier and indicates that the member is private and accessible to that class only. The 
bottom portion of the diagram in Figure 1-9 shows actions, or methods, of the Stu-
dent class. The plus symbol (+) access modifier indicates that the behaviors are pub-
lic and available outside of the class. You will read more about class diagrams in 
upcoming  chapters. This UML notation is used throughout the book for creating 
class diagrams.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



20 | Chapter 1: Introduction to Computing and Application Development

A class is like a template. It is similar to a blueprint for a house. Even though you 
define all the characteristics of a house in the blueprint, the house does not exist until 
one is built using that template. Many houses can be created using the same template. 
In object-oriented terminology, the constructed house is one instance (object) of the 
blueprint or template. You instantiate the blueprint by building a house using that 
template. Many objects of a particular class can be instantiated. Thus, an object is an 
instance of the class.

Examine the expanded example of a student with the following data members:

 ? Student number: 122223

 ? Student name: Justin Howard

 ? Age: 18

 ? GPA: 3.80

 ? Major: CS

 ? Hometown: Winchester, Kentucky

When these data members are associated with the class, an object is created or 
 constructed. A second object could be instantiated from that class by giving values 
to its members (e.g., 228221, Elizabeth Czerwinski, 21, 4.0, ENG, Reno, Nevada).

The object-oriented methodology facilitates designing components, which contain 
code that can be reused by packaging together the attributes of a data type along with 
the actions of that type. In Chapter 4, you will create your own classes that you instan-
tiate. Through inheritance, it is possible to define subclasses of data objects that 

FIGURE 1-9 Student class diagram

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Evolution of C# and .NET | 21

1
share some or all of the parent’s class characteristics. This is what enables reuse of 
code. For example, you should be able to visualize that Student is a subset of Person, 
just as Teacher is a subset of Person. Using object-oriented design, you could abstract 
out the common characteristics of all people and place them in a superclass. Through 
inheritance, Student and Teacher can use the characteristics of Person and add their 
own unique members.

Another important object-oriented concept is polymorphism. Behaviors or meth-
ods of parent and subclasses can have the same name but offer different functional-
ity. Through polymorphism, you are able to invoke methods of the same name on 
objects of different classes and have the correct method executed. For example, you 
might have subclasses of UndergraduateStudent and GraduateStudent. They 
could both inherit characteristics from the Student class. Both of the subclasses 
might have their own method that contains details about how to determine their cost 
of tuition. Both subclasses might name their method  DetermineTuitionCosts( ). 
Through polymorphism, the correct method is executed based on which object 
invoked it. When an object of the UndergraduateStudent class is used, 
the  DetermineTuitionCosts( ) method of the UndergraduateStudent 
class is used. When an object of the GraduateStudent class is used, the 
 DetermineTuitionCosts( ) method of the GraduateStudent class is used. 
You will read much more about object-oriented features in upcoming chapters. In 
Chapter 11, you will read about advanced OOP features including inheritance and 
polymorphism. In that chapter, you will write multiclass solutions.

The object-oriented principles are of particular importance when developing applica-
tions using C#. No program can be written that does not include at least one class. All 
program statements written using the C# language are placed in a class.

Whether you are using a procedural or object-oriented approach, you should follow 
the five steps to program development. As with the procedural approach, the object-
oriented development process is iterative. During design and subsequent phases, do 
not hesitate to reconsider analysis and design decisions.

Evolution of C# and .NET
Programming Languages
In the 1940s, programmers toggled switches on the front of computers to enter pro-
grams and data into memory. That is how some of the early programming began. 
Even when they moved to punching holes in cards to represent the 0s and 1s and 
reading the cards into memory, it could not have been much fun to be a programmer. 
It was easy to make an error. In the 1950s, assembly languages replaced the binary 
notation by using mnemonic symbols to represent the instructions for the computer. 
Symbols such as MV were used to represent moving the contents of one value in 
memory to another memory location. Assembly languages were designed to make 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



22 | Chapter 1: Introduction to Computing and Application Development

the programmer’s job easier by using these mnemonic symbols instead of binary 
numbers. However, the instructions depended on the particular CPU architecture. 
Statements to perform the same task differed from computer to computer. Assem-
bly languages are still considered low-level programming languages. As you can 
see from Figure 1-10, these types of instructions are not easy to read or understand. 
They are not considered close to the English language, as high-level programming 
languages such as C# and Java are.

FIGURE 1-10 Assembly language instruction to add two values

©
 C

en
ga

ge
 L

ea
rn

in
g

As noted previously, high-level languages came into existence in the late 1950s with 
FORTRAN and later COBOL. These languages were considered high-level  languages 
because they were designed to be accessible to humans, easy to read and write, and 
close to the English language. Since then, more than 2000 high-level  languages have 
come into existence. Some have gone by the wayside, while others have evolved and 
are still widely used today.

Some of the more noteworthy high-level programming languages are C, C++, Visual 
Basic, Java, and now C#. C++ is an extension of C, which actually evolved from 
BCPL and B in 1973. Dennis Ritchie is credited with developing the C programming 
 language; Bjarne Stroustrup at Bell Labs is considered the father of C++ for his design 
work in the early 1980s. C++ includes features that enabled programmers to perform 
OOP. C++ is used heavily in the computer industry today.

Smalltalk, considered a pure object-oriented language, was developed at the Xerox 
Palo Alto Research Center (PARC). Visual Basic, introduced in 1991, derived from 
the BASIC (Beginners All Purpose Symbolic Code) programming language, a lan-
guage developed in the 1960s. The earlier versions of Visual Basic did not facilitate 
development using an object-oriented approach. Earlier versions of Visual Basic did, 
however, facilitate easy creation of Windows-based GUIs. Visual Basic has been used 
for a great deal of application development because of this.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Evolution of C# and .NET | 23

1
Java was introduced in 1995 and was originally called Oak. It was originally designed 
to be a language for intelligent consumer-electronic devices such as appliances and 
microwave ovens. Instead of being used for that purpose, the business community 
used Java most heavily for Web applications because of the nature of the bytecode, 
which enabled machine-independent language compiling. Because the bytecode does 
not target any particular computer platform and must be converted into the language 
of the system running the application, this facilitates development of code that runs 
on many types of computers.

C# is one of the newer programming languages. It conforms closely to C and C++, but 
many developers consider it akin to Java. There are a number of similarities between 
the languages. In 1999, a team lead by Andres Hejsberg built a new language called 
Cool, which stood for C-like object-oriented language. When it was introduced by 
Microsoft, it was renamed C#. It has the rapid GUI features of previous versions of 
Visual Basic, the added power of C++, and object-oriented class libraries similar to 
Java. C# was designed from scratch to work with the new programming paradigm, 
.NET, and was the language used most heavily for the development of the .NET 
Framework class libraries.

Today C# can be used to develop many types of software components, including mobile 
apps. One of the exciting new uses of C# is in the area of cross-platform mobile develop-
ment. C# can be used to create not only Windows Phone but also iOS and Android smart 
device apps. With the Visual Studio 2015 release,  Microsoft partnered with a company 
called Xamarin and included their software with the 2015 edition.  Xamarin provides 
add-ins to Visual Studio that enable you to build iOS and Android apps within Visual 
Studio. As part of the Xamarin partnership with  Microsoft,  Xamarin extensions can be 
downloaded and added to earlier versions of Visual Studio, back to Visual Studio 2010.

C# enables dynamic webpages, database access components, Windows desktop 
 applications, Web services, mobile apps, and console-based applications to be cre-
ated. You will be using C# for the software  development in this book; however, the 
concepts presented can be applied to other languages. The intent of the book is to use 
the C# language as a tool for learning how to develop software rather than to focus 
on the syntax of C#.

.NET
When you think about C#, you should also understand its relationship to .NET. .NET 
is an environment in which programs run and was designed to be a new program-
ming paradigm. It is not an operating system, but rather a layer between the operat-
ing system and other applications. As such, it provides a platform for developing and 
running code that is easy to use. .NET is an integral part of many applications run-
ning on Windows and provides common functionality for those applications to run. 
 Microsoft stated that the vision for .NET was to provide a new programming plat-
form and a set of development tools. The intent was for developers to be able to build 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



24 | Chapter 1: Introduction to Computing and Application Development

distributed component-based applications. Before its official announcement in 2000, 
.NET was in development for over three years. Microsoft distributed a number of 
beta versions before the official release. A beta version is a working version that has 
not been fully tested and may still contain bugs or errors. It was not until  February 
2002 that Microsoft finally released the first version of Visual Studio, the IDE for 
developing C# applications. Visual Basic, Visual C++, and Visual C# all use this same 
development environment. Figure 1-11 shows Visual Studio with a C# program run-
ning. The output of the program “Welcome to Programming!” is shown in the small 
message box on the right of the figure.

Microsoft dropped .NET from the name of Visual Studio for the 2005 version. New releases 
of the IDE with additional features come out every couple years. Visual Studio 2015 is the 
most current version at the time this work was published. Visual Studio 2015 supports 
.NET Frameworks up to 4.6.

FIGURE 1-11 Visual Studio integrated development environment

Included in Visual Studio are tools for typing program statements, and compiling, 
executing, and debugging applications. The new concepts introduced as part of .NET 
are outlined in the following paragraphs.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Why C#? | 25

1
Multilanguage independence: .NET supports development using a number of 
programming languages: Visual Basic, C#, C++, Visual F#, Python, and a number of 
third-party languages. All the code from each of the languages can compile to the 
common MSIL.
Part of the application might be developed using Visual Basic and another portion 
developed using C#. When they are compiled, they translate to a common IL. The fol-
lowing list describes some of the common features of the .NET-supported languages:
Framework base classes: The .NET Framework has a class library, which provides a 
very large collection of reusable types (classes) each of which provide a great amount 
of predefined functionality available to any .NET language.
Dynamic Webpages and Web services: .NET was written with the Internet in 
mind; thus, deploying applications over intranets or the Internet becomes an ordi-
nary, day-to-day operation. Using a new technology, ASP.NET, a set of components 
called ADO.NET, and having XML support makes it easier to access relational data-
bases and other data sources as well as to import and export data through the Web.
Scalable component development: .NET not only facilitates object-oriented devel-
opment but also takes design one step further. With .NET, true component-based 
development can be performed better and easier than in the past. Segments of code, 
created as separate entities, can be stored independently, combined, and reused in 
many applications. That is the beauty behind .NET—it provides a relatively seam-
less way for client programs to use components built using different languages. With 
.NET, component-based development can become a reality.

Why C#?
Compilers targeting the .NET platform are available for the programming languages 
of Visual Basic, C++, and C#. In addition to Microsoft, a number of third-party ven-
dors are also marketing .NET-compliant languages. Microsoft also introduced a new 
programming language called Visual F# with Visual Studio 2010. Java is used today by 
a lot of software developers. Therefore, why use C#? C# was the language created for 
.NET and was designed from scratch to work with .NET. A large number of classes 
were included as part of .NET. These classes or templates were designed for reuse by 
any of the .NET-supported languages. They reduce the amount of programming that 
needs to be done. These classes are called the .NET Framework classes. Most of the 
.NET Framework classes were written using the C# programming language.

C#, in conjunction with the .NET Framework classes, offers an exciting vehicle to 
incorporate and use emerging Web standards, such as Hypertext Markup Language 
(HTML) and Extensible Markup Language (XML). As stated earlier, C# was designed 
with the Internet in mind. Most of the programming tools that were developed before 
.NET were designed when the Web was in its infancy and, thus, are not the greatest 
fit for developing Windows and Web applications.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



26 | Chapter 1: Introduction to Computing and Application Development

C# is a simple, object-oriented language. Through using the Visual Studio IDE 
and the .NET Framework, C# provides an easy way to create GUIs similar to those 
Visual Basic programmers have been using for years. C# also provides the pure data- 
crunching horsepower to which C and C++ programmers are accustomed. C# is now 
an open source language. In April 2014, the C# compiler platform, named Roslyn, 
was released to the public as open source. Today there are over 1,000,000 developers 
using C#. Expectations are that opening up the compiler will enable companies like 
 Xamarin, which provide cross-platform mobile development using C# to use the 
shared C# codebase and that the number of developers targeting C# will continue 
to grow.

Xamarin’s founders started an open-source project called Mono in the early 
2000s, which offered an open source implementation of C# on different platforms 
during the early years. The Xamarin company, founded by Miguel de Icaza and 
Nat   Friedman, was founded in 2011, but has an interesting history. The original 
company was called Ximian. Ximian was later sold to Novell and when Novell was 
acquired by Attachmate in 2011, the open-source Mono project came back under 
the support of its original engineers in the new company named Xamarin.

In November 2014, Microsoft announced that it was partnering with Xamarin and 
embracing open source as a core principal to enable .NET applications to run on 
multiple operating systems. The .NET Foundation was created and much of the 
open-source is now available on GitHub. GitHub is a web-based repository hosting 
service. C# is going to be around for some time. It represents the next generation 
of languages.

Some characterize C# by saying that Microsoft took the best of Visual Basic and 
added C++, trimming off some of the more arcane C traditions. The syntax is very 
close to Java.

Types of Applications Developed with C#
C# can be used to create several different types of software applications. Some of the 
most common applications are as follows:

 ? Web applications

 ? Windows GUI applications

 ? Console-based applications

In addition to these applications, class libraries and stand-alone components (.dlls), 
smart device applications or apps, and services can also be created using C#.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Types of Applications Developed with C# | 27

1Web Applications
C# was built from the ground up with the Internet in mind. For this reason, 
 programmers can use C# to quickly build applications that run on the Web for end 
users to view through browser-neutral user interfaces. As they program in C#, devel-
opers can ignore the unique requirements of the platforms—Macs, Windows, and 
Linux—that will be executing these applications and end users will still see consistent 
results. Using Web forms, which are part of the ASP.NET technology, programmable 
webpages can be built that serve as a UI for Web applications. ASP.NET is a program-
ming framework that lets you create applications that run on a Web server and deliv-
ers functionality through a browser, such as Microsoft Internet Explorer. Although 
you can use other languages to create ASP.NET applications, C# takes advantage of 
the .NET Framework and is generally acknowledged to be the language of choice for 
ASP.NET development. Much of the .NET Framework class library (FCL) is written 
in the C# programming language. After you learn some problem-solving techniques 
and the basic features of the C# language, Chapter 15 introduces you to ASP.NET. 
Figure 1-12 illustrates an ASP.NET webpage you will create with C# in Chapter 15.

FIGURE 1-12 Web application written using C#

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



28 | Chapter 1: Introduction to Computing and Application Development

Windows Applications
Windows applications are designed for desktop use and for a single platform. They 
run on PC desktops much like your favorite word-processing program. Writing code 
using C# and classes from the System.Windows.Forms namespace applications 
can be developed to include menus, pictures, drop-down controls, and other widgets 
you have come to expect in a modern desktop application. .NET uses the concept of 
namespace to group types of similar functionality. The System.Windows.Forms 
namespace is used as an umbrella to organize classes needed to create Windows 
applications. Using the IDE of Visual Studio, GUIs can be developed by dragging and 
dropping controls such as buttons, text boxes, and labels on the screen. This same 
drag-and-drop approach is used to create Web applications with Visual  Studio. You 
will begin creating Windows GUI applications in Chapter 9.  Figure 1-13 illustrates a 
Windows application you will create using the C# language in Chapter 10.

FIGURE 1-13 Windows application written using C#

Console Applications
Console applications normally send requests to the operating system to display 
text on the command console display or to retrieve data from the keyboard. From 
a beginners’ standpoint, console applications are the easiest to create and represent 
the simplest approach to learn software development, because you do not have to be 
concerned with the side issues associated with building GUIs. Values can be entered 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exploring the First C# Program | 29

1
as input with minimal overhead, and output is displayed in a console window, as illus-
trated in Figure 1-14. You will begin by developing console applications, so that you 
can focus on the details of programming and problem solving in general.

The default colors were changed for all Console Applications. As shown in 
 Figure 1-14, the Screen Background was set to White. The Screen Text was set to 
Black. This change was made by selecting Defaults from the icon on the title bar of 
the  output window when the application was launched. The colors were changed 
from the Colors tab.

FIGURE 1-14 Output from Example 1-1 console application

As you read in previous sections, programs are the instructions written to direct a 
computer to perform a particular task. Each instruction must be written in a spe-
cific way. The syntax rules for writing these instructions are defined by the language 
in which the program is written. Before results are obtained, these human-readable 
instructions, called source code, must be translated into the machine language, 
which is the native code of the computer. The translation is a two-step process, which 
begins with the compiler. In this chapter, you will write your first C# program, learn 
how it is compiled, and explore how the final output is produced.

Each instruction statement has a semantic meaning, a specific way in which it 
should be used. This chapter highlights the purpose of the program statements as 
they appear in an application, because many of these program elements will be used 
in all applications that you develop using C#.

Exploring the First C# Program
Since the 1970s when the C language was developed, it has been traditional when learning 
a new language to display “Hello World!” on the console screen as the result of your first 
program. The program in Example 1-1 demonstrates a C# program that does exactly that. 
The sections that follow explain line-by-line the elements that make up this first program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



30 | Chapter 1: Introduction to Computing and Application Development

EXAMPLE 1-1

Line 1   // This is traditionally the first program written.
Line 2   using System;
Line 3   using static System.Console;
Line 4   
Line 5   namespace HelloWorldProgram
Line 6   {
Line 7        class HelloWorld
Line 8        {
Line 9             static void Main( ) 
Line 10            {
Line 11                 WriteLine("Hello World!");
Line 12                 ReadKey( );
Line 13            }
Line 14       }
Line 15  }

Readability is important. As far as the compiler is concerned, you could actually 
type the entire program without touching the Enter key. The entire program could 
be typed as a single line, but it would be very difficult to read and even more chal-
lenging to debug. The style in Example 1-1 is a good one to mimic. Notice that curly 
braces { } are matched and appear on separate lines, by themselves. Statements are 
grouped together and indented. Indenting is not required but is a good practice to 
follow because it makes the code easier to read. When you type your program, you 
should follow a consistent, similar style. The output produced from compiling and 
executing the program appears in Figure 1-14.

Elements of a C# Program
Although the program statements in Example 1-1 make up one of the smallest 
 functional programs that can be developed using C#, they include all the major 
 components found in most programs. An understanding of the features that make 
up this program will help prepare you to begin developing your own applications. 
Examine each segment line-by-line to analyze the program, beginning with Line 1.

Comments
The first line of Example 1-1 is a comment:
Line 1   // This is traditionally the first program written.

Comments are displayed in green throughout the book.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Elements of a C# Program | 31

1
Writing a comment is like making notes for yourself or for readers of your program. 
Comments are not considered instructions to the computer and, therefore, have no 
effect on the running of the program. When the program is compiled, comments are 
not checked for rule violations; on the contrary, the compiler ignores and bypasses 
them. Comments do not have to follow any particular rules, with the exception of 
how they begin and end.

Comments serve two functions: they make the code more readable and they inter-
nally document what the program statements are doing. At the beginning of a pro-
gram, comments are often written to identify who developed the code, when it was 
developed, and for what purpose the instructions were written. Comments are also 
used to document the purpose of different sections of code. You can place comments 
anywhere in the program. Where a portion of the code might be difficult to follow, it 
is appropriate to place one or more comments explaining the details. In Example 1-1, 
the only comment is found on Line 1.
Line 1   // This is traditionally the first program written.

Appendix A suggests ways to customize your development environment. One of the items 
discussed is how line numbers are displayed. Line numbers are added here to explain the 
features. This setting is found in Visual Studio at the Tools, Options, Text Editor, C# 
dialog box.

With C#, three types of commenting syntax can be added to a program: inline, 
 multiline, and XML document comments.

Inline Comments
The comment that appears on Line 1 of Example 1-1 is an inline, or single-line, 
 comment. An inline comment is indicated by two forward slashes // and is usually 
considered a one-line comment. The slashes indicate that everything to the right of 
the slashes, on the same line, is a comment and should be ignored by the compiler. 
No special symbols are needed to end the comment. The carriage return (Enter) ends 
the comment.

Multiline Comments
For longer comments, multiline comments are available. A forward slash followed 
by an asterisk /* marks the beginning of a multiline comment, and the opposite 
pattern */ marks the end. Everything that appears between the comment symbols is 
treated as a comment. Multiline comments are also called block comments. Although 
they are called multiline comments, they do not have to span more than one line. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



32 | Chapter 1: Introduction to Computing and Application Development

Unlike the single-line comment that terminates at the end of the current line when 
the Enter key is pressed, the multiline comment requires special characters /* and 
*/ to begin and terminate the comment, even if the comment just appears on a single 
line.  Example 1-2 shows an example of a multiline comment.

EXAMPLE 1-2

/* This is the beginning of a multiline (block) comment. It can 
go on for several lines or just be on a single line. No additional 
symbols are needed after the beginning two characters. Notice there 
is no space placed between the two characters. To end the comment, 
use the following symbols. */

C# does not allow you to nest multiline comments. In other words, you cannot place a 
block comment inside another block comment. The outermost comment is ended at the 
same time as the inner comment as soon as the first */ is typed.

XML Documentation Comments
A third type of comment uses three forward slashes ///. This is an advanced docu-
mentation technique used for XML-style comments. XML (Extensible Markup 
Language) is a markup language that provides a format for describing data using tags 
similar to HTML tags. When XML-style comments are included, the C# compiler 
reads them and generates XML documentation from them.

You will be using the inline // and multiline /*      */ comments for the  applications 
you will develop in this book.

Using Directive
You specify which group of classes you want to have access to in your program with 
using directives. The statements that appear in Example 1-1 on Lines 2 and 3 permit 
the use of members found in the System namespace and specifically members in the 
System.Console class. Line 2 indicates any member of the System namespace 
can be referenced in the program. With just Line 2, in order to reference members in 
the System namespace, you would need to fully quality your reference. Fully qualify-
ing means that you would specify the name of the class first followed by a period 
and then the member’s name.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Elements of a C# Program | 33

1
Adding Line 3 takes this one step further. By typing using static System.Console;, 
any members of the Console class can be referenced without having to fully qualify 
the reference with the namespace or the class names, that is, System and Console.
Line 2    using System;
Line 3    using static System.Console;

Being able to include not only a namespace but also a static class name is a new 
language feature introduced with Visual Studio 2015 and the C# 6.0 release. This 
new language feature reduces the amount of typing needed when you use mem-
bers of the class later in your program. Prior to Visual Studio 2015 and C# 6.0, 
you could not specify a class name, such as Console with the using statement. 
Only namespace names could be identified with the using statement. All calls to 
methods such as WriteLine( ) had to include the fully qualified class name, as in 
Console.WriteLine( ). Now with this new language feature included, the class 
name can be omitted as you will note is done on Lines 11 and 12 in Example 1-1. This 
is possible as long as a reference to the static Console class name is included 
with other using statement references. The lines are repeated here for your review.
Line 11   WriteLine("Hello World!");
Line 12   ReadKey( );

Using .NET provides the significant benefit of making available more than 2000 classes 
that make up what is called the FCL. A class contains code that can be reused, 
which makes programming easier and faster because you don’t have to reinvent the 
wheel for common types of operations. The Framework classes are all available for 
use by any of the .NET-supported languages, including C#.

Keywords after they are introduced, such as class, are displayed in blue throughout this 
book. Keywords are words reserved by the system and have special, predefined meanings. 
The keyword class, for instance, defines or references a C# class.

With several thousand .NET Framework classes, it is very unlikely that program 
developers will memorize the names of all of the classes, let alone the additional 
names of members of the classes. As you could well imagine, it would be easy for 
you to use a name in your own application that has already been used in one or 
more of the Framework classes. Another likely occurrence is that one or more of 
these Framework classes could use the same name. How would you know which 
class was being referenced? .NET eliminates this potential problem by using 
namespaces.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



34 | Chapter 1: Introduction to Computing and Application Development

EXAMPLE 1-3

Assume you have a class called Captain. You could abstract out characteristics and 
behavior attributes of a Captain. If you had an application that was being developed for 
a football team, the characteristics and behaviors of that kind of Captain would differ 
greatly from those of the Captain in an application designed for a fire department. 
Moreover, both sets of characteristics differ from those of a boating Captain. The 
Captain associated with a military unit, such as the Navy, would also be different. 
With each possible application, you could use the same name for the Captain class. 
If you gave instructions to a program to display information about a Captain, the 
program would not know which set of characteristics to display. To clarify whether 
you are talking about the boat Captain, football team Captain, fire station Captain, 
or the Navy Captain, you could qualify the keyword by preceding the name with its 
category. To do so, you could write Boat.Captain, Football.Captain, Fireman.Captain, 
or Navy.Captain. You would need to precede Captain with its category type every 
time reference was made to Captain.

By specifying which namespace you are building an application around, you can 
eliminate the requirement of preceding Captain with a dot ( . ) and the name of the 
namespace. If you specify use the boating namespace, you do not have to qualify each 
statement with the prefix name. That is what the using directive accomplishes. It 
keeps you from having to qualify each class by identifying within which namespace 
something appears. A using directive enables unqualified use of the types that are 
members of the namespace. By typing the using-namespace-directive, all the types 
contained in the given namespace are imported, or available for use within the 
particular application.

The most important and frequently used namespace is System. The System 
namespace contains classes that define commonly used types or classes. The 
Console class is defined within the System namespace. The Console class 
enables programmers to write and read from the console window or keyboard. The 
fully qualified name for Console is System.Console. If you removed the using 
System; and using static System.Console; directives in Lines 2 and 3, it would 
be necessary for you to replace
Line 11   WriteLine("Hello World!");
Line 12   ReadKey( );

with
Line 11   System.Console.WriteLine("Hello World!");
Line 12   System.Console.ReadKey( );

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Elements of a C# Program | 35

1

Namespaces provide scope, or an enclosing context, for the names defined within the 
group. By including the using directive to indicate the name of the namespace to be 
used, you can avoid having to precede the class names with the category grouping. 
After you add the using System; line, you can use the Console class name with-
out explicitly identifying that it is in the System namespace. Adding the additional 
using static System.Console; available as a new feature with Visual Studio 
2015, facilitates invoking the WriteLine( ) and ReadKey( ) methods without not 
only explicitly identifying the System namespace but also specifying the Console 
class name.

Namespace
Lines 5 through 15 define a namespace called HelloWorldProgram.
Line 5   namespace HelloWorldProgram 
Line 6   {
Line 15  }

The namespace does little more than group semantically related types under a single 
umbrella. Example 1-1 illustrates how a namespace called HelloWorldProgram is 
created. HelloWorldProgram is an identifier, simply a user-supplied or user- created 
name. As noted in the previous section, you will create many names (identifiers) when 
programming in C#. Rules for creating identifiers are discussed in Chapter 2. You can 
define your own namespace and indicate that these are names associated with your 
particular application.

Each namespace must be enclosed in curly braces { }. The opening curly brace ( { ) on 
Line 6 marks the beginning of the HelloWorldProgram namespace. The opening 
curly brace is matched by a closing curly brace ( } ) at the end of the program on Line 
15. Within the curly braces, you write the programming constructs.

In Example 1-1, Lines 5, 6, and 15 could have been omitted. This program did 
not define any new programming constructs or names. It is merely using the 
Console class, which is part of the System namespace. No errors are intro-
duced by adding the additional umbrella, but it was not necessary. Visual Studio 
 automatically adds a namespace umbrella around applications that are created 
using the IDE.

In addition to the using static System.Console; directive, the using 
System; directive also appears. When a console application is created, Visual Studio 
automatically references and imports the System namespace.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



36 | Chapter 1: Introduction to Computing and Application Development

Class Definition
Lines 7 through 14 make up the class definition for this application.
Line 7        class HelloWorld
Line 8        {
Line 14       }

As C# is an object-oriented language, everything in C# is designed around a class, 
which is the building block of an object-oriented program. C# doesn’t allow any-
thing to be defined outside of a class. Every program must have at least one class. 
Classes define a category, or type, of object. Many classes are included with the .NET 
Framework. Programs written using C# can use these predefined .NET classes or cre-
ate their own classes.

In Example 1-1, the user-defined class is titled HelloWorld. The example also 
uses the Console class, one of the .NET predefined classes. Every class is 
named. It is traditional to name the file containing the class the same name as 
the class name, except that the filename will have a .cs extension affixed to the 
end of the name. C# allows a single file to have more than one class; however, it 
is common practice to place one user-defined class per file for object-oriented 
development.

Most object-oriented languages, including Java, restrict a file to one class. C#, however, 
allows multiple classes to be stored in a single file.

Classes are used to define controls such as buttons and labels, as well as types of 
things such as Student, Captain, and Employee. The word class is a keyword. Like 
namespaces, each class definition must be enclosed in curly braces { }. The { on 
Line 8 is an opening curly brace, which marks the beginning of the class defini-
tion. The opening curly brace is matched by a closing curly brace at the end of the 
class definition on Line 14. Within the curly braces, you define the class members. 
A class member is generally either a member method, which performs some behav-
ior of the class, or a data member, which contains a value associated with the state 
of the class.

Main( ) Method
The definition for the Main( ) method begins on Line 9 and ends with the closing 
curly brace on Line 13.
Line 9       static void Main( )
Line 10      { 
Line 13      }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Elements of a C# Program | 37

1
The Main( ) method plays a very important role in C#. This is the entry point for all 
applications. This is where the program begins execution. The Main( ) method can 
be placed anywhere inside the class definition. It begins on Line 9 for this example. 
When a C# program is launched, the execution starts with the first executable state-
ment found in the Main( ) method and continues to the end of that method. If the 
application is 3000 lines long with the Main( ) method beginning on Line 2550, the 
first statement executed for the application is on Line 2550.

Unlike the lowercase main( ) method that appears in the C++ language, in C#, 
Main( ) must begin with an uppercase ‘M’.

The entire contents of Line 9 are the heading for the method. A method is a collec-
tion of one or more statements combined to perform an action. Methods are similar 
to C++ functions. The heading for the method contains its signature, which includes 
the name of the method and its argument list. Return types and modifiers, such as 
public and static, are part of the heading, but not considered part of the signa-
ture. The heading line for the Main( ) method begins with the keyword static, 
which implies that a single copy of the method is created and that you can access 
this method without having an object of the class available. More details regard-
ing static are discussed in subsequent sections. For now, remember that Main( ) 
should include the static keyword as part of its heading.

The second keyword in the heading, void, is placed in the return type location. Typi-
cally, a method calls another method and can return a value to the calling method. 
Remember that a method is a small block of code that performs an action. As a result 
of this action, a value might be returned. If a method does not return a value, the 
keyword void is included to signal that no value is returned. When the method does 
return a value, the type of value is included as part of the heading. Chapter 3 intro-
duces you to the different data types in C#.

Main( ) is the name of the method. Methods communicate with each other by send-
ing arguments inside parentheses or as return values. Sometimes no argument is sent, 
as is the case when nothing appears inside the parentheses.

In Example 1-1, only two executable statements are included in the body of the 
method Main( ). The body includes all items enclosed inside opening and closing 
curly braces. When a program is executed, the statements that appear in the Main( ) 
method are executed in sequential order. When the closing curly brace is  encountered, 
the entire program ends.

All executable applications must contain a Main( ) method.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



38 | Chapter 1: Introduction to Computing and Application Development

Method Body Statements
The body of this Main( ) method consists the statements found on Lines 10 
through 13.
Line 10   {
Line 11      WriteLine("Hello World!");
Line 12      ReadKey( );
Line 13   }

Remember that the purpose of the program in Example 1-1 is to display "Hello 
World!" on the output screen. The lines of code in Example 1-1, which have been 
explained on previous pages of this chapter, are common to most applications you 
will be developing. Line 11, however, is unique to this application. The body for this 
method begins with the opening curly brace on Line 10 and ends with the closing 
curly brace on Line 13.

The statements in the Main( ) method are calls to a method named WriteLine( ) 
and another method named ReadKey( ). A method call is the same as a method 
 invocation. Like Main( ), WriteLine( ) has a signature. The heading along with 
the complete body of the method is the definition of the method. When called, 
WriteLine( ) writes the string argument that appears inside the parentheses to 
the standard output device, a monitor. After displaying the string, WriteLine( ) 
advances to the next line, as if the Enter key had been pressed.

A quick way to identify a method is by looking for parentheses; methods always appear 
with parentheses ( ). A call to methods, such as WriteLine( ) and ReadKey( ), 
always includes a set of parentheses following the method name identifier, as do 
signatures for methods.

The string of text, "Hello World!", placed inside the parentheses is the method’s 
argument. WriteLine( ) is defined in the Console class and can be called with 
no arguments. To have a blank line displayed on the standard output device, type:
WriteLine( ); // No string argument is placed inside ( )

The Console class contains the standard input and output methods for console 
applications. Method members in this class include Read( ), ReadKey( ), 
ReadLine( ), Write( ), and WriteLine( ). The method Write( ) differs 
from WriteLine( ) in that it does not automatically advance the carriage return to 
the next line when it finishes. The following lines would produce the same result as 
the single line WriteLine ("Hello World!");
Write("Hello");
Write(" ");
WriteLine("World!");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Elements of a C# Program | 39

1
An invisible pointer moves across the output screen as the characters are displayed. 
As new characters are displayed, it moves to the next position and is ready to print at 
that location if another output statement is sent. Notice the second statement in the 
preceding code, Write(" "); this places a blank character between the two words. 
After displaying the space, the pointer is positioned and ready to display the W in 
World. The output for both of the preceding segments of code is

Usually, the characters inside the double quotes are displayed exactly as they appear 
when used as an argument to Write( ) or WriteLine( ). An exception occurs 
when an escape character is included. The backslash ('\') is called the escape 
 character. The escape character is combined with one or more characters to create 
a special escape sequence, such as '\n' to represent advance to next line, and '\t' 
for a tab indention. A number of escape sequences can be used in C#. This is the same 
set of escape characters found in other languages such as Java and C++. Table 1-1 lists 
some of the more commonly used escape characters that can be included as part of 
a string in C#.

Hello World!

Escape sequence 
character

Description

\n Cursor advances to the next line; similar to pressing the Enter key

\t Cursor advances to the next horizontal tab stop

\" Double quote is printed

\' Single quote is printed

\\ Backslash is printed

\r Cursor advances to the beginning of the current line

\b Cursor advances back one position (Backspace)

\a Alert signal (short beep) is sounded

© Cengage Learning

TABLE 1-1 Escape sequence

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



40 | Chapter 1: Introduction to Computing and Application Development

When an escape sequence is encountered inside the double quotes, it signals that a 
special character is to be produced as output. The output of the statement:
Write("What goes\nup\nmust come\tdown.");

is

Notice in the Write( ) method that the argument inside the parentheses has three 
escape sequences. The backslash is not printed. When the '\n' is encountered, the 
output is advanced to the new line. The space between the words come and down was 
placed there as a result of the tab escape sequence ('\t').

Three other methods in the Console class, Read( ), ReadKey( ),and 
ReadLine( ), deserve explanation. Visually they differ from the WriteLine( ) 
method in that they have no arguments, nothing is placed inside the parentheses. 
Read( ), ReadKey( ), and ReadLine( ) methods can all return values and are 
used for accepting input from a standard input device, such as a keyboard.

What goes
up
must come      down.

Notice in Example 1-1 that the statements in the body of methods end in semicolons. 
However, no semicolon is placed at the end of method headings, class definition 
headings, or namespace definition headings. Note that semicolons appear on Lines 2, 
3, 11, and 12 in Example 1-1.

ReadKey( ) is often used in a C# program to keep the output screen displayed 
until the user presses a key on the keyboard. The ReadKey( ) method is invoked 
on Line 12 for Example 1-1. Until the user presses a key, the "Hello World" 
 message remains on the output screen. The Read( ) method can also be used 
and like the ReadKey( ) method accepts any character from the input device, 
and as soon as a key is pressed, control passes to the next line in the program. 
Instead of accepting a single character as the Read( ) and ReadKey( ) methods 
do, ReadLine( ) allows multiple characters to be entered. It accepts characters 
until the Enter key is pressed. You will use the ReadLine( ) method in Chapter 3 
to input data values.

Now that you know what elements make up a C# program, you are almost ready to 
begin developing your own programs. Figure 1-15 shows how namespace, class, 
method, and statements are related.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Elements of a C# Program | 41

1

The FCL includes a number of different namespaces, such as System. Defined within 
a namespace are a number of classes, such as Console. Defined within a class are a 
number of methods, such as WriteLine( ) and Read( ). You did not see the state-
ments that made up the WriteLine( ) method, you saw the WriteLine( ) method 
being called. A method can have one or more statements. One of those statements 
can be a call to another method, such as the case of calling on the WriteLine( ) 
method from within the Main( ) method.

To develop software using C#, the .NET Framework is needed. The Framework 
includes all the predefined .NET classes. Having so many classes available decreases 
the amount of new code needed. You can use much of the functionality included in 
the class library. The next section describes how you begin typing your program 
statements.

FIGURE 1-15 Relationship among C# elements

Framework class library

Namespace

Class

Method

Statement

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



42 | Chapter 1: Introduction to Computing and Application Development

Compiling, Building, and Running an Application
Typing Your Program Statements
You have a couple of options for writing code using C#. One approach to developing 
applications is to type the source code statements using a simple text editor (such as 
Notepad) and follow that up by using the DOS command line to compile and exe-
cute the application. This technique offers the advantage of not requiring significant 
 system resources but requires that you must know exactly what to type.

A second approach is to use the Visual Studio IDE, and this chapter introduces you 
to Visual Studio. The IDE is an interactive environment that enables you to type 
the source code, compile, and execute without leaving the IDE program. Because 
of the debugging and editing features that are part of the IDE, you will find it much 
 easier to develop applications if Visual Studio is available. In addition to the rich, 
IDE, Visual Studio includes a number of tools and wizards. Appendix A, Visual 
 Studio  Configuration, describes many additional features of Visual Studio, including 
 suggestions for customizing the IDE.

You will want to deselect Hide file extensions for known file types so that as you 
create applications, you will be able to see the file extensions in the Solution Explorer 
Window. The file extension includes a dot and two to six characters following the name. 
Examples are .cs, .csproj, .sys, .doc, .suo, .sln, and .exe. The extension identifies the type 
of information stored in the file. For example, a file ending in .cs is a C# source file. It is 
helpful to be able to identify files by type. You can make this change in the Control Panel, 
Folder Options, View tab.

The preceding sections described the program statements required as a minimum 
in most console-based applications. To see the results of a program, you must type 
the statements, or source code, into a file, compile that code, and then execute the 
application. The next sections examine what happens during the compilation and 
execution process with and without using the Visual Studio IDE.

Compilation and Execution Process
The compiler is used to check the grammar. The grammar is the symbols or words 
used to write the computer instructions. The compiler makes sure that there are no 
rule violations in the program statements or source code. After the code is success-
fully compiled, the compiler usually generates a file that ends with an .exe extension. 
The code in this .exe file has not yet been turned into machine code that is targeted 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Compiling, Building, and Running an Application | 43

1
to any specific CPU platform. Instead, the code generated by the compiler is MSIL, 
often referred to simply as IL. In the second required step, the just-in-time compiler 
(JITer) reads the MSIL code and translates or produces the machine code that runs 
on the particular platform. After the code is translated in this second step, results can 
be seen.

Operations going on behind the scene are not readily apparent. For example, after the 
compiler creates the IL, the code can be executed on any machine that has the .NET 
Framework installed. Microsoft offers as a free distribution the .NET Framework 
Redistributable version for deploying applications only. The redistributable version 
is a smaller download than the SDK and includes the CLR and class libraries. Again, 
this is available at the Microsoft website.

The runtime version of the .NET Framework is similar in concept to the Java Virtual 
Machine (JVM). Like C#, Java’s compiler first translates source code into intermedi-
ate code called bytecode. The bytecode must be converted into native machine code 
before results can be seen from an application. With C#, the CLR actually translates 
only the parts of the program that are being used. This saves time. In addition, after 
a portion of your MSIL file has been compiled on a computer, it never needs to be 
compiled again because the final compiled portion of the program is saved and used 
the next time that portion of the program is executed.

Compiling the Source Code Using Visual Studio IDE
You can use the built-in editor available with the Visual Studio IDE to type your pro-
gram statement. You then compile the source code from one of the pull-down menu 
options in the IDE and execute the application using another menu option in the IDE. 
Many shortcuts are available. The next section explores how this is done using the 
Visual Studio IDE.

Begin by opening Visual Studio. Create a new project by either selecting the New 
Project button on the Start page or using the File, New, Project link.

As shown in Figure 1-16, a list of project types appears in the middle window. There 
are a number of templates that can be used within the IDE. To develop a C# console 
application, select Visual C# and Console Application for the Template. Using the 
Browse button beside the Location text box, navigate to the location where you 
want to store your projects. The name of the project is HelloWorldProgram. If the 
check box beside the Create directory for solution option is selected in the bottom 
right corner, an extra folder will be created that bundles the files created for your 
solution.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



44 | Chapter 1: Introduction to Computing and Application Development

Selecting the template determines what type of code is generated by the IDE. 
 Figure 1-17 shows the code that is created automatically when you create a console 
application.

FIGURE 1-16 Creating a console application

Whatever name you give the project becomes the namespace’s name for this project 
unless this default setting is changed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Compiling, Building, and Running an Application | 45

1

As you can see from Figure 1-17, having the IDE generate this much code reduces 
your typing. The only lines that must be added are those specific to the application 
being developed.

FIGURE 1-17 Code automatically generated by Visual Studio

Notice the light bulb to the left on the first line in Figure 1-17 suggesting you remove 
unnecessary using statements. The light bulb is called the Quick Action Light Bulb and 
is new to Visual Studio 2015. It can help identify unnecessary statements, help with errors, 
and streamline code.

To produce the traditional Hello World program, begin by adding onto the using 
static System.Console; as a new directive under the line that reads using 
System;.
using static System.Console;

The remaining using statements can be deleted.

Move the cursor to the end of Line 9 and press the Enter key to open up a new blank 
line. Type the following lines between the braces in the Main( ) method:
WriteLine("Hello World!");
ReadKey( );

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



46 | Chapter 1: Introduction to Computing and Application Development

Next, change the name of the class and the source code filename. Visual Studio uses 
the default name Program for each new class created and by default identifies the 
source code file by that same name. If you use the Solution Explorer window to change 
the source code filename to HelloWorld.cs, a message, as shown in  Figure 1-18, will 
be displayed asking whether you want to change all references to that new name. You 
can make this change in the Solution Explorer window by either right clicking on the 
name in the Solution Explorer window and selecting the Rename option, as is shown 
in Figure 1-18, or simply clicking on the name and typing a new value. If the Solution 
Explorer window is not active on your desktop, select View, Solution Explorer. Be 
sure to leave the .cs file extension when you rename the file.

Notice that as soon as you begin typing and enter the characters Wr, a smart window 
listing pops up narrowing your selections of Write and WriteLine. This is the Word 
Correct option of the IntelliSense feature of the IDE. As the name implies, the feature 
attempts to sense what you are going to type before you type it. When the window pops up, 
if it has the correct selection, simply type the next character following that word and you will 
get another IntelliSense pop-up. You can also use the arrow keys to identify your selection.

FIGURE 1-18 Changing the source code name from Program

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Compiling, Building, and Running an Application | 47

1
As you review the Solution Explorer window shown in Figure 1-18, notice the top 
level reads Solution “HelloWorldProgram” (1 project). The second line also con-
tains the word “HelloWorldProgram.” Visual Studio first creates a solution file. 
HelloWorldProgram, which appears on the top line, is the name of the solution file. 
The solution file may consist of one or more projects. For this application, the solu-
tion consists of one project. When you explore the directory where your applications 
are stored, you will find a folder named using that solution name. Inside the folder, 
there will be a file ending with a .sln extension. This is the solution file and it stores 
information about the solution. In that same folder, you will also see a file ending with 
a .csproj extension. This file stores information about the project. Normally when you 
reopen your application in Visual Studio, you will open the file ending with the .sln 
extension.

If you answer Yes to the question shown in Figure 1-18, the name of the class in the 
source code is replaced with the new name.

Visual Studio generates a couple of other unnecessary lines that can be removed. For 
example, the extraneous using statements were removed in the example. They are not 
needed for most of the applications you will develop. With Visual Studio 2015, you may see 
a yellow light bulb appear to the left of these extraneous using statements, suggesting 
that they be removed and showing you a preview of the changes. The using System; 
directive could have also been removed since only members of the Console class 
were referenced for this simple example. The arguments inside the parentheses for the 
Main( ) method were also removed. You will read about these lines later in this book.

It is not absolutely necessary to change the names of the source code file and class. 
The application can run without making that change; however, to develop good habits, you 
should change the name. It can save your time and grief when applications involve multiple 
classes.

The statements in Example 1-4 appeared in Example 1-1 and are repeated here with-
out the line numbers so that you can see the final source listing.

As you review Figure 1-18, notice the green bars that appear along the margins. These 
indicate lines that have been changed. Once you close the file and reopen it, they 
disappear. Initially a vertical yellow line appears in the margin to mark code that 
has changed since the file was most recently saved. When you save the changes, the 
 vertical lines become green.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



48 | Chapter 1: Introduction to Computing and Application Development

EXAMPLE 1-4

// This is traditionally the first program written.
using System;  // This line could have also been removed.
using static System.Console;

namespace HelloWorldProgram
{
     class HelloWorld 
     {
          static void Main( ) 
          {
               WriteLine("Hello World!");
               ReadKey( );
          }
     }
}

Do remember that C# is case sensitive, meaning that the name HelloWorld is a totally 
different name from helloWorld, even though only one character is different. Therefore, 
be very careful to type the statements exactly as they are shown.

To compile the HelloWorldProgram project, select the Build HelloWorldProgram 
option on the Build menu. The name HelloWorldProgram follows the Build option 
because HelloWorldProgram is the name of the project. Projects that contain more 
than one class are compiled using the Build Solution option.

To run the application, you can click Start Debugging or Start Without Debugging 
on the Debug menu bar, as illustrated in Figure 1-19. If you attempt to execute code 
that has not been compiled (using Build), the smart IDE compiles the code first. 
Therefore, many developers use the shortcut of bypassing the Build step.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Compiling, Building, and Running an Application | 49

1

If you ran the application using the Start Debugging option without invoking the 
ReadKey( ) method, the output flashes on the screen and then disappears. You 
hold the output screen if you include a call to the Read( ) or ReadKey( ) meth-
ods. When this line is executed, the program waits for you to press a key before it 
terminates. Notice the ReadKey( ) method is invoked as the last statement in the 
Main( ) method.

Another option to hold the command windows in Visual Studio is to select Debug, 
Start Without Debugging instead of Debug, Start Debugging to execute your pro-
gram. Notice in Figure 1-19 that Start Without Debugging is the option immediately 
below the Start Debugging option. If you select Debug, Start Without Debugging, 
it is not necessary to add the additional ReadKey( ); statement. When you use the 
Start Without Debugging option for execution, the user is prompted to “Press any 
key to continue.”

Several other shortcuts are available to run your program. Notice as you look at the menu 
option under Debug that Ctrl+F5 is listed as a shortcut for Start Without Debugging; 
F5 is the shortcut for Start Debugging. In addition, if you have the Debug toolbar icons 
on your screen, an open right arrow represents Start Without Debugging. A closed green 
right arrow represents Start Debugging.

FIGURE 1-19 Execution of an application using Visual Studio

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



50 | Chapter 1: Introduction to Computing and Application Development

Visual Studio is a highly sophisticated IDE. Appendix A, “Visual Studio Configuration,” 
includes additional information regarding customizing the development environment 
and using the debugger for development. Reviewing that material now would be wise.

Debugging an Application
It is inevitable that your programs will not always work properly immediately. Several 
types of errors can occur and cause you frustration. The major categories of errors—
syntax and runtime—are discussed in the following sections.

Syntax Errors
When you type source code statements into the editor, you are apt to make typing errors 
by misspelling a name or forgetting to end a statement with a semicolon. These types of 
errors are categorized as syntax errors and are caught by the compiler. When you com-
pile, the compiler checks the segment of code to see if you have violated any of the rules 
of the language. If it cannot recognize a statement, it issues an error message, which is 
sometimes cryptic, but should help you fix the problem. Error messages in Visual Studio 
are more descriptive than those issued at the command line. However, be aware that a 
single typing error can generate several error messages. Figure 1-20 shows a segment 
of code, in which a single error causes the compiler to generate three error messages.

FIGURE 1-20 Syntax error message listing

Errors reported

Pushpin

Missing ending
double quote

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Debugging an Application | 51

1
The error messages are displayed in the Error List window found at the bottom of 
the IDE. The IDE also underlines the supposed location of the problem. You can also 
double click on any of the error messages to go directly to the line flagged by the 
compiler. If the Error List tab is not visible on your screen, you can select Error List 
from the View menu.

A pushpin icon appears in the upper-right corner of all tool windows such as that 
shown in the Error List window. When the pushpin stands up like a thumbtack, 
the window is docked in place; thus, the Error List window is docked in place in 
Figure 1-20.

Because one error can generate several messages, it is probably best to fix the first error 
and then recompile rather than trying to fix all the errors in one pass.

Tool windows support a feature called Auto Hide. If you click the pushpin so that it appears 
to be lying on its side, the window minimizes along the edges of the IDE. A small tab with 
the window name appears along the edge. This frees up space so you can see more of your 
source code.

The syntax error shown in Figure 1-20 is a common mistake. The double quote was 
omitted from the end of the argument to the WriteLine( ) method at Line 10. The 
error message does not say that, however. When you are reviewing error messages, 
keep in mind that the message might not be issued until the compiler reaches the next 
line or next block of code. Look for the problem in the general area that is flagged. 
Some of the most common errors are failing to end with an opening curly brace ({) or 
having an extra closing curly brace (}), failing to type a semicolon at the end of a state-
ment (;), and misspelling names. As a good exercise, consider purposefully omitting 
curly braces, semicolons, and misspelling words. See what kind of error messages 
each mistake generates. You will then be more equipped to find those errors quickly 
when you develop more sophisticated applications in the future.

Run-time Errors
Run-time errors are much more difficult to detect than syntax errors. A program 
containing run-time errors might compile without any problems, run, and produce 
results. Run-time errors can also cause a program to crash. A program might be writ-
ten to retrieve data from a file. If that file is not available, when the program runs, a 
run-time error occurs. Another type of run-time error is division by zero.

Many times, a program compiles and executes without errors but does not perform 
as expected. If the results are incorrect, the associated error is called a logic error. 
Logic errors are not identified until you look closely at the results and verify their 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



52 | Chapter 1: Introduction to Computing and Application Development

correctness. For example, a value might not be calculated correctly. The wrong 
 formula might be used. Failing to understand the problem specification fully is the 
most common culprit in logic errors. It is not enough to produce output; the output 
must be a correct solution to the problem.

Another potential run-time error type will be introduced when you start working 
with data in Chapter 2. If you are using data for calculations or performing different 
steps based on the value of data, it is easy to encounter a run-time error. Run-time 
errors can be minimized during software development by performing a thorough 
analysis and design before beginning the coding phase. The common strategy of desk 
checking also leads to more accurate results.

Creating an Application
Now that you understand what is required in most C# programs and how to compile 
and see your results, work through the following example using the suggested meth-
odology for program development introduced earlier in this chapter. In this section, 
you will design a solution for the following problem definition.

The problem specification is shown in Figure 1-21.
PROGRAMMING EXAMPLE: ProgrammingMessage

FIGURE 1-21 Problem specification sheet for the ProgrammingMessage example

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1

Programming Example: ProgrammingMessage | 53

Do you understand the problem definition? This step is often slighted or glossed 
over. It is easy to scan the problem definition and think that you have a handle on 
the problem but miss an important feature. If you do not devote adequate time and 
energy analyzing the problem definition, much time and expense might be wasted 
in later steps. This is one, if not the most important, step in the development pro-
cess. Ask questions to clarify the problem definition if necessary. You want to make 
sure that you fully grasp what is expected.

As you read the problem definition given in Figure 1-21, note that no program 
inputs are required. The only data needed for this application is a string of 
 characters. This greatly simplifies the analysis phase.

ANALYZE  
THE PROBLEM

DESIGN A 
SOLUTION

The desired output, as noted in the problem specification sheet in Figure 1-21, 
is to display “Programming can be FUN!” on two lines. For this example, as well 
as any other application you develop, it is helpful to determine what your final 
output should look like. One way to document your desired output is to con-
struct a  prototype, or mock-up, of the output. Prototypes range from being 
elaborate designs created with graphics, word-processing, or paint programs, 
to being quite cryptic sketches created with paper and pencil. It is crucial to 
realize the importance of constructing a prototype, no matter which method 
you use. Developing a prototype helps you construct your algorithm. Prototypes 
also provide additional documentation detailing the purpose of the application. 
Figure 1-22 shows a  prototype of the final output for the ProgrammingMessage 
example.

FIGURE 1-22 Prototype for the ProgrammingMessage example

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



54 | Chapter 1: Introduction to Computing and Application Development

During design, it is important to develop an algorithm. The algorithm for this 
 problem could be developed using a flowchart. The algorithm should include a 
step-by-step solution for solving the problem, which, in this case, is  straightforward 
and involves merely the output of a string of characters. Figure 1-23 shows a 
 flowchart defining the steps needed for the ProgrammingMessage example.

FIGURE 1-23 Algorithm for the ProgrammingMessage example

©
 C

en
ga

ge
 L

ea
rn

in
g

Another option is to use structured English or pseudocode to define the algorithm. 
The pseudocode for this problem would be very short. It would include a single 
line to display the message Programming can be FUN! on the output screen.

Using an object-oriented approach to design, the solutions normally entail creat-
ing class diagrams. No data members would need to be defined for this problem. 
The Console class in the System namespace already has methods you can use 
to display output on a standard output device. Thus, no new methods or behaviors 
would need to be defined. Therefore, if you were to construct a class diagram, it 
would include only a heading for the class. Nothing would appear in the middle 
or bottom portion of the diagram. Because the diagram does not provide additional 
documentation or help with the design of this simple problem, it is not drawn.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1

Programming Example: ProgrammingMessage | 55

After the algorithm is developed, the design should be checked for correctness. 
One way to do this is to desk check your algorithms by mimicking the computer 
and working through the code step-by-step as if you were the computer. When 
you step through the flowchart, it should produce the output that appears on the 
prototype. It is extremely important that you carefully design and check your algo-
rithm for correctness before beginning to write your code. You will spend much 
less time and experience much less frustration if you do this.

CODE THE  
SOLUTION

After you have completed the design and verified the algorithm’s correctness, it is 
time to translate the design into source code. You can type source code statements 
into the computer using a simple editor such as Notepad, or you can create the 
file using Visual Studio. In this step of the process, you must pay attention to the 
language syntax rules.

If you create the application using Visual Studio, the IDE automatically gen-
erates much of the code for you. Some of that code can be removed or disre-
garded. For example, did you notice that the four using statements (using 
System.Collections.Generic; using System.Linq; using System.Text; 
and using System.Threading.Tasks;) were removed in the previous example? 
The Quick Action Light Bulb will help you remove unnecessary using statements. 
You can again remove or disregard these clauses. The using System; is the only 
using clause that needs to remain with your program statements for most of 
the applications that you will be developing. Adding an additional using clause 
(using static System.Console;) to reference the Console class  shortens the 
amount of typing needed.

Visual Studio also modifies the Main( ) method’s heading from what you saw 
 previously in this chapter. The signature for Main( ) can have an empty argu-
ment list or include string[ ] args inside the parentheses. For the types of 
applications you are developing, you do not need to send the additional argument. 
Therefore, you can also disregard or completely remove the argument inside the 
parentheses to Main( ) at this time.

You might want to change the name of the source code file, and allow Visual Studio to 
change all references to that name. When you typed ProgrammingMessage as the 
project name, the IDE automatically named the namespace ProgrammingMessage. 
The class could also be called ProgrammingMessage, and this would cause no 
name clashing problems such as the namespace being given the same name as the 
class name. Figure 1-24 illustrates the changes you might want to make to the 
code  generated by Visual Studio.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



56 | Chapter 1: Introduction to Computing and Application Development

With the exception of the using static System.Console; clause, the only lines 
that you had to type were found in the Main( ) body.
WriteLine("Programming can be");
WriteLine("FUN!");
ReadKey( );

The final program listing looks like this:
/*Programmer: [supply your name]
  Date:       [supply the current date] 
  Purpose:     This class can be used to send messages to
               the output screen.
*/
using System;
using static System.Console;

namespace ProgrammingMessage
{
     class ProgrammingMessage
     {
          static void Main ( )
          {
               WriteLine("Programming can be"); 
               WriteLine("FUN!");
               ReadKey( );
          }
     }
}

At the beginning of your program, identify the author of the code, and as a minimum 
specify the purpose of the project. Note that the statements inside the Main( ) 
method are executed in sequential order. The ReadKey( ) method is executed after 

FIGURE 1-24 Recommended deletions

Change the name

Can delete these
using statements

Can replace with
static void Main()

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Coding Standards | 57

1

By following the steps outlined in this chapter, you have officially become a C# pro-
grammer. The program you created was a simple one. However, the concepts you 
learned in this chapter are essential to your progress. In Chapter 2, you will begin 
working with data.

Coding Standards
It is important to follow coding standards when you design classes. Doing so will lead 
to better solutions and reduce the amount of time needed when you make changes 
to your program statements. You should also follow standards while initially design-
ing your algorithms using flowcharts and pseudocode. Following are some suggested 
coding standards or guidelines as they relate to pseudocode.

Pseudocode

 ? For arithmetic operations, use verbs such as compute or calculate to 
imply some form of arithmetic is needed.

 ? Use words such as set, reset, or increment to imply what type of actions 
should be performed.

 ? Use print or display to indicate what should be shown on the screen.

the two WriteLine( ) methods. ReadKey( ) is used in a program to keep the 
output screen displayed until the user presses a key. After a character is pressed on 
the keyboard, control passes to the next line that marks the end of the application.

IMPLEMENT  
THE CODE

During implementation, the source code is compiled to check for rule violations. 
To compile from within the Visual Studio IDE, use the Build menu option. If you 
have errors, they must be corrected before you can go forward. From within the 
Visual Studio IDE, select Start Without Debugging on the Debug menu bar to 
see the results.

TEST AND 
DEBUG

Just because you have no compiler syntax errors and receive output does not mean 
that the results are correct. During this final step, test the program and ensure 
that you have the correct result. The output should match your prototype. Is your 
 spacing correct?

If you are developing your application with an earlier version of Visual Studio and C#, 
you would not be able to add the reference to the static class (using static 
System.Console;). You would need to fully qualify calls to members of the Console 
class. WriteLine( ) would be called by typing Console.WriteLine( ).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



58 | Chapter 1: Introduction to Computing and Application Development

 ? 
Group items and add indentation to imply they belong together.

 ? 
For statements that should be performed more than one time, use 
keywords such as while or do while to imply looping.

 ? 
Use if or if/else for testing the contents of memory locations.

Developing standards that you consistently adhere to will increase your coding 
 efficiency and make your code more maintainable.

Resources
There are enormous numbers of sites devoted to just C# on the Web. You might start 
your exploring at one or more of the following sites:

 ? C# 5.0 Language Specifications— 
http://www.microsoft.com/en-us/download/details.aspx?id=7029

 ? C# Programmers Guide— 
https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx

 ? History of Computing Project— 
http://www.thocp.net/

 ? Pascaline— 
http://www.thocp.net/hardware/pascaline.htm

 ? The Microsoft .NET Website— 
http://www.microsoft.com/net

 ? The Visual Studio Home Page— 
http://www.visualstudio.com/

 ? U.S. Census Data on Computer and Internet Use— 
http://www.census.gov/cps/

 ? Bureau of Labor Statistics Occupational Outlook Handbook— 
http://www.bls.gov/ooh/Computer-and-Information-Technology/
Software-developers.htm

 ? .NET Foundation for Open Source Development— 
http://www.dotnetfoundation.org/

 ? GitHub Open Source Repository— 
https://github.com/microsoft/dotnet

 ? Mono Cross Platform Open Source .NET Framework— 
http://www.mono-project.com

 ? Xamarin Cross-Platform Mobile Development— 
https://xamarin.com/

 ? Microsoft Developer Network— 
http://msdn.microsoft.com/en-us/

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1

Quick Review | 59

QUICK REVIEW
 1. The power of the computer rests with software, which is the set of 

instructions or programs that give the hardware functionality.
 2. Many consider today’s computer technology to be in the fifth genera-

tion of modern computing. Each era is characterized by an important 
advancement.

 3. Software can be divided into two categories: system software and appli-
cation software. Application software is defined as the programs devel-
oped to perform a specific task.

 4. The type of software most often associated with system software is the 
operating system. The operating system software is loaded when you 
turn on the computer. Other types of system software are compilers, 
interpreters, and assemblers.

 5. Programming is a process of problem solving. The hardest part is com-
ing up with a plan to solve the problem.

 6. The five problem-solving steps for software development introduced in 
this chapter include analyzing, designing, coding, implementing, and 
testing and debugging the solution.

 7. Procedural programming is process oriented and focuses on the pro-
cesses that data undergoes from input until meaningful output is 
produced.

 8. The underlying theme of top-down design or stepwise refinement is 
that given any problem definition, the logic can be refined by using the 
divide-and-conquer approach.

 9. Software maintenance refers to upgrading or changing applications.
 10. Using an object-oriented analysis approach, the focus is on determin-

ing the objects you want to manipulate rather than the logic required to 
manipulate them.

 11. Encapsulation refers to combining attributes and actions or characteris-
tics and behaviors to form a class.

 12. An object is an instance of a class.
 13. Through inheritance, it is possible to define subclasses of data objects 

that share some or all of the main class characteristics of their parents or 
super classes. Inheritance enables reuse of code.

 14. C# was designed from scratch to work with the new programming 
 paradigm, .NET, and was the language used for development of much 
of .NET.

 15. .NET is a software environment in which programs run. It is not the oper-
ating system. It is a layer between the operating system and other applica-
tions, providing an easier framework for developing and running code.

 16. Through using Visual Studio (which is an IDE) and the .NET  Framework 
classes, C# provides an easy way to create GUIs.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



60 | Chapter 1: Introduction to Computing and Application Development

 17. C# is being used to develop mobile apps for multiple platforms includ-
ing iOS and Android.

 18. C# can be used to create Web, Windows, and console applications.
 19. Webpages can be created using Web forms, which are part of the  

ASP.NET technology.
 20. Windows applications are considered desktop bound and designed for a 

single platform.
 21. Console applications are the easiest to create. Values can be entered and 

produced with minimal overhead.
 22. C# programs usually begin with a comment or using directives, 

 followed by an optional namespace grouping and then the required 
class definition.

 23. All C# programs must define a class.
 24. Comments are written as notes to yourself or readers of your program. 

The compiler ignores comments.
 25. It is not necessary to end single inline comments (//); they end when 

the Enter key is pressed. Comments that span more than one line should 
be enclosed between /* */. These are considered block or multiline 
comments.

 26. Many classes make up the Framework class library. A class contains 
data members and methods or behaviors that can be reused.

 27. The using-namespace-directive imports all the types contained in the 
given namespace. 

 28. By adding a using directive to a static class, you can eliminate the 
need of preceding a method invocation with the name of the class, a 
dot (.), and the method name. (i.e. using static System.Console)

 29. Everything in C# is designed around a class. Every program must have 
at least one class.

 30. A method is a collection of one or more statements taken together that 
perform an action. In other words, a method is a small block of code that 
performs an action.

 31. The Main( ) method is the entry point for every C# console applica-
tion. It is the point at which execution begins.

 32. The keyword static indicates that a single copy of the method is 
created.

 33. The keyword void is included to signal that no value is returned. The 
complete signature of a method starts with the return type, followed by 
the name of the method, and finally a parenthesized list of arguments. 
One signature for Main( ) is void static Main( ).

 34. WriteLine( ) writes a string message to the monitor or a standard 
output device.

 35. Methods communicate with each other through arguments placed 
inside parentheses.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1

Exercises | 61

 36. Readability is important. Indenting is not required, but it is a good 
 practice because it makes the code easier to read.

 37. To see the results of a program, you must type the statements (source 
code) into a file, compile that code, and then execute the application.

 38. Visual Studio IDE is an interactive development environment that 
enables you to type the source code, compile, and execute without 
 leaving the IDE program.

 39. One way to document your desired output is to construct a prototype, 
or mock-up, of your output.

 40. The ReadKey( ) method is often used to hold the display screen for 
viewing. It accepts any character from a standard input device, such as a 
keyboard. It does nothing with the character.

EXERCISES
 1. All of the following are examples of high-level programming languages, 

except:
a. C#
b. C
c. Java
d. C++
e. Assembly

 2. The program that translates high-level programming language into 
machine-readable form is a(n):
a. application
b. operating system
c. C# program
d. compiler
e. machine language utility

 3. The following strategy reduces the amount of time in development and 
produces more efficient solutions:
a. Code the solution as soon as possible.
b. Design the solution before coding.
c. Analyze the solution before testing and debugging.
d. Build a prototype during testing.
e. Use a simple, low-level language for development.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



62 | Chapter 1: Introduction to Computing and Application Development

 4. In which phase of the software development process would probing 
questions be used to verify the problem definition?
a. analysis
b. design
c. coding
d. implementation
e. testing

 5. Cycling back to previous phases as potential problems are uncovered is 
an example of:
a. object-oriented programming
b. stepwise refinement
c. intermediate language
d. iterative development
e. structured programming

 6. After designing your solution, you should _____ before typing any code.
a. analyze the problem definition
b. check for run-time errors
c. do maintenance on the solution
d. desk check the solution
e. determine what .NET class to use

 7. With the object-oriented methodology, the data members are referred to as:
a. attributes or characteristics
b. characteristics or behaviors
c. methods or attributes
d. behaviors or methods
e. attributes or behaviors

 8. Which of the following is the name of a namespace needed for Console 
applications?
a. using
b. Console
c. System.Console
d. Write
e. System

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1

Exercises | 63

 9. ASP.NET creates which type of application?
a. Windows
b. console
c. command
d. Web
e. services

 10. Which beginning symbol(s) indicates the lines that follow will be 
comments?
a. /*

b. **

c. ///

d. */

e. //

 11. System is an example of a(n):
a. object
b. class

c. method
d. namespace

e. directive

 12. A(n) _____ groups semantically related types under a single name.
a. object
b. class

c. method
d. namespace

e. directive

 13. To mark the beginning and end of a block of code, C# programmers use:
a. [ ]
b. { }
c. ( )
d. begin end
e. start stop

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



64 | Chapter 1: Introduction to Computing and Application Development

 14. Which of the following is a keyword?
a. Main( )

b. System

c. using

d. WriteLine

e. all of the above

 15. The fully qualified call to the method that allows the user to input a 
single character is:
a. Console.System.Read( )

b. System.Console.Read( )

c. Console.System.Write( )

d. System.Console.Write( )

e. System.Console.ReadLine( )

 16. A(n)_____ is a mock-up of desired output.
a. prototype
b. algorithm
c. diagram
d. specification
e. none of the above

 17. What is the name of the feature in Visual Studio that displays in a 
 scrollable list all available methods and properties when the dot is typed 
after an object name?
a. Help
b. Rotor 
c. Mono
d. IntelliSense
e. ToolTip

 18. To see the results of an application, you _____ the code.
a. compile
b. JIT
c. execute
d. edit
e. desk check

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1

Exercises | 65

 19. Which escape sequence can be used to indicate that the cursor should 
advance to the next line?
a. newline
b. escape next
c. \n
d. \newline
e. \r

 20. Which of the following is a call to a method?
a. Console.Write;

b. Console.Write["ok"];

c. Write.Console("ok");

d. Console.Write("ok");

e. none of the above

 21. Identify one syntax error that might occur when you type Example 1-1 
into an editor. Identify one logic error that might occur.

 22. What is produced when you run the following application?

Line 1  using System;
Line 2  using System.Console;
Line 3  namespace ExerciseI
Line 4  {
Line 5    class Problem2
Line 6    {
Line 7      static void Main( )
Line 8      {
Line 9         Write("Go ");
Line 10        Write("Forth ");
Line 11        WriteLine("and DO");
Line 12        Write("Awesome ");
Line 13        Write("Stuff!");
Line 14     }
Line 15   }
Line 16 }

 23. What must be changed in the segment of code in Exercise #22 to cause 
all of the output to be displayed on one line?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



66 | Chapter 1: Introduction to Computing and Application Development

 24. Using the program segment in Exercise #22, identify line number(s) in 
which each of the following can be found:
a. method invocation
b. namespace

c. class name
d. argument to a method
e. identifier

 25. Identify the syntax error(s) (if any) in the following:

Line 1  using System
Line 2  namesspace ExerciseI
Line 3  {
Line 4    Problem2
Line 5    {
Line 6      static Main( )
Line 7      {
Line 8         console.write("ok")
Line 9      }
Line 10   }
Line 11 }

PROGRAMMING EXERCISES
 1. Write a program that displays the traditional Hello World message on 

the screen but adds your introduction. The output should be displayed 
with white background and black text. One possible design is shown 
here.

For an added challenge, also display your message using a different 
language.

For example, using Spanish, the message might read:

 2. Develop an application that produces a banner containing informa-
tion about your project. Items you might include are your program-
ming assignment number, name, date submitted, and the purpose of the 

Hello World! My name is Tyler Howard!

In Spanish:
Hello World! Mi nombre es Tyler Howard!

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1

Programming Exercises | 67

application. Label each item. These are items you might want to include 
as internal documentation on future programming assignments. The 
output should be displayed with white background and black text. Your 
output for your banner might look similar to the following:

In addition to printing the output screen banner shown in the preced-
ing code segment, be sure to include appropriate comments as internal 
documentation to your program.

 3. Create an application that displays an X as output. Use any characters of 
your choosing when you design your prototype. The output should be 
displayed with white background and black text. One possible design is 
given here.

For an added challenge, use mostly tabs and newline characters as part 
of your design as opposed to just using the space character.

 4. First develop a prototype and then write a program that displays the 
name of the programming language discussed in this text. The output 
should be displayed with white background and black text. You should 
be more creative, but one possible design is given here.

CCCCCCCCCC
CC                                    ##   ##
CC                                 ##############
CC                                    ##    ##
CC                                 ##############
CC                                    ##    ##
CCCCCCCCCC

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



68 | Chapter 1: Introduction to Computing and Application Development

 5. Flags are a symbol of unity and invoke special meaning to their follow-
ers. Create a design for a flag and write a program that displays your 
design. The output should be displayed with white background and 
black text. One possible design follows.

*******——————————————————————————————————
*******——————————————————————————————————
*******——————————————————————————————————
*******——————————————————————————————————
—————————————————————————————————————————
—————————————————————————————————————————

 6. Create an application that produces three different outputs using the 
same phrase. Select your own favorite popular saying for the phrase. 
The phrase should first be displayed on a single line. The output should 
be displayed with white background and black text. Use at least three 
Write( ) methods—but display the output on a single line.

Next, print the phrase on three separate lines, again using only Write( ) 
methods. For your third and final output, print your favorite say-
ing one word per line. Decide which combination of Write( ) and/or 
 WriteLine( ) would be the most streamlined approach. Label each out-
put. Following is an example of what the final output would look like 
using a favorite saying of the author:

 7. Produce a listing containing information about you. Include items such 
as your name, hometown, major, hobby, and/or favorite activity. Label 
each piece of information, place each of the items on separate lines, and 
place a single backslash (\) after each entry. Begin and end the entire 
listing with the | character. Include the full listing in a box of  asterisks. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1

Programming Exercises | 69

 8. Hangman is a favorite childhood game. Design the stick figure for this 
game and produce a printed listing with your stickman. One possible 
design follows. You may implement this design or develop an improved 
version; however, you must include legs and arms that use the backslash 
symbol as part of your prototyped design. The output should be dis-
played with white background and black text.

*********               *               *
*********              ***             ***
*********             *****           *****
*********            *******         *******
*********           *********       *********
*********          ***********       *******
*********         *************       *****
*********        ***************       ***
*********       *****************       *

 9. Create an application that displays several patterns. You may use any 
character of your choice to construct the patterns. Design your solution 
to include at least three different patterns and display the three patterns 
on the same row. The output should be displayed with white background 
and black text. One possible solution follows.

Design the solution so that all items are displayed from Write( )  methods. 
Ensure that your source code is readable and doesn’t wrap if printed. 
The output should be displayed with white background and black text. 
Your output might look similar to the following:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



70 | Chapter 1: Introduction to Computing and Application Development

 10. Write a program that displays your initials in block characters so that 
each letter is made up of the character that it represents. Output should 
consist of at least 10 rows or lines and all initials must appear together in 
those rows. The output should be displayed with white background and 
black text. For example, the initials for Benjamin Andrew Jones in block 
characters are shown below.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Neale Cousland / Shutterstock.com

All Microsoft screenshots used with permission from Microsoft Corporation.

Data Types and  
Expressions

IN THIS CHAPTER, YOU WILL:

 ? Examine how computers represent data

 ? Declare memory locations for data

 ? Explore the relationship among classes, objects, and types

 ? Use predefined data types

 ? Use integral data types

 ? Use floating-point types

 ? Learn about the decimal data type

 ? Declare Boolean variables

 ? Declare and manipulate strings

 ? Work with constants

 ? Write assignment statements using arithmetic operators

 ? Learn about the order of operations

 ? Learn special formatting rules for currency

 ? Work through a programming example that illustrates the chapter’s concepts

2CHAPTER

© zeljkodan/Shutterstock.com

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



72 | Chapter 2: Data Types and Expressions 

Chapter 1 introduced you to the basic elements of a C# program. You discovered 
the requirements for developing, compiling, and executing applications. This  chapter 
focuses on data. Data is the raw facts, the basic numbers and characters that are 
manipulated to produce useful information. In this chapter, you will begin to see the 
power of programming when you write applications to perform calculations. You will 
learn how to declare variables that hold different types of data in memory and see 
how arithmetic operators react given different kinds of data.

Data Representation
You might hear someone say that his computer has a 64-bit processor with 8 GB of 
RAM and 1 TB of hard disk space. Another person tells you her flash memory key 
holds 64 GB. Exactly what does this mean?

Bits
To begin, the word bit is a shortening of the words Binary digIT. Binary means two; 
thus, a binary digit can hold one of two values: 0 or 1. For data representation, the 1 
and 0 correspond to on and off, respectively. When thinking about bits, it might help 
you to picture a circuit (switch) turned on or turned off. The number 1 represents the 
circuit as being turned on.

Bytes
Computer memories are commonly divided into 8-bit groupings. This 8-bit combina-
tion is called a byte. In the simplest terms, with each of the switches being known as 
a bit, it takes a combination of eight switches to represent one character, such as the 
 letter A. With 8 bits representing 1 byte and 1 byte representing one keystroke, it would 
take 11 bytes to represent the word programming. You might wonder why it takes 8 bits 
to make a byte. The 8-bit byte is a format that people settled on through trial and error 
over the past 50 years. This use of 8 bits got its start with the IBM System/360 in the 
1960s. It gained popularity in the 1980s with the explosion of the home computer, 
which was also based on 8 bits. Today, we would not think of associating a byte with a 
variable number of bits; it is commonly accepted that a byte consists of 8 bits.

Binary Numbering System
The computer stores data by setting the switches in a cell of memory to a pattern that 
represents a character. To represent data, computers use the base-2 numbering sys-
tem, also known as the binary numbering system. Our base-10 numbering system, 
called the decimal system, uses 10 symbols ranging from 0 to 9 to represent a value. 
Base 2 has only two symbols, the values 0 and 1. Therefore, a binary value might 
look something like 01101001 because it is composed of only 0s and 1s. How do 
you determine the decimal equivalent value of the binary number 01101001? If you 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Representation | 73

2

understand the decimal (base-10) positional numbering system, it is easy to translate 
those concepts to any other base numbering system. Figure 2-1 illustrates how 1326 
is derived in base 10.

Figure 2-1 Base-10 positional notation of 1326

  

©
 C

en
ga

ge
 L

ea
rn

in
g

Figure 2-2 Decimal equivalent of 01101001

©
 C

en
ga

ge
 L

ea
rn

in
g

Figure 2-2 uses those same concepts with base 2 to illustrate the decimal equivalent 
of 01101001. In Figure 2-2, you see that the number 01101001 in binary is equivalent 
to the number 105 in decimal.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



74 | Chapter 2: Data Types and Expressions 

You can see from Figure 2-2 that in the binary numbering system, each bit holds a 
value of increasing powers of 2. Table 2-1 presents the decimal value when the bits 
contain various values. As given in the table, when all the bits are turned on with a 1 
representation, the equivalent decimal value is 255.

Decimal value Binary equivalent

0 00000000

1 00000001

2 00000010

3 00000011

4 00000100

5 00000101

6 00000110

7 00000111

8 00001000

… …

254 11111110

255 11111111

TaBle 2-1 Binary equivalent of selected decimal values

Because it is difficult to read a series of binary numbers, two shorthand versions 
were developed to make viewing the contents of memory locations easier. Base 
16, the  hexadecimal numbering system, works on powers of 16. Base 8, the octal 
 numbering system, uses powers of eight. Both are used to express binary numbers 
more compactly. As with any other positional numbering system, the smallest symbol 
is 0, the total number of symbols is equal to the base, and our positional notation is 
used. Hexadecimal has 16 symbols (0–9, A–F). The decimal value 15 is represented 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Representation | 75

2

by F in hexadecimal. 2C in hex is 44 in our base 10 numbering system, as shown in 
the following example:

2 → 2 times 161 → 2 times 16 = 32

+ C → 12 times 160 → 12 times   1 = 12

44

Using the base-10 positional numbering system, the value of each digit depends on its 
position within the number. The octal numbering system uses eight digits.

Can you determine the octal representation for the decimal value 9? The answer is 11. 1 
times 81 + 1 times 80 = (8 + 1) = 9

Character Sets
With only 8 bits, you can represent 28 or 256 different decimal values ranging from 
0 to 255. This is 256 different characters or different combinations of 0 and 1. The 
binary numbering system is used to represent the language of the computer. The 
binary number 01000001 is equivalent to the decimal value 65, which represents 
the uppercase character A. Fortunately, you do not have to retrain yourself to speak 
that  language. The character set used by programmers of C# is called Unicode. 
 Unicode is the universal character-encoding schema. It covers all the characters for 
all the writing systems, both ancient and modern, in the world. Because computers 
just deal with numbers, they store letters and characters by assigning a number to 
them. Unicode provides a unique number for every character. Before Unicode was 
invented, there were hundreds of different coding schemas in use. No single encoding 
could contain enough characters. When the developers created the Unicode  character 
set, instead of using 8 bits, they used 16 bits. Now, 216 or 65,536 unique characters can 
be represented. Unicode includes representation of characters for writing in many 
 different languages in addition to English.

A subset of Unicode, the first 128 characters, corresponds to the American  Standard 
Code for Information Interchange (ASCII) character set. ASCII consists of the 
alphabet for the English language, plus numbers and symbols. For both the ASCII 
character set and Unicode, the first 32 values (0 through 31) are codes for things 
such as carriage return and line feed. The space character is the 33rd value, followed 
by punctuation, digits, uppercase characters, and lowercase characters. Appendix C 
contains a table showing the decimal representation for the ASCII portion of the 
Unicode character set. Both the C# and Java languages use the Unicode character set.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



76 | Chapter 2: Data Types and Expressions 

Kilobyte, Megabyte, gigabyte, Terabyte, Petabyte. . .
Now back to our 64-bit processor with 2 GB of RAM and 1 TB of hard disk space. 
When you start talking about lots of bytes, you get into prefixes such as kilo, mega, 
and giga, as in kilobyte, megabyte, and gigabyte (also shortened to K, M, and G, as in 
Kbytes, Mbytes, and Gbytes or KB, MB, and GB). Table 2-2 presents the multipliers.

The first 4 TB hard drive was released in 2011. In August 2014, the first 8 TB hard drive 
was released.

Storage capacity Size in bytes abbreviation

Kilobyte 210 (1,024) KB

Megabyte 220 (1,048,576) MB

Gigabyte 230 (1,073,741,824) GB

Terabyte 240 (1,099,511,627,776) TB

Petabyte 250 (1,125,899,906,842,624) PB

Exabyte 260 (1,152,921,504,606,846,976) EB

Zettabyte 270 (1,180,591,620,717,411,303,424) ZB

Yottabyte 280 (1,208,925,819,614,629,174,706,176) YB

TaBle 2-2 Common abbreviations for data representations

Notice that kilo is about a thousand, mega is about a million, giga is about a  billion, 
and so on. So, when you think about a machine that has a 64-bit processor with 4 GB 
of RAM and 1 TB of hard disk space, you know that the machine can process 64 bits 
at one time, store approximately 4 billion characters in memory, and has storage 
capacity for approximately 1 trillion characters on the hard disk.

Memory Locations for Data
Programs manipulate data, and data can take the form of a number, single character, 
or combination of characters. The following are all examples of data:

18, “Brenda”, ‘A’, 3.25, −7, 36724, and 47.23

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Memory Locations for Data | 77

2

By themselves, these data items have no value. The number 18 could be an age, 
 temperature, number of students in a class, number of hours you are enrolled in this 
term, or could represent something totally different. Without identifying and  labeling 
18, it is a meaningless number. When working with data, the first task is to use an 
identifier to name the data item.

identifiers
Identifiers are names of elements that appear in a program, such as data items. 
Some identifiers are predefined; others are user defined. You have already seen 
some .NET identifiers when you wrote your first program in Chapter 1. These 
were not reserved keywords, but simply names selected and used by the devel-
opers of the .NET platform and the C# language. The program in Example 1-1 
contained the following  predefined identifiers: System, Main, Console, and 
WriteLine.

The namespace identifier of HelloWorldProgram and the class identifier of 
 HelloWorld are user-defined identifiers selected by the author of the textbook 
 during the creation of the first project.

Here are the rules for creating an identifier in C#:

 1. A combination of alphabetic characters (a–z and A–Z), numeric  digits 
(0–9), and the underscores (_) can be used. Identifiers can be long; 
however, many systems consider the first 31 characters unique.

 2. The first character in the name may not be a numeric digit.
 3. No embedded spaces can be placed between the characters. This 

means you cannot separate words in a name by a space. Normally, you 
concatenate (append) second and subsequent words onto the identi-
fier by capitalizing the beginning letter of each word after the first.

 4. Tables 2-3 and 2-4 give the keywords in C#. Keywords are predefined 
reserved identifiers that have special meanings to the compiler. They 
cannot be used as identifiers in your program. Notice that the key-
words in Table 2-4 are identified as  contextual keywords. Contextual 
keywords are not as powerful as regular keywords. Contextual key-
words have special meaning only when used in a specific situation. 
Other times they can be used as identifiers.

The underscore character is used between words as a separator by languages such as 
C++. Even though it is a valid character that can be used in C#, the underscore character 
is used primarily for defining constant identifiers. You will learn about constant literals in 
this chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



78 | Chapter 2: Data Types and Expressions 

Keywords

abstract as base bool break byte

case catch char checked class const

continue decimal default delegate do double

else enum event explicit extern false

finally fixed float for foreach goto

if implicit in int interface internal

is lock long namespace new null

object operator out override params private

protected public readonly ref return sbyte

sealed short sizeof stackalloc static string

struct switch this throw true try

typeof uint ulong unchecked unsafe ushort

using virtual volatile void while

TaBle 2-3 C# keywords/reserved words

Contextual keywords only have special meaning when used in a specific context. 
They were added in an attempt to avoid breaking code that might have been written 
using earlier standards where one of these words might have been used as a  
user-defined identifier. For example, yield only has a special meaning when it is used 
immediately before a return or break statement. Other times, it could be used 
as an identifier.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Memory Locations for Data | 79

2

 5. It is permissible to use the “@” symbol as the first character of an iden-
tifier, but it has special meaning and should be avoided unless you 
are writing code that will interface with another programming lan-
guage. When used, the “@” symbol enables keywords to be used as 
identifiers.

 6. It is smart to use the case of the character to your advantage. C# is case 
sensitive. The identifier Rate is different from the identifier rate and 
also different from RATE or rATE.
With .NET, there are three conventions for capitalizing identifiers: 
Pascal case, camel case, and uppercase. Using Pascal case, the first 
letter in the identifier and the first letter of each subsequent con-
catenated word is capitalized. Classes, methods, namespaces, and 
properties follow the Pascal case naming convention in C#. Variables 
and objects follow the camel case convention. With camel case, the 
first letter of an identifier is lowercase, and the first letter of each 
subsequent concatenated word is capitalized. The convention in C# 
is to use camel case for variable and object identifiers. Uppercase 
is used by constant literals and for identifiers that consist of two or 
fewer letters.

 7. Being descriptive is helpful. Use meaningful names that represent the 
item being described. If the identifier is used to reference a person’s 
age, call it age, not x. The more descriptive your identifiers, the easier 
it is for you and others to read your code.

Contextual keywords

add alias ascending asyn await descending

dynamic from get global group into

join let orderby partial remove select

set value var where yield

TaBle 2-4 C# contextual keywords

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



80 | Chapter 2: Data Types and Expressions 

Table 2-5 gives examples of valid identifiers.

The compiler will not catch a violation in rule #7 of the previous list. However, this 
rule is extremely important, and you should follow it. By using meaningful names that 
describe their contents, programs you develop are more readable and easier to debug 
and modify. Table 2-6 gives a list of illegal identifiers and a notation indicating why 
they are invalid.

Valid identifiers

studentName age numberOfCourses

soc_sec_number departureTime course1

AmountOwed count_of_Values taxAmount

n streetAddress zipCode

roomSize courseName x3

moreData bookTitle homeRuns

pointsScored CLUB_NAME exam4

TaBle 2-5 Valid identifiers

invalid identifiers Description of violation

soc sec number Embedded space

int Reserved keyword

3rdDay Begins with a digit

room # Special symbol other than underscore and an embedded space

first-name Special symbol other than underscore

A number Embedded space

class Reserved keyword

TaBle 2-6 Invalid identifiers

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Memory Locations for Data | 81

2

Variables
For a computer program to process or manipulate data, the characters and numbers 
must be stored in random access memory (RAM). Variables are the programming 
elements that facilitate this storage. A variable represents an area in the computer 
memory where a value of a particular data type can be stored. When you declare a 
variable, you allocate memory for that data item in your program.

Declaring a variable requires that you select an identifier and determine what type of 
data will appear in the memory cell. The syntax for declaring a variable follows:

type identifier;

type identifier = expression;

The expression can simply be a value such as 0 or 27, or it can include other identifiers in 
an arithmetic equation.

With both types of declaration, in addition to naming the data item, you must also 
determine what type of data will be associated with it. This step notifies the computer 
of how much storage space to set aside for the data item and how the data will be 
retrieved after it is placed in memory.

literal Values
A variable’s value can change. Literals cannot be changed. Literals are the num-
bers, characters, and combinations of characters used in your program. They can 
be assigned to a variable or used in an expression. Their values stay constant. The 
number 17 is always 17. The character A is always A. It is possible to copy the value 
of a literal into a variable and then change the variable; this does not change the value 
of the original literal. It is also possible to use literals without assigning them to a 
specific variable.

At the same time the variable is declared or created, it can be initialized to a value. 
This is referred to as a compile-time initialization. Notice the word initialization. 
The variable starts off with the initialized value, but it can be changed. The value 
being assigned to the variable should be compatible with the data type. When the 
variable is going to be used in arithmetic, it is a good idea to initialize it to 0. The 
syntax for initializing a variable when it is declared follows:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



82 | Chapter 2: Data Types and Expressions 

Every time you declare a variable in the C# language, you are actually  instantiating 
a class (creating an object). If you declare three variables of int type, you are 
instantiating the class three times; three int objects are created. The following 
statement creates three int objects:
int homeWorkScore1;
int examNumber1;
int numberOfPointsScored;

Notice how the camel case naming convention was used to declare the variables of 
 homeWorkScore1, examNumber1, and numberOfPointsScored. The first letter 
is lowercase. The first character of subsequent words is uppercase. You were instantiating 
the int class when these objects were created. A summary of some of the C# coding 
standards can be found at the end of this chapter.

C# differs from languages that include a default value for variables when they are declared. 
In C#, every variable must be assigned a value before it is used. Otherwise, a syntax error 
is issued.

homeWorkScore1 = 100;

Literals are often used to give a value to an object’s data portion. This can be done 
when the object is created or later in the program statements. A value such as 100 
could be assigned to homeWorkScore1 using the following statement:

Here 100 is a numeric literal. The contents of the memory location where the variable 
homeWorkScore1 stored the value 100 can be changed; however, the literal value of 
100 cannot be changed. 100 is always 100.

The following sections explain how the concepts of types, classes, and objects are 
related to data.

Types, Classes, and Objects
C# is an object-oriented language that makes extensive use of classes and objects. The 
following section explains where types fit into this picture.

Types
C# has a large number of predefined types for use in your programs. When you think 
about what a type is in the English language, you probably associate type with a label 
that signifies the sharing of some common characteristics by a group that belongs to 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Types, Classes, and Objects | 83

2

that category. Dictionary definitions of the word type run something like this: a kind 
of group that can be differentiated from other kinds of groups by a particular set of 
characteristics. Example 2-1 should help you build on your understanding of what a 
type is and the importance of using the correct type.

EXAMPLE 2-1

You might have or plan to own a certain type of vehicle, such as a Hummer or a 
Corvette. Hummer vehicle types have different characteristics from those of the 
Corvette. A Corvette can travel at a faster pace than a Hummer. However, the 
Hummer can travel over much rougher terrain. You would not take the Corvette into 
a mountainous hiking region with the expectation that it could travel over large rocks, 
whereas a Hummer might do the trick. You would not want to transport four people 
in a Corvette, but four people could easily fit into a Hummer. Each is considered a 
vehicle. If you owned both, you could decide which one to use depending on the 
situation or destination.

For C# there is more than one type of number. One number type is called an integer, 
or int. The int type is a whole number, between a certain range of values, and 
contains no decimal point. It can be positive or negative. Another type of number is a 
floating-point value, which can contain a fractional portion. C# supports two types 
of floating-point types: float and double. If you wanted to store your grade point 
average, it would not be appropriate to put that value in an int because an int only 
lets you store the whole number portion. It would be like trying to put more than two 
people in the Corvette. They just do not fit. If your grade point average is 3.87 and 
you place the value in an int type, it chops off, or truncates, the 0.87 and your grade 
point average becomes 3. You would not be very happy with that, would you?

Classes
Types are actually implemented through classes in C#. The Framework class library 
(FCL), which is part of .NET, includes over 2000 classes that you can use in your pro-
grams. For simplicity, you can think of there being a one-to-one correspondence between 
a class and a type in C#. C# was designed from the ground up to be a true object- 
oriented language. As you learned in Chapter 1, every program must include a class. 
C# is a strongly typed language. There are number of types built into the language and 
C# also enables you to write or create your own user-defined data types or classes. In 
Chapter 11, Advanced Object-Oriented Programming Features, you will also read about 
another data type called an anonymous data type. In C#, a simple built-in numeric data 
type such as a whole number is also sometimes referred to as a primitive type.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



84 | Chapter 2: Data Types and Expressions 

Objects
As previously mentioned, an object is an instance of a class. It is an occurrence 
of the class. For simplicity purposes, you can think of an instance of the base type 
int as 21 or 3421. However, a class includes more than just the data associated with 
the type. Class is the term used to denote the encapsulation of data and behaviors 
into a single package or unit. The characteristics of the class’s behavior and data can 
be described. The data portion of the int, as indicated previously, is always a whole 
number value. An int data type can store values that do not have a decimal por-
tion. The behavior of the int data type can be described by identifying basic arithme-
tic operations such as addition and subtraction that can be performed on the type. 
 Logical comparisons can determine which is larger than the other, and values can be 
displayed. These are all behaviors of the int data type. Encapsulating (packaging) these 
data and behavior characteristics into a single unit allows you to describe the type.

EXAMPLE 2-2

Your current grade point average might be named using an identifier such as 
gradePointAverage. Grade point average normally takes the form of a real number 
with a fractional component, such as 3.42. In C#, real numbers with decimals are 
represented using the double data type. Your name is another data item composed of 
a string of characters. In C#, the data type string is used to represent a grouping 
of characters. To represent a single character, such as the first initial of your last 
name, a char data type is used. Your age, for example 21, is a whole number without 
a fractional part. The data type most often used to represent a number without a 
fractional part is an int.

Table 2-7 gives some examples of different data types, with examples of what might 
be stored in each of these data items.

Description grade identifier Data type Data

Grade point average gradePointAverage double 3.99

Current age age int 19

Full name studentName string Elizabeth Hill

Final grade in a course courseGrade char A

TaBle 2-7 Sample data types

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Predefined Data Types | 85

2

You learned in Chapter 1 that every program must define a class. There are 
 thousands of classes that make up the .NET FCL. The following section describes 
some of the predefined data types that are considered primitive data types in most 
languages. These value and reference types will be explored: int, double,  decimal, 
bool, char, and string.

Predefined Data Types
The .NET Framework includes a common type system (CTS) that is supported by 
all .NET languages, including C#. This enables cross-language integration of code 
meaning a single application can be written using multiple languages, such as C#, 
Visual C++, and Visual Basic. The types in the CTS are referred to as common types 
and are divided into two major categories, as seen in Figure  2-3: value types and 
 reference types.

Figure 2-3 .NET common types
©

 C
en

ga
ge

 L
ea

rn
in

g

When placed in memory, value types contain their own copy of data, in binary nota-
tion. The data is stored in the actual memory cell that is addressed by the value type’s 
identifier. In contrast, the contents of reference type memory cells are much differ-
ent. Reference types contain the address or location in which the sequence of bits is 
stored. Figure 2-4 shows the difference between how value types are stored and how 
reference types are stored. An integer value type, such as 2012, representing the year a 
car was manufactured, is stored directly in the memory cell. To store a string of char-
acters, such as the kind of vehicle, the memory location would contain the address 
in which Corvette is located. The string data type is a reference type. The memory 
location associated with the identifier does not contain the characters Corvette, but 
instead the address in which Corvette is stored.

C# also supports pointer types in a limited extent. A pointer is a variable that holds 
the memory address of another type. In C#, pointers can only be declared to hold 
value types and arrays. You will read more about arrays in Chapter 8.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



86 | Chapter 2: Data Types and Expressions 

Figure 2-4 Memory representation for value and reference types

2012

©
 C

en
ga

ge
 L

ea
rn

in
g

Value Types
The value types are often called the fundamental data types or primitive data types of 
the language. They are the common types needed by most applications. In C#, these 
fundamental types are further subdivided into the following categories:

 ? Struct types

 ? Enumerated types

As you look down the hierarchy of Figure 2-5, at the lowest level you find that  Integral, 
Floating-point, and Decimal make up the Numeric types.

Figure 2-5 Value type hierarchy

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Integral Data Types | 87

2

Twelve types belong to the numeric value type. Nine of them are Integral (whole 
number types), two are floating-point (numbers that can have a fractional value), and 
one is a decimal type. The decimal type is a fairly new data type; it is not found with 
C++, C, or Java. It was added to C# to eliminate the problems of loss of precision in 
mathematical operations that occurred in previous languages. The basic C# types all 
have aliases in the System namespace. Table 2-8 gives the keywords for the built-in 
C# types, including the numeric type each belongs to in the hierarchy, and the aliases 
in the System namespace.

C# type Numeric type .NeT alias type

byte Integral System.Byte

sbyte Integral System.SByte

char Integral System.Char

decimal Decimal System.Decimal

double Floating-point System.Double

float Floating-point System.Single

int Integral System.Int32

uint Integral System.UInt32

long Integral System.Int64

ulong Integral System.UInt64

short Integral System.Int16

ushort Integral System.UInt16

TaBle 2-8 C# value data types with .NET alias

Integral Data Types
All integral values represent whole numbers—values without decimal notation. 
The value type int is used most often to represent a whole number value and will 
be the primary type used in this textbook. As Table 2-9 illustrates, a value as small as 
the negative number −2,147,483,648 and as large as 2,147,483,647 can be stored in 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



88 | Chapter 2: Data Types and Expressions 

the System.int data type. The primary difference in the integral types is how much 
storage is needed and whether a negative value can be placed in the data item.

Type names that begin with u, which stands for unsigned, allow only positive values 
to be placed in the memory cell.

Commas are included in Table 2-9 to add to the readability. However, only the digits  
0–9, +, and − are permitted in numeric data types. No formatting symbols, such as 
 commas, are allowed.

C# type Numeric range Width in bits

byte 0 to 255 8-bit

sbyte 128 to 127 8-bit

char U+0000 to U+ffff 16-bit

int 2,147,483,648 to 2,147,483,647 32-bit

uint 0 to 4,294,967,295 32-bit

long 9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807

64-bit

ulong 0 to 18,446,744,073,709,551,615 64-bit

short 32,768 to 32,767 16-bit

ushort 0 to 65,535 16-bit

TaBle 2-9 Values and sizes for integral types

Notice in Table 2-9 that the data type char is listed as an integral type; however, the 
range is listed as U+0000 to U+ffff. The char keyword is used to declare storage to 
hold a single Unicode character. A char can hold a single value, such as the letter A. If 
you want to store the three initials representing your first, middle, and last name, you 
need three char variables. You might want to look at Appendix C, which contains a 
partial listing of the Unicode characters. Most of the known written languages can be 
represented with the 16-bit Unicode character set.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Integral Data Types | 89

2

Example 2-3 shows examples of integral variable declarations.

EXAMPLE 2-3

int studentCount;         // number of students in the class
int ageOfStudent = 20;    // age - originally initialized to 20
int numberOfExams;        // number of exams
int coursesEnrolled;      // number of courses enrolled

Notice that each declaration ends with a semicolon (;). This is because variable 
 declarations are considered statements in the C# language. All statements end in 
a semicolon.

In Example 2-3, identifiers are chosen that adhere to the rules listed for naming 
 program items. Every line also contains an inline comment. These comments are 
unnecessary because the identifiers are self-documenting. If nondescriptive identi-
fiers, such as x, y, or s, are used, comments would be helpful.

Do not place a comment on every line or with every variable declaration because it creates 
unreadable code. It is best to include comments when a segment of code needs further 
explanation.

Each identifier in Example 2-3 consists of two or more words. The second and 
 subsequent words begin with an uppercase character. This naming convention is 
used throughout the textbook for variable and object names. The first character of 
the identifier begins with a lowercase character.

Class and method names, both user-defined and FCL class identifiers, begin with 
an uppercase character. Constants, which are covered later in this chapter, are named 
with all uppercase characters, using the underline character to separate words. This 
is the standard style used by C# programmers.

Styles, or conventions, are the set of personal choices adopted by programmers. If you 
are new to application development, you might want to follow the textbook’s style for 
selecting identifiers. One of the most important things to remember is that after selecting 
a style, you should use it consistently. Less bugs will enter your solutions. If you’re working 
with a team, having everyone follow the same styles makes work more harmonious. It lets 
 everyone move along the same path.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



90 | Chapter 2: Data Types and Expressions 

Floating-Point Types
If you need to keep the decimal portion, the value cannot be stored in an integral data 
type, such as an int. Floating-point values can be specified in scientific notation with 
an exponent or in standard decimal notation. Very large or small numbers can be 
specified. The general form of exponential syntax is

With the scientific notation syntax in the preceding example, n is the decimal number; 
P is the number of decimal positions to move left or right; and the + or −  indicates the 
direction in which the decimal should be moved. A plus sign indicates that the decimal 
is moved P positions to the right to form the standard decimal equivalent value. The 
syntax rules in C# allow the e to be uppercase or lowercase. The ± in the notation indi-
cates that a +, −, or neither can be added. If there is no + or −, + is assumed.  Example 2-4 
shows examples of converting from scientific to standard  decimal notation.

EXAMPLE 2-4

3.2e+5 is equivalent to 320000

1.76e−3 is equivalent to 0.00176

6.892e8 is equivalent to 689200000

Because the first value includes an “e+5,” the decimal is moved to the right five posi-
tions. The second statement in the preceding examples moves the decimal position 
three positions to the left. The last statement moves the decimal to the right eight 
positions, which places five significant zeros onto the end of the value.

As Table 2-10 indicates, a value with up to 15–16 decimal places can be placed in a 
 double. The floating-point types conform to IEEE 754 specifications. For more infor-
mation, you can read about the IEEE standard at the IEEE site http://standards.ieee.org/. 
The following are examples of floating-point variable declarations.

n.ne±P

Type Numeric range Precision Size

float ± 1.5 × 10− 45 to ± 3.4 × 1038 7 digits 32-bit

double ± 5.0 × 10− 324 to ± 1.7 × 10308 15–16 digits 64-bit

TaBle 2-10 Values and sizes for floating-point types

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Decimal Types | 91

2

EXAMPLE 2-5

double extraPerson = 3.50;   // extraPerson initialized to 3.50
double averageScore = 70.0;  // averageScore initialized to 70.0
double priceOfTicket;        // cost of a movie ticket
double gradePointAverage;    // grade point average
float totalAmount = 23.57F;  // note the F placed after 23.57 

Notice that all but one of the declarations in Example 2-5 uses double. In C#, double 
is the default type for floating-point numbers. When a compile-time initialization is 
included, no suffix is required if you initialize a double variable. In the case of the 
float, it is necessary to suffix the number with an f or F; otherwise, the number is 
assumed to be a double.

If you fail to suffix the number with an f or F and assign it to a float variable as 
is float totalAmount = 23.57;, you get a syntax error similar to that shown in 
Figure 2-6.

Figure 2-6 Syntax error for failing to use F suffix

The double type is used throughout the textbook for all numbers that require a 
 fractional value.

Never place commas, dollar signs, or any other special formatting symbols with numbers 
when they are assigned to value types.

Decimal Types
The decimal value type is new to modern programming languages. It is appropriate 
for storing monetary data items because it allows both integral (whole) numbers and 
a fractional portion. It provides for greater precision than what is found with floating-
point types because 128 bits are used to represent the value.

Numbers ranging from negative −79,228,162,514,264,337,593,543,950,335 to posi-
tive 79,228,162,514,264,337,593,543,950,335 can be stored in a decimal value type. 
As you can see in Table 2-11, 28–29 digits are possible with the decimal.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



92 | Chapter 2: Data Types and Expressions 

As is the case with the float type, it is necessary to attach the suffix m or M onto the 
end of a number to indicate decimal, as shown in Example 2-6. Without the suffix, 
the number is treated as a double. Again, a syntax error message is issued if you try 
to do compile-time initialization or assign a number to a decimal variable without 
the suffix. No automatic conversion occurs.

EXAMPLE 2-6

decimal endowmentAmount = 33897698.26M;   // note the M
decimal deficit;

If you assign or do a compile time initialization using a whole number (integer) as the value 
for float or decimal memory location, no syntax error is issued for failing to suffix 
the number with an F or M. An implicit conversion occurs from int to float, int to 
 decimal and also int to double. Syntax errors occur when a floating point number 
(number with a decimal) is assigned to either a float or decimal without the M or F 
being suffixed onto the end of the value.

Type Numeric range Precision Size

decimal 1.0 × 10−28 to 7.9 × 1028 28–29 significant digits 128 bits

TaBle 2-11 Value and size for decimal data type

Boolean Variables
Boolean is based on true/false, on/off logic. If you look back at the value type hierar-
chy in Figure 2-5, you see that Boolean inherits from the Value and Struct classes but 
not from the Numeric type. The only Boolean type in C# is bool. A bool variable can 
have a value of either true or false. One example of the bool type being very useful 
is in determining when all data has been processed. The variable can be declared as 
shown in Example 2-7.

EXAMPLE 2-7

bool undergraduateStudent;
bool moreData = true;       // used to indicate when all data is
                            // processed. Originally set to true

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Declaring Strings | 93

2

The bool type will not accept integer values such as 0, 1, or −1. The keywords true 
and false are built in to the C# language and are the only allowable values.

Some languages such as C++ allow Boolean types to hold integers. C# does not.

In addition to numeric and Boolean, there are two other value types: enumeration 
and structures. These allow you to define your own custom classes. They will be used 
as you advance in your software development.

Declaring Strings
All the types previously discussed were value types. As shown in Figure 2-3, the .NET 
CTS also includes reference types. The memory location of value types actually con-
tains the data. With reference types, data is not stored directly in the memory loca-
tion; instead, the memory location contains a reference to the location in which the 
data is stored.

C# has two built-in reference types: string and object. The string type repre-
sents a string of Unicode characters. Example 2-8 shows how string variables are 
declared. The second and third declarations also include compile-time initializations.

EXAMPLE 2-8

string studentName;
string courseName = "Application Development I";
string twoLines = "Line1\nLine2";     // newline escape sequence
                                      // character included

The other built-in reference type is object. This is probably the most important type 
of all because every type inherits characteristics from it. In Chapter 3, you will inves-
tigate the object class when you begin writing your own methods.

All types inherit the methods ToString( ), Equals( ), Finalize( ), and 
GetHashCode( ) from the object class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



94 | Chapter 2: Data Types and Expressions 

Making Data Constant
When you add the keyword const to a declaration, it becomes a constant. Constants 
are convenient for assigning a value to an identifier; const forces the functionality 
of not allowing the value to be changed. Similar to a variable, the value stored in the 
memory location can be used throughout the program. However, the value cannot be 
altered. The general form of constant syntax is

Some examples of constant declarations are shown in Example 2-9.

EXAMPLE 2-9

const double TAX_RATE = 0.0675;
const int SPEED = 70;
const char HIGHEST_GRADE = 'A';

const type identifier = expression;

An advantage of defining a constant is that the value needs only be assigned once, during 
declaration. A constant can be used in many statements. If the value must be changed, 
only one change is required in the program and that is at the constant declaration location. 
After that change is made, the program must be recompiled.

To call attention to the fact that the identifier TAX_RATE is a constant instead of a 
variable, all capital letters are used. To provide a separator between words, the under-
score character is used. This is the standard convention used by programmers for 
naming constants.

Assignment Statements
Variables can be initialized during declaration, or a value can be assigned to them 
later in the program. However, in C#, you must assign a value to a variable before it 
can be used. No default values are assigned when you declare the variable. To change 
the value of the variable, an assignment statement is used. An assignment statement 
takes the form of

variable = expression;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Assignment Statements | 95

2

The expression can be one of the following:

 ? Another variable

 ? Compatible literal value

 ? Mathematical equation

 ? Call to a method that returns a compatible value

 ? Combination of one or more items in this list

The syntax requires that the variable that will hold the result of the expression be 
placed first—on the left of the equal (=) symbol. The = symbol, when used with 
an assignment statement or a compile-time initialization, is called an assignment 
operator. The value of the expression on the right side of the assignment operator 
(=) is determined and then that value is assigned to the variable on the left side of 
the = operator.

Notice that the syntax for an assignment statement requires a variable on the left side of 
the assignment operator.

If the value on the left side is not compatible with the right side, the C# compiler 
issues a type mismatch error.

C# is a strongly typed language. It does a good job of verifying type consistency in an 
assignment statement. The variable receiving the result of an expression must be either 
of the same type or a type that can hold the result.

Example 2-10 begins by declaring variables that can be used in assignment statements.

EXAMPLE 2-10

int numberOfMinutes,
    count,
    minIntValue;

If more than one variable is declared of the same type, the identifiers are separated 
by commas. The semicolon is placed at the end of the list to indicate the end of the 
 declaration statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



96 | Chapter 2: Data Types and Expressions 

After being declared, these variables can be assigned literal values as illustrated in the 
following code segment:

char firstInitial,
     yearInSchool,
     punctuation,
     enterKey,
     lastChar;
double accountBalance,
       weight;
decimal amountOwed,
        deficitValue;
bool isFinished;
string aSaying,
       fileLocation;

numberOfMinutes = 45;
count = 0;
minIntValue = −2147483648;
firstInitial = 'B';
yearInSchool = '1';
punctuation = ';';

Notice that no commas are included with the literal −2147483648. Although this 
seems unreadable, you will receive a syntax error message if you add the commas. 
The variables firstInitial, yearInSchool, and punctuation are of char type. 
Special attention should be paid when using char literals. All char literals must be 
enclosed in single quotation marks when used in an assignment statement. Remem-
ber, the char type can hold any character from the standard keyboard plus many 
other characters. However, it can only hold one character at a time.

enterKey = '\n';                // newline escape character
lastChar = '\u005A';            // Unicode character 'Z'

Both of the previous assignments have more than one entry between the single quotes. 
However, the combination of symbols represents a single character. The enterKey 
variable is assigned the carriage return using the special escape sequence character. 
The variable lastChar is assigned the character Z using its Unicode representation.

Chapter 1 introduced you to some special escape sequences representing characters. 
You might want to review Table 1-1, which contains many of the valid C# escape sequence 
 characters. The last example in the preceding declarations illustrates how a Unicode 
 character literal can be used to initialize the variable. The numerical value is a hexadecimal 
number.

accountBalance = 4783.68;
weight = 1.7E-3;                //scientific notation may be used
amountOwed = 3000.50m;          //m or M must be suffixed to decimal
deficitValue = −322888672.50M;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Assignment Statements | 97

2

It is also possible to assign one variable’s value to another variable. This does not 
impact the variable on the right side of the assignment operator, as illustrated in 
 Figure 2-7. The 25 from newValue replaces the 0 in count. A variable can hold only 
one value at a time.

If you attempt to initialize a decimal variable and forget to use the M or m suffix, a 
 compiler error is generated.

aSaying = "Today is the first day of the rest of your life!\n ";
fileLocation = @"C:\CSharpProjects\Chapter2";

The at symbol (@) can be placed before a string literal to signal that the characters 
inside the double quotation marks should be interpreted verbatim. This eliminates the need 
to escape the backslash character using the escape character. Without the @ symbol, the 
string literal for the filename would have to be written as C:\\CSharpProjects\\Chapter2 
with two backslashes for what was previously a single backslash.

The only values that can be placed in a memory location declared as a bool are true 
and false.

isFinished = false;      // declared previously as a bool

int count = 0,
    newValue = 25;
count = newValue;

©
 C

en
ga

ge
 L

ea
rn

in
g

Figure 2-7 Impact of assignment statement

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



98 | Chapter 2: Data Types and Expressions 

Basic arithmetic Operations
Assignment statements can include mathematical equations. The basic operations 
of addition, subtraction, multiplication, and division can be performed on real data 
(floating-point). These operations plus modulation can be performed on integral 
types. The simplest form of an assignment statement is

resultVariable = operand1 operator operand2;

Readability is very important when you write code. Always place a space before and after 
every arithmetic operator, including the equal symbol ( = ). The compiler ignores the white 
space, but readers of your code appreciate it.

Operator Operation

+ Addition

− Subtraction

* Multiplication

/ Division

% Modulus

TaBle 2-12 Basic arithmetic operators

The operands may be variables, constants, or literals. The operators are represented 
by special symbols given in Table 2-12.

int firstValue = 67;
int secondValue = 3;
int result;
result = firstValue % secondValue;

The modulus operator (%) is sometimes referred to as the remainder operator. In most 
languages, both operands must be of integral type. C# allows you to use floating-point 
values as operands to the modulus operator. The result produced is the remainder of 
operand1 divided by operand2. Given the following statements,  Figure 2-8 illustrates 
the results.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Assignment Statements | 99

2

The results are as you would expect when you use the plus symbol (+) with numeric 
data. When the + symbol is used with string variables, the + symbol concatenates 
operand2 onto the end of operand1.

The modulus operator can be used with negative values; however, you might consider 
the results strange. For example: −3 % 5 = −3; 5 % −3 = 2; −5 % −3 = −2; The sign 
of the dividend determines the result.

string result;
string fullName;
string firstName = "Rochelle";
string lastName = "Howard";
fullName = firstName + " " + lastName;

Figure 2-8 Result of 67 % 3

©
 C

en
ga

ge
 L

ea
rn

in
g

As shown in Figure 2-9, the value referenced by fullName after the preceding state-
ments are executed is "Rochelle Howard". Notice that a string literal containing 
a single space is placed between the two variables; otherwise, you would have created 
a full name of "RochelleHoward".

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



100 | Chapter 2: Data Types and Expressions 

increment and Decrement Operations
A common arithmetic operation is to add or subtract the number one (1) to or from 
a memory location. Increment/decrement operators are used for this. C#, such as 
C++ and Java, has a special unary operator that increments and decrements by one. It 
is considered a unary operator because it requires a single operand. The basic opera-
tors explored in the preceding explanations are all binary operators that require two 
operands.

The symbols used for increment and decrement are ++ and −−. No space is permitted 
between the two symbols (++ or −−).

The + symbol is considered an overloaded operator. It behaves differently based on 
the type of operands it receives. If the operands are numeric, it performs addition. If the 
operands are strings, it performs concatenation. You will read more about the string 
data type in Chapter 8. The plus operator is the only operator from Table 2-12 that can be 
applied to string data types.

Figure 2-9 String concatenation

©
 C

en
ga

ge
 L

ea
rn

in
g

num++;      // could be written as num = num + 1;
−−value1;   // could be written as value1 = value1 − 1;

The first statement adds 1 to num. The second subtracts 1 from value1. The incre-
ment and decrement operators are often used in situations in which a counter is 
needed. They are not used to accumulate values because they always add one or 
 subtract one from the variable.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Assignment Statements | 101

2
If you use these operators in an arithmetic expression involving additional operands, 
the placement of the ++ or −− is important. If they appear as prefixes, or to the left 
of the variable, the increment or decrement is performed before using them in the 
expression. When placed before the operand, they are called preincrement or pre-
decrement operators; when placed after the operand, they are called postincrement 
or postdecrement operators. For example, if the following declaration were made and 
then each of the WriteLine( ) methods were called, the output for Example 2-11 
would be

100

101

102

EXAMPLE 2-11

int num = 100;
WriteLine(num++);           // First WriteLine( )displays 100
WriteLine(num);             // num now has a value of 101 
WriteLine(++num);           // Pretest increment changes num to 102
                            // before it is used. Displays 102

With Example 2-11, the last value printed is 102. If num were used following the lines 
of code in the example, num has a value of 102. Notice that the incremented value is 
displayed here because the ++ operator is placed before the identifier with the last call 
to the WriteLine( ) method. The first call to the WriteLine( ) method did not 
display the incremented value. The original value is used as the argument and then 
the value is incremented.

If x is declared to be of type int and initialized with a value of 100, the following 
statement displays 100 102. The new value stored in x is 102 when control goes to the 
statement following the call to the WriteLine( ) method.

In C#, when you use the increment and decrement operators with floating-point types, no 
syntax error is generated. C# adds or subtracts the number 1 to the variable. You can also 
use the ++ or −− with a variable of char type.

WriteLine(x++ + " " + ++x); // Displays 100 102

Look carefully at Example 2-12 to make sure that you understand how the placement 
of the increment and decrement operators impact the result obtained when they are 
included in an expression involving multiple operations.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



102 | Chapter 2: Data Types and Expressions 

EXAMPLE 2-12

int count = 0,
    result = 0,
    firstNum = 10;
count++;
result = count++ * --firstNum + 100;

Figure  2-10 shows what is stored in the memory locations when the variables are 
declared. Compile-time initialization is performed on all three variables.

The next statement shown in Example 2-12, count++;, is not part of another expres-
sion. It really does not matter in this situation whether the increment operator (++) is 
placed before or after count. The only memory location affected is count’s memory 
cell. It is incremented by one. Figure 2-11 shows the memory cell after count++; is 
executed.

Figure 2-10 Declaration of value type variables

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Assignment Statements | 103

2

The last statement in Example 2-12, illustrated in Figure 2-12, is of interest:

Notice the ++ is placed after count. The −− comes before firstNum.

result = count++ * --firstNum + 100;

Figure 2-11 Change in memory after count++; statement executed

©
 C

en
ga

ge
 L

ea
rn

in
g

Figure 2-12 Results after statement is executed

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



104 | Chapter 2: Data Types and Expressions 

The current value of count, 1, is used in the multiplication because the ++ comes 
after the identifier name. After using count in the arithmetic, it is incremented by 1, 
becoming 2. Because the decrement operator comes before the variable firstNum, 
1 is subtracted from firstNum before the multiplication is performed. Thus, 1 is 
 multiplied by 9, and the result is added to 100.

Compound Operations
You commonly write arithmetic operations that modify a variable by using its original 
value as part of the calculation. Consider the following:

The variable answer holds the end result, but it is also used in the computation. 
Compound operators provide a shortcut way to write assignment statements using 
the result as part of the computation. The last line in the preceding code segment 
(answer = answer + 5;) could be replaced with the following:

Both statements take the original value of answer, add 5 to it, and store the result 
back in answer.

answer = 100;
answer = answer + 5;

answer += 5;

In expressions involving multiple operations, the compound operation is always performed 
last. For example: answer += 45 * 28 + 37 / 16; is equivalent to answer = answer + 
(45 * 28 + 37 / 16);. The original value of answer is not added until the expression on 
the right of the equal sign is complete.

Accumulation is another type of operation commonly found in applications. You 
will often find it necessary to keep a running total or accumulate values that a single 
variable holds. For example, to determine the average of a set of values, the values are 
normally added to an accumulator and divided by the number of entries. Consider 
the following:

If multiple values are input by the user, each newValue could be added to total. 
This is an example of accumulating values. Accumulators are often used with mon-
etary amounts. For example, to accumulate the total amount of money received or 

int total = 0;
int newValue;
// : Note statements to enable the user
// to enter values for newValue are inserted here

total = total + newValue;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Assignment Statements | 105

2

the total for an order that includes a number of items, a variable such as total could 
be defined. These types of variables, functioning as accumulators, normally should 
be initialized to zero. Then they grow or increase in value with each new addition. 
The compound operator may be used for these types of situations. Using a compound 
operator, newValue could be added to total as shown here:

Table 2-13 gives the compound operators available in C#.

total += newValue;      // same as total = total + newValue;

Operator Operation

+= Addition

−= Subtraction

*= Multiplication

/= Division

%= Modulus

TaBle 2-13 Compound arithmetic operators

answer = 100;
answer %= 3;          // same as answer = answer % 3;

Another example of using a compound operator is illustrated with the remainder or 
modulus operator:

The result of the preceding expression would be 1 because that is the remainder of 
dividing 100 by 3. As stated previously, when a compound operator is used in a state-
ment that contains multiple operations, the variable on the left of the assignment 
operator is not used until the entire expression on the right side of the assignment 
symbol is completely evaluated. Consider Example 2-13.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



106 | Chapter 2: Data Types and Expressions 

EXAMPLE 2-13

answer = 100;
answer += 50 * 3 / 25 − 4;

The value of 100 is not added until the expression is completely evaluated on the 
right side of the assignment operator. C# then takes the calculated value and adds 100 
to it. The result replaces the original 100, storing 102 in answer. The order in which 
the calculations are performed is as follows:

50 * 3 = 150

150 / 25 = 6

6 − 4 = 2

100 + 2 = 102

As with the increment and decrement operators, no space is allowed between the 
compound operator symbols.

The order in which the calculations are performed is called the order of operations. 
The operations are performed from left to right in Example 2-13. The following 
 section explains why this is not always the case.

Order of Operations
When multiple arithmetic operators are included in an expression, execution begins 
with the operator that has the highest level of precedence. The level of precedence is 
determined by the rules of the language. The C# precedence level for the operators 
used thus far is given in Table 2-14.

C# category Operators associativity

Unary + − ++ −− Right

Multiplicative * / % Left

Additive + − Left

Assignment = *= /= %= += −= Right

TaBle 2-14 Operator precedence

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Order of Operations | 107

2

As Table 2-14 presents, several operators appear at the same level. For example, *, 
/, and % are considered equals in terms of order of operations. When an expression 
contains two or more operators with the same precedence, the associativity of the 
operators controls the order in which the operations are performed. Left-associative 
means the operations are performed from left to right, so as you move from left to 
right in an expression, the operation that is encountered first is executed first.

The + and − appear as unary operators in row one and binary operators in row three 
of Table 2-14.

As stated previously, unary means one, indicating that only one operand is used with the 
operator. For example, placing a minus symbol in front of a variable is a unary operation.

As unary operators, the − and + operations are executed from right to left negating 
or indicating that an operand is positive. The binary + and − are left associative. The 
assignment category operators, in row four, are right-associative.

Parentheses can be used to change the order of operations. If you identify an opera-
tion that needs to be processed first, enclose that portion of the expression in a pair 
of parentheses. Parentheses are also added to increase readability of an expression. 
Figure 2-13 illustrates the order of operations in which multiple operations of the 
calculations are performed.

Before the arithmetic expression is executed, answer is initialized to 10.

int answer = 10;
answer *= 400 + 10 / 2 − (25 + 2 * 4) * 3;

Figure 2-13 Order of execution of the operators

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



108 | Chapter 2: Data Types and Expressions 

Mixed expressions
C# allows you to mix numeric integral types and floating-point types in an expres-
sion. When an expression has operands of different types, the statement is considered 
a mixed mode expression. Examples include the following:

89 + 76 / 3.25

2 * 7.9 − 5 + 67.99

In the first expression, the division operator has operands of 76, an integral, and 
3.25, a floating-point type. When the operands are of the same type, the result of the 
operation will be of that type. However, if the binary operation involves a double and 
an int, implicit type coercion, or conversion is performed. Integral types convert 
into floating-point types. Automatic coercion, by changing the int data type into a 
double, occurs for each of the preceding expressions.

It is important to note what is illustrated in Example 2-14, if all the expressions are of 
integral type on the right side of the equal operator, you cannot just declare the result 
type to be of floating-point and get the correct floating-point result.

EXAMPLE 2-14

double answer;
answer = 10 / 3;

You do not get the results you might expect stored in the answer. The result is 3.0, 
not 3.333333. Because both of the operands on the right of the assignment operator 
are integers (whole numbers), integer division is performed. This produces an integer 
result. After the division is finished, producing 3, it is then assigned to the double 
variable, answer, as a floating-point double. Thus, answer becomes 3.0.

Implicit type conversion occurs when you assign an int to a double. No conversion 
occurs if you attempt to store a double in an int variable. Figure 2-14 shows the syntax 
error for attempting to assign a double to an int in Example 2-15. The first assignment 
statement generates an error. Implicit type conversion occurs in the second statement. 
The variable value2 can hold the contents of what is stored in anotherNumber.

EXAMPLE 2-15

int value1 = 440,
    anotherNumber = 70;
double value2 = 100.60;
value1 = value2;         // syntax error as shown in Figure 2-14
value2 = anotherNumber;  // 100.60 cannot be stored in value1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Order of Operations | 109

2

When one of the operands is a number literal, you can make the literal act like a 
floating-point type by simply affixing a decimal followed by a zero onto the value, as 
shown in Example 2-16.

EXAMPLE 2-16

int exam1 = 86,
    exam2 = 92,
    exam3 = 91;
double examAverage;
examAverage = (exam1 + exam2 + exam3) / 3.0;

The result of the preceding assignment statement is 89.666666. Leave off the .0, so 
that the assignment statement reads as follows:

The result is 89. That could mean the difference between your getting an A in the 
course versus a B. By simply replacing the 3 with a 3.0, you get the results you would 
expect. When the division operator gets an integer representing the sum of the scores 
and a double (3.0), the integer value of 269 is converted into 269.0 for the calculation.

This implicit type conversion is made possible by changing the value of the literal. 
However, this is not always possible. For one reason, you might not have a literal. 
What if the count of exam scores is stored in a variable? You cannot put a 0.00 onto 
the end of an identifier because this generates a syntax error.

If you need to make a mixed-mode assignment with variables, one way to avoid 
the syntax error produced in Figure 2-14 is to cast the variable in the expression, as 
explained in the following section.

Casts
C# provides an explicit type coercion, or conversion through type casting or type 
conversion that can be used with variables. It takes the following form:

examAverage = (exam1 + exam2 + exam3) / 3;

(type) expression

Figure 2-14 Syntax error generated for assigning a double to an int

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



110 | Chapter 2: Data Types and Expressions 

Casting makes a variable temporarily behave as if it is a different type. If the value 3 
is stored in an int memory location, a cast is necessary to produce the correct result 
for examAverage. The type double is placed in parentheses before the data item to 
be cast, as follows:

By performing a cast on the variables in Example 2-15, the syntax errors would be 
avoided. Example 2-17 illustrates another example.

EXAMPLE 2-17

int value1 = 0,
    anotherNumber = 0;
double value2 = 100,
    anotherDouble = 100;
value1 = (int) value2;
value2 = (double) anotherNumber;

The cast in the last assignment statement in Example 2-17 could have been  omitted 
because implicit conversion occurs when an int is stored in a double memory 
location.

examAverage = (exam1 + exam2 + exam3) / (double) count;

The new keyword dynamic was added to C# 4.0 to tell the compiler that a variable’s type 
can change or that it is not known until runtime. You will read more about dynamic in 
Chapter 11.

Formatting Output
You can format data by adding dollar signs or percent symbols. You can separate 
digits with commas or show the fractional portion of a value. You can suppress lead-
ing zeros or you can pad a value with zeros. C# includes a number of special format 
specifiers that can be used with numbers. One way to use these formatting speci-
fiers is to place them in the string argument of the Write( ) or WriteLine( ) 
methods. When you include these special format specifiers as part of the argument 
to these methods, the String.Format( ) method is automatically called. You will 
learn more about calling methods in Chapter 3. Example 2-18 illustrates using the 
currency format specifier to display a number with commas, decimal, and a dollar 
symbol.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Formatting Output | 111

2

EXAMPLE 2-18

double price = 1089.30;
WriteLine("The price is {0:C}.", price);
       // Displays The price is $1,089.30.

To indicate that you want to have the value displayed as money with the dollar symbol, 
comma separators, and two positions to the right of the decimal, the currency format 
is specified using C or c. The format specifier is placed inside the curly braces ({ }), 
thus becoming part of the string literal argument for the WriteLine( ) method.

Notice two values are placed inside the braces. The first value in the curly brace is a 
placeholder. It indicates which of the arguments that are placed outside of the dou-
ble quotes you want displayed. The argument formatted in Example 2-18 is price, 
which is the first argument. You will find that most modern computer program-
ming languages use 0 to reference the first entry. After indicating the argument, you 
can add an optional format specification. In this case, the currency, C, specifier was 
added.

A string is expected for the first argument to the WriteLine( ) method. To increase 
readability, the statement can be placed on two lines, with the string joined together by 
the concatenation operator, + sign.

Table 2-15 gives examples using the two most common format specifiers, c and f.

Character Description examples Output

C or c Currency Write("{0:c}", 26666.7888); $26,666.79

C or c Currency Write("{0:c}", −2); ($2.00)

C or c Currency Write("{0:c}", 38.8); $38.80

F or f Fixed point Write("{0:F4}", 50); 50.0000

F or f Fixed point Write("{0:F0} {1}", 50, 22); 50 22

TaBle 2-15 Examples using format specifiers

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



112 | Chapter 2: Data Types and Expressions 

For illustration purposes, literal values were used as string arguments to the Write( )  
method in Table 2-15; however, variables, constants, and/or expressions can be used 
in the Write( ) method as the argument being formatted.

The F, fixed point, specifier includes one additional argument. You can indicate how 
many digits to print to the right of the decimal. The {0:F4} indicates that the first 
argument, argument 0, should be formatted with a fixed or decimal point and that 
four digits should be printed to the right of the decimal. As presented in the last row 
of Table 2-15, when no special formatting is required with an argument, the place-
holder is the only entry enclosed inside the curly brace as in {1}.

WriteLine("Carpet{0:F0} is {1:C}", 9, 14);

As given in Table 2-15, negative values are displayed in parentheses when the currency 
format specifier is used.

Format specifiers are positioned in the string at the location where the value is to be 
printed. Consider the following example:

The result is as follows:

No space was printed after the character t in Carpet. The first argument, referenced 
with a 0 in the argument {0:F0), is 9. That value, (9) is printed followed by a space. 
It was formatted with a fixed point and zero digits to the right of the decimal. The 
value 14 is inserted at the location in which the {1:C} is inserted. It is formatted with 
currency. Table 2-16 presents some of the standard numeric format specifiers used to 
format numbers within a string.

Carpet9 is $14.00

Character Name Description example

C or c Currency Number converted into a string that represents 
a currency amount with dollar symbols, 
decimal, and commas. If present, the precision 
modifier indicates the number of decimal 
places.

(“{0:C3}”, 4238.8) – 
produces $4,238.800

D or d Decimal Number converted into a string of integer 
digits (0–9), prefixed by a minus sign if the 
number is negative. If required, the number is 
padded with zeros to its left to produce the 
number of digits requested in the specifier.

(“{0:D5}”, 42) –  
produces 00042

TaBle 2-16 Standard numeric format specifiers

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Formatting Output | 113

2

If the standard format specifier does not provide the type of formatting you require, 
you can also create your own custom format string. A standard format string consists 
of a single alphabetic character, optionally followed by a sequence of digits that form 
a value between 0 and 99. Table 2-17 lists some of the characters you can use to create 
custom numeric format strings and their definitions.

Character Name Description example

E or e Scientific 
(exponent)

Number is converted into a string of the form 
“-d.ddd...E+ddd” or “-d.ddd...e+ddd”, where 
each ‘d’ indicates a digit (0–9). The string starts 
with a minus sign if the number is negative.

(“{0:E2}”, 4238.8) – 
produces 4.24E+003

F or f Fixed point Number is converted into a string of the form 
“-ddd.ddd...” where each d indicates a digit 
(0–9).

(“{0:F2}”, 4238.8) – 
produces 4238.80

G or g General Number is converted into the most compact 
of either fixed-point or scientific notation, 
depending on the type of the number and 
whether a precision specifier is present.

(“{0:G}”, 4238.8) 
– produces 4238.8 
(“{0:G2}”, 4238.8) 
produces 4.2E+03

N or n Number Number is converted into a string of the form 
“-d,ddd,ddd.ddd...”. Thousand separators and 
minus symbol (if the value is negative) are 
inserted. The precision specifier indicates the 
desired number of decimal places.

(“{0:N2}”, 4238.8) – 
produces 4,238.80

P or p Percent Number is converted into a string that 
represents a percent. The converted number 
is multiplied by 100 to be presented as a 
percentage. The precision specifier indicates the 
desired number of decimal places.

(“{0:P}”, 0.123) –  
produces 12.30 % 
(“{0:P1}”, 0.12783) – 
produces 12.8 %

TaBle 2-16 Standard numeric format specifiers (continued )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



114 | Chapter 2: Data Types and Expressions 

Format 
character Name Description example

0 Zero 
placeholder

If the value being formatted has a digit 
in the position where the ‘0’ appears 
in the format string, then that digit is 
copied to the result string. The position 
of the leftmost ‘0’ before the decimal 
point and the rightmost ‘0’ after the 
decimal point determines the range of 
digits that are always present in the 
result string.

(“{0:00000}”, 4238.8) – 
produces 04239

# Digit 
placeholder

If the value being formatted has a digit 
in the position where the ‘#’ appears 
in the format string, then that digit is 
copied to the result string. Otherwise, 
nothing is stored in that position.

(“{0:#####}”, 4238.8) – 
produces 4239

. Decimal 
placeholder

The first ‘.’ character in the format 
string determines the location of the 
decimal separator in the formatted 
value.

(“{0:#####.##}”, 4238.8) 
– produces 4238.8 
(“{0:#####.00}”, 4238.8) – 
produces 4238.80

, Thousand 
separator

If the format string contains a 
‘,’ character between two digit 
placeholders (0 or #), the output will 
have thousand separators inserted 
between each group of three digits.

(“{0:##,###.##}”, 4238.8) –  
produces 4,238.8 
(“{0:##,###.##}”, 238.8) – 
produces 238.8 (“{0:00,00.00}”, 
238.8) – produces 00,238.80

; Section 
separator

The ‘;’ character is used to separate 
sections for positive, negative, and 
zero numbers in the string. If the value 
is positive, the first format specifier 
is used. If the value is negative, the 
second specifier is used. When the 
value is zero, the third specifier is used.

(“{0:00,000.00; −##,###.00; 
Zero}”, 15) – produces 
00,015.00 (“{0:00,000.00; 
−##,###.00; Zero}”, 
−15) – produces −15.00 
(“{0:00,000.00; −##,###.00; 
Zero}”, 0) – produces Zero

‘ABC’ or 
“ABC”

String literal Characters enclosed in single or double 
quotes are copied to the result string 
literally and do not affect formatting.

(“{0:##,##.00£}”, 100) – 
produces 100.00£

TaBle 2-17 Custom numeric format specifiers

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Width Specifier | 115

2

The examples in Tables 2-16 and 2-17 show how the format specifiers can be used as 
arguments to the Write( ) or WriteLine( ) methods. They can also be stored in 
a string variable and then used as arguments to methods such as the ToString( ) 
method. In Chapter 3, you will read about creating your own methods and using 
many of the predefined ones that are part of the C# language.

Width Specifier
You may specify a width as part of the format specifier. This is especially useful when 
you want to control the alignment of items on multiple lines. Add the Alignment 
component following the index ordinal before the colon. A comma is used as a sepa-
rator. If the number value of alignment is less than the actual length of the formatted 
string, alignment is ignored and the length of the actual formatted string is used as 
the field width. Consider the following example:

The result is as follows:

The formatted data in the field is right aligned if alignment number value is positive 
and left aligned if alignment number value is negative. If padding is necessary, white 
space is used. The comma is required if alignment is specified.

Consider the following example:

The result is as follows:

Here, the first argument (47) is left justified because the alignment component (−10) 
is negative. Following the 47, eight blank spaces are displayed and then an additional 
two spaces are padded to the left of $14.00 since that format specifier was positive 8 
and only six character positions are needed to display $14.00.

WriteLine("{0,10:F0}{1,8:C}", 47, 14);

           47  $14.00

WriteLine("{0,-10:F0}{1,8:C}", 47, 14);

47         $14.00

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



116 | Chapter 2: Data Types and Expressions 

This example demonstrates the use of data items in a program. The problem 
 specification is shown in Figure 2-15.

PrOgraMMiNg eXaMPle: CarpetCalculator

Figure 2-15 Problem specification sheet for the CarpetCalculator example
©

 C
en

ga
ge

 L
ea

rn
in

g

You should review the problem specification in Figure  2-15 and make sure you 
understand the problem definition. No program inputs are included in this solu-
tion. After you learn how data can be entered into your program, you will probably 
want to revise your solution so that you can run your application any number of 
times with different types and prices of carpeting. For now, the problem does not 
require you to input values.

However, data is needed in the program. Begin by determining what kinds of data. 
What types of values (i.e., whole numbers, numbers with a decimal point, Boolean, 
alphabetic characters, or strings) will be in each of the identified data items? Are 
there any constant data items? What would be appropriate identifiers for the vari-
ables and constants? What is the range of values or domain of the data item? These 
are all questions that should be asked. The items listed here describe the data needs 
for this problem: 

 ? The dimensions of the room are given in feet and inches—whole 
numbers and integers—representing both values (i.e., 12 feet 2 inches).

 ? The carpet prices are given as a price per square yard. This value is a 
number with a decimal portion (i.e., 27.95).

ANALYZE THE 
PROBLEM

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2

Programming Example: CarpetCalculator | 117

 ? To determine the number of square yards, you must calculate the 
number of square feet.

 ? Because the width and length are given in feet and inches, you first 
convert these measurements (feet and inches) into single units for 
both the width and length.

 ? A memory location is needed to store the total square yards. However, 
to get that value, a memory location is needed to hold total square 
feet.

 ? A memory location is needed to hold the total cost of the carpet.

VARIABLES Table 2-18 lists the data items needed to solve the CarpetCalculator problem. 

Data item 
description Type identifier Domain (range of values)

Length of room in feet int roomLengthFeet positive value < 50

Length of room in 
inches

int roomLengthInches positive value < 12

Width of room in feet int roomWidthFeet positive value < 50

Width of room in 
inches

int roomWidthInches positive value < 12

Length of room double roomLength positive value < 100

Width of room double roomWidth positive value < 100

Number of square feet double numOfSquareFeet positive value < 10,000

Number of square 
yards

double numOfSquareYards positive value < 100

Carpet price per 
square yard

double carpetPrice positive value < 50.00

Total cost of carpet double totalCost positive value < 1000

TaBle 2-18 Variables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



118 | Chapter 2: Data Types and Expressions 

Because this application is not interactive, which means it does not allow the user 
to input values, decisions have to be made about what data will not change. The 
number of inches in a foot never changes; the number of square feet in a square 
yard never changes. Both of these items are defined as constants. The names of 
the different types of carpet by category are also defined as constants. Notice in 
Table  2-19 that all uppercase characters are used as identifiers for constants to 
delineate the constants clearly from the variables. For readability, the underscore 
character is used as a separator between words.

The actual prices of the different carpets could be defined as constants.  Constant 
definitions are normally placed at the top of the program to make it easy to 
locate and modify their values when changes are necessary. Instead of declar-
ing the prices as constants, numeric literals are used to initialize the variable’s 
values. After you learn how to enter values interactively as your program is run-
ning, you might want to revise your solution so that the price can be inputted 
by the user. For now, the 27.95 and 15.95 are used as numeric literals for the 
price.

CONSTANTS

Data item description Type identifier Value

Number of square feet in one 
square yard

int SQ_FT_PER_SQ_YARD 9

Number of inches in one foot int INCHES_PER_FOOT 12

String of characters representing 
the best carpet name

string BEST_CARPET "Berber"

String of characters representing 
economy carpet name

string ECONOMY_CARPET "Pile"

TaBle 2-19 Constants

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2

Programming Example: CarpetCalculator | 119

The desired output is to display the costs associated with each kind of carpet, given 
a specific room size. Figure  2-16 shows a prototype for the final output for the 
CarpetCalculator example. The xxx.xx is placed in the prototype to represent 
the location in which the calculated values should appear.

DESIGN A 
SOLUTION

During design, it is important to develop the algorithm showing the step-by-step 
process to solve the problem. The algorithm for the CarpetCalculator example 
is first developed using a flowchart. Figure  2-17 shows the steps needed to get 
the desired output. Notice that ovals are used to indicate the start and stop of the 
application. Rectangles are used to represent processing that will occur, and paral-
lelograms are used for input or output of data. When a flowchart spans multiple 
pages, a circle connector is used, as is illustrated in Figure 2-17, to connect the 
diagrams.

Figure 2-16 Prototype for the CarpetCalculator example

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



120 | Chapter 2: Data Types and Expressions 

There are a number of techniques and tools used to describe process logic. 
A   flowchart is just one of them. Structured English is another technique. This 
technique also goes by the name of English Narrative and pseudocode. Flowcharts 
are primarily used when the solution lends itself to being designed using the tra-
ditional, structured approach. Structured English is a tool that is used for that 
approach but is also well suited for the object-oriented methodology.

Structured English is an abbreviated, action-oriented version of the English lan-
guage. There are no syntax rules with Structured English. The emphasis is to write 
the steps in English as clearly and concisely as possible without consideration for 

Figure 2-17 CarpetCalculator flowchart

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2

Programming Example: CarpetCalculator | 121

language details. The focus is on writing what needs to be done. Figure 2-18 shows 
the Structured English design for the CarpetCalculator example.

Structured English is one of the more common tools used with the object-oriented 
approach to document the process logic. Decision trees and tables are sometimes 
used in conjunction with Structured English, especially when the solution requires 
that a number of alternate paths be developed as part of the solution. Chapter 5 
introduces you to these tools.

The object-oriented approach focuses on the objects (persons, places, and things) 
that exist in our world. Class diagrams help design and document the data items 
and behaviors of the objects. Figure  2-19 shows the class diagram for the 
 CarpetCalculator example.

Figure 2-19 includes methods. In this chapter, you learned about the data items. The 
middle section in the class diagram includes the identifiers and their data types. 
Methods are included in the bottom portion of the class diagram.  Methods are 
procedures for implementing the behaviors in C#. In Chapter 3, you will learn how 
to write methods. Figure 2-20 shows a class diagram solution without methods. 

©
 C

en
ga

ge
 L

ea
rn

in
g

Figure 2-18 Structured English for the CarpetCalculator example
©

 C
en

ga
ge

 L
ea

rn
in

g

Figure 2-19 Class diagram for the CarpetCalculator example

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



122 | Chapter 2: Data Types and Expressions 

For now, this will be how the application is designed. Notice Figure 2-20 includes 
three additional data members and no method methods.

CODE THE 
SOLUTION

After you have completed the design and verified the algorithm’s correctness, it is 
time to translate the design into source code. If you are creating your application in 
Visual Studio, you might want to glance back at Figure 1-26 to review the suggested 
changes. They included the following:

 ? After launching Visual Studio, click File on the menu bar, point to 
New Project. In the New Project window, select Visual C#; and in 
the middle window, select Console Application. Type an appropriate 
name, such as CarpetCalculator.

 ? You may remove the extraneous using statements like using 
System.Collections.Generic; using System.Threading.
Tasks; using System.Linq; and using System.Text; These 
namespaces are not needed for this application.

After the algorithm is developed, the design should be checked for correctness. 
When you desk check your algorithm, use a calculator and write down the results 
you obtain. After you implement your design, you can compare the results obtained 
from the program with the calculator results.

At this point, it might seem that it would be easier simply to perform the calcula-
tions using a calculator. Remember that the power of the computer comes into 
play when you write a set of instructions that can be used with many different 
data sets. In Chapter 3, you will learn to call methods that allow you to input data 
interactively, such as the carpet price and room sizes. This will add much more 
functionality to your program.

Figure 2-20 Revised class diagram without methods

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2

Programming Example: CarpetCalculator | 123

 ? Add a new using static statement directive, using static 
System.Console;. Recall the capability of adding static classes to 
the using directive was added with the release of Visual Studio 2015 
to enable use of static class members without fully qualifying 
reference to them.

 ? Change the name of the .cs filename from Program.cs to a 
name more representative of the application’s operation, such as 
CarpetCalculator.cs. Answer Yes when asked if you would “like 
to perform a rename in this project of all references to the code 
element Program.”

The final program listing appears as follows:
Line  1  /* CarpetCalculator.cs Author: Doyle 
Line  2  *  Calculates the total cost of carpet, given
Line  3  *  room dimension in feet and inches and carpet
Line  4  *  price in price per square yard.
Line  5  */
Line  6  using System;
Line  7  using static System.Console;
Line  8
Line  9  namespace CarpetCalculator
Line 10  {
Line 11     class CarpetCalculator
Line 12     {
Line 13         static void Main(string[] args)
Line 14         {
Line 15             const int SQ_FT_PER_SQ_YARD = 9;
Line 16             const int INCHES_PER_FOOT = 12;
Line 17             const string BEST_CARPET = "Berber";
Line 18             const string ECONOMY_CARPET = "Pile";
Line 19
Line 20             int roomLengthFeet = 12,
Line 21                 roomLengthInches = 2,
Line 22                 roomWidthFeet = 14,
Line 23                 roomWidthInches = 7;
Line 24
Line 25             double roomLength,
Line 26                    roomWidth,
Line 27                    carpetPrice,
Line 28                    numOfSquareFeet,
Line 29                    numOfSquareYards,
Line 30                    totalCost;
Line 31
Line 32             roomLength = roomLengthFeet +
Line 33                 (double)roomLengthInches /

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



124 | Chapter 2: Data Types and Expressions 

Line 34                            INCHES_PER_FOOT;
Line 35             roomWidth = roomWidthFeet +
Line 36                  (double)roomWidthInches /
Line 37                       INCHES_PER_FOOT;
Line 38             numOfSquareFeet = roomLength * roomWidth;
Line 39             numOfSquareYards = numOfSquareFeet /
Line 40                            SQ_FT_PER_SQ_YARD;
Line 41             carpetPrice = 27.95;
Line 42             totalCost = numOfSquareYards * carpetPrice;
Line 43
Line 44             WriteLine("{0,12}", "Carpet App");
Line 45             WriteLine( );
Line 46             WriteLine("{0,−7}{1,8:C}",
Line 47                  BEST_CARPET + ":", totalCost);
Line 48
Line 49             // Second test
Line 50             carpetPrice = 15.95;
Line 51             totalCost = numOfSquareYards * carpetPrice;
Line 52             WriteLine("{0,−7}{1,8:C}", ECONOMY_CARPET + 
Line 53                  ":", totalCost);
Line 54             ReadKey( );
Line 55         }
Line 56     }
Line 57  }

IMPLEMENT 
THE CODE

During implementation, the source code is compiled to check to see if any rule 
violations have been made. To compile the project, click Build Solution from the 
Build menu if you are using Visual Studio. To run the application, use the Start 
Without Debugging option available on the Debug menu.

Readability is important. Notice how the second lines of statements are indented to  
indicate that the statement has not been completed.

TEST AND 
DEBUG

During this final step, test the program and ensure you have the correct result. The 
output should match your prototype. Is your spacing correct? Figure 2-21 shows 
the output generated from displaying the results of the calculations.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Coding Standards | 125

2

Figure 2-21 Class diagram for the CarpetCalculator program

In conclusion, this chapter concentrated on using data. You will use the concepts you 
learned in this chapter for the remainder of your software development. In Chapter 3, 
you will learn how to write methods that describe the behavior of the data.

Coding Standards
As you read in Chapter 1, coding or programming style is a term used to describe 
acceptable conventions for writing source code. It goes beyond the rules of the 
 language and provides guidelines or suggestions that should be followed to ensure 
consistency among programmers working toward a common goal. Following the 
guidelines reduces the number of errors or bugs introduced into programming 
projects. It saves time, increases program maintainability, and helps ensure reliabil-
ity of code. Naming Conventions, which were discussed earlier in this chapter, are 
 highlighted next.

Naming Conventions

 ? Use meaningful, descriptive words as identifiers.

 ? Do not use abbreviations for identifiers unless it is a well-known 
abbreviation.

 ? With the exception of variables used as iterators for loops, do not use 
single character identifiers.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



126 | Chapter 2: Data Types and Expressions 

 ? Use Pascal Casing (first character of all words are uppercase; all other 
characters are lowercase) for the following:
Class and type identifiers

Method names
Namespace identifiers
Property names

 ? Use Camel Casing (first character of all words, except the first word, are 
uppercase; all other characters are lowercase) for the following:
Local variable identifiers
Object identifiers
Private data members
Parameters

 ? Filename should match class name.

 ? Use all uppercase characters to name constants.

 ? Do not use an underscore in identifiers.

 ? Use a noun or a noun phrase to name a class.

Spacing Conventions

 ? Use tabs instead of spaces for indentation.

 ? Use white space (one blank line) to separate and organize logical groups 
of code.

 ? Place curly braces ( { } ) at the same level as the code outside the braces.

 ? Place curly braces on a new line.

 ? Declare each variable independently on separate lines. It is permissible 
to reuse the data type, but each variable should be on a separate line.

 ? Avoid long lines of code. Lines should not exceed 80 characters.

 ? If a program statement must be split over multiple lines, use indentation 
to improve readability.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2

Quick Review | 127

Declaration Conventions

 ? Use the built-in C# data type aliases, not the .NET CTS data type.

 ? Use the simplest data type.

 ? Declare and initialize local variables close to where they are used.

 ? Try to initialize variables when they are declared.

 ? Floating-point values should include at least one digit before the decimal 
place and one after.

 ? Use the const keyword to define constant values.

Resources
Additional sites you might want to explore:

 ? Naming Guidelines for .NET— 
http://msdn.microsoft.com/en-us/library/xzf533w0(VS.71).aspx

 ? Guide to Megabytes, Gigabytes, Terabytes. . .— 
http://fixitwizkid.com/threads/your-guide-to-megabytes-gigabytes-
terabytes-yottabyte-exabyte-petabyte-zettabyte.8062/

 ? Writing Readable Code— 
http://software.ac.uk/resources/guides/writing-readable-source-code

 ? C# Video tutorials— 
http://www.programmingvideotutorials.com/csharp/csharp-introduction

QuiCK reVieW
 1. Identifiers are names of elements that appear in a program, such as data 

items. They can include upper- and lowercase characters a–z, digits 
0–9, underscores, and the at symbol (@). The first character cannot be 
a digit. No spaces can be included between words. Keywords cannot be 
used as identifiers.

 2. Use meaningful names for identifiers by describing what will appear in 
memory locations when declaring variables.

 3. A variable represents an area in computer memory where the value of a 
particular data type can be stored. Declaring a variable requires that you 
select an identifier and determine what type of data will appear in the 
memory cell.

 4. Literals cannot be changed. They are the numbers, characters, and 
 combinations of characters used in your program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



128 | Chapter 2: Data Types and Expressions 

 5. Types are actually implemented through classes. This means that classes 
are used to define types.

 6. An object is an instance of a class. It is an example of the class.
 7. The value types are often called the fundamental or primitive data types. 

They are the predefined data types of the language.
 8. Value types include nine integral (whole number) types, two floating-

point types, and the decimal type.
 9. All integral values represent whole numbers, which are values without a 

decimal notation. The value type int is used most often.
 10. Floating-point values allow you to keep the fractional portion of a data 

item. They can be specified in scientific notation with an exponent or in 
standard decimal notation.

 11. The decimal data type is suitable for financial and monetary 
calculations.

 12. A bool variable can have a value of either true or false.
 13. string type represents a combination of Unicode characters.
 14. const forces the functionality of not allowing the value to be changed.
 15. An assignment statement takes the form of variable = expression.
 16. Unary operators require a single operand.
 17. Preincrement and postincrement operators of ++ and −− add or sub-

tract the number one (1) to and from a memory location.
 18. Compound operators include the assignment operator and are used to 

modify a variable by using its original value as part of the calculation.
 19. The order in which calculations are performed is called the order of 

operations. Parentheses can be added to an expression to alter the order.
 20. Left associative means that the operations are performed from left to 

right. This means that as you move from left to right in an expression, 
the operation that is encountered first is executed first.

 21. If the binary operation involves both a double and an int, implicit type 
coercion is performed.

 22. Explicit type coercion through type casting or type conversion takes the 
form of (type) expression.

eXerCiSeS

 1. Which of the following is a valid identifier?
a. int

b. jersey girl
c. 6Values
d. sampleValue
e. value-1

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2

Exercises | 129

 2. The number 768.6 is an example of a type.
a. bool

b. integral
c. floating-point
d. struct
e. int

 3. Which of the following is a reference type?
a. int

b. bool

c. string

d. decimal

e. integral

 4. The character that cannot be used with an identifier is:
a. –
b. $
c. *
d. #
e. all of the above

 5. Which of the following is a reserved keyword?
a. Console
b. Main
c. using
d. System
e. all of the above

 6. One of primary differences between float, double, and decimal is:
a. float is used to represent more significant digits.
b. double is normally used with large monetary values.
c. decimal is not used to display negative values.
d.  double does not require suffixing a numeric literal with a value 

such as m or f.
e.  decimal is primarily used to represent small monetary values that 

require a $ for formatting.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



130 | Chapter 2: Data Types and Expressions 

 7. Which of the following is a valid declaration for a variable to store the 
name of this textbook?
a. char name of book;
b. string nameOfBook;
c. boolean nameOfBook;
d. char bookName;
e. char book Name;

 8. Types are implemented in C# using:
a. classes
b. types
c. objects
d. namespaces
e. programs

 9. An object of the int class is:
a. 147.98
b. 417
c. int class
d. type object
e. type integral

 10. What would be an appropriate declaration for a memory location to be 
used as a flag to indicate whether a value has reached its upper limit?
a. int upperLimit;
b. upperLimit reached;
c. bool upperLimit;
d. Boolean upperLimit;
e. string upperLimit;

 11. Adding the keyword const to a declaration:
a. places a value in memory that cannot be changed.
b. declares variables of the constant type.
c. must be done by placing it after the identifier in the declaration.
d. can only be done with the integral types.
e. is prohibited in C#.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2

Exercises | 131

 12. Which statement increases the result by 15?
a. 15 += result;
b. 15 =+ result;
c. result =+ 15;
d. result += 15;
e. result = 15 +;

 13. What is stored in ans as a result of the arithmetic expression, given the 
following declarations?
int ans = 0, v1 = 10, v2 = 19;
ans = v2 % v1++;
a. 1.8
b. 9
c. 8
d. 2
e. none of the above

 14. What is stored in ans as a result of the arithmetic expression, given the 
following declarations?
int ans = 10, v1 = 5, v2 = 7, v3 = 18;
ans += v1 + 10 (v2 / 5) + v3 / v2;
a. 18
b. 32
c. 28
d. 30
e. none of the above

 15. Which of the following formats 86 to display with two digits to the right 
of the decimal?
a. {0:C}
b. {0:c}
c. {0:f2}
d. all of the above
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



132 | Chapter 2: Data Types and Expressions 

 16. Indicate the order of operations for the following assignment statements 
by placing a number under the assignment operator, as illustrated in 
Figure 2-13.
a. ans = value1 + value2 * value3 − (value4 + 20 / 5 % 2) * 7;
b. ans += value1-- * 10;
c. ans = (((value1 + 7) − 6 * value2) / 2);
d. ans = value1 + value2 / value3 * value4−−;

 17. Which of the following are valid identifiers? If they are invalid, indicate 
why.
a. intValue
b. value#1
c. the first value
d. _value1
e. AVALUE

 18. For each of the following, declare a variable using the best choice for 
data type.
a. a counter for the number of correct responses
b. the amount of money you owe on a credit card
c. the name of your hometown
d. the grade you hope to obtain on the next exam
e. the grade you hope is recorded at the end of the term for this course

 19. For each of the following declarations, write an appropriate compile-
time initialization.
a. counter for the number of correct responses begins with zero
b. amount of money you owe on a credit card is zero
c. name of the hometown or the city where your school is located
d. grade on the next exam is 100
e. grade to be recorded at the end of the term for this course is an A

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2

Exercises | 133

 20. Suppose x, y, and z are int variables and x = 2, y = 6, and z = 10. What 
will be in the memory locations of each of the variables after each of the 
following statements is executed? (For each exercise, use the original 
declaration.)

x y z

a. z += ++y % 2; _________ _________ _________

b. x = y * z / 2 – x * z; _________ _________ _________

c. x %= ––z – y * 2; _________ _________ _________

d. y = (z – y) * 2 + ––y; _________ _________ _________

 21. Suppose x, y, and z are double variables and x = 2.5, y = 6.9, and  
z = 10.0. What will be in the memory locations of each of the variables 
after each of the following statements is executed? (For each exercise, 
use the original declaration.)

x y z

a. z * = y++ % 7; _________ _________ _________

b. x = z / 3 * ––y; _________ _________ _________

c. z /= (int)y /x; _________ _________ _________

d. z = x + y / 4; _________ _________ _________

 22. What will be the output from each of the following statements?
a. Write(“Result is {0:c}”, 67);
b. Write(“Number {0:f0} is {1:c}”, 1, 3);
c. Write(“{0,-10:f0}–{1,10:c}”, 1, 3 * 2 );
d. Write(“{0:f0} result “ + “xyz {1:f2}”, 1, 25);

 23. Explain how a variable differs from a constant.

 24. Explain the width specifier. Be sure to include both positive and negative 
numbers with your explanation.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



134 | Chapter 2: Data Types and Expressions 

 25. The following program has several syntax errors as well as style incon-
sistencies. Correct the syntax errors and identify the style violations.
namespace Chapter2
{
  class converter
  {
  static void main(
{
              CONST int inches = 12;
              int x = 100; y = 10;
              float z = 22.45;
              double ans;
              ans=inches+z*x%y;
              System.write("The result is {f2:0} " + "ans");
}
}

PrOgraMMiNg eXerCiSeS

For each of the exercises, be sure to include appropriate comments, choose 
meaningful identifiers, and use proper indentations in your source code.

 1. Write a program that converts a temperature given in Celsius into 
 Fahrenheit. Test the program by performing a compile-time initial-
ization of 32 for the original Celsius value. Display the values num-
ber aligned. The original temperature should show no digits after the 
decimal. One position following the decimal should be printed for the 
converted value. Be sure to provide labels for both values. Go into your 
source code and change the initialization value to 0. Rerun the applica-
tion. Select additional test values and rerun the application.

 2. Design an application that converts miles into feet and its equivalent 
metric kilometer measurement. Declare and initialize miles to 4.5. 
Show your miles and kilometers formatted with two positions to the 
right of the decimal. Feet should both be shown with no positions to 
the right of the decimal with comma separators. Be sure to provide 
labels for values and number align them. Once you get that portion 
running, go into your source code and change the initialization value 
for miles. Rerun the application and make sure that your values are still 
number aligned.

 3. Write a program that computes the average of five exam scores. Declare 
and perform a compile-time initialization with the five exam values. 
Declare integer memory locations for the exam values. Use an integer 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2

Programming Exercises | 135

constant to define the number of scores. Print all scores. The average 
value should be formatted with two digits to the right of the decimal. 
Rerun the application with different values. Be sure to desk check your 
results.

 4. Write a program that prints the number of quarters, dimes, nickels, and 
pennies that a customer should get back as change. Declare and ini-
tialize all memory locations as integers. On output, show the original 
change amount as a monetary amount, with two positions to the right 
of the decimal. Run your program once by performing a compile-time 
initialization using 92 cents for the value to be converted. Go into your 
source code and change the 92 to 27. Rerun the application. Be sure to 
desk check your solutions.

 5. Write a program that shows the formatted retail price of shirts when 
there is a 15% markdown. Test the program by performing a compile-
time initialization with an item labeled “Open Collar Running Shirt,” 
which has a wholesale price of $41.00. How much savings is expected 
with the markdown? Display appropriately labeled retail and mark-
down values for the shirt. Once you get that running, go back into your 
source code, add lines of code that will reassign the memory location’s 
values for a Razorback T-Shirt, which has a retail price of $36.00. Add 
additional lines of code, which will display the new item’s information 
along with the previous item. What happens if the markdown goes to 
20% or 10%?

 6. Write a program that calculates and prints the take-home pay for a com-
missioned sales employee. Perform a compile-time initialization and 
store the name of Joshua Montain in a variable called employeeName. 
For practice working with the decimal data type, declare all monetary 
values as decimal. Employees earn 7% of their total sales as a commis-
sion. Employees pay federal tax rate of 18%. All employees contribute 
10% of their earnings to a retirement program and pay an additional 
6% of their earnings to Social Security. If Joshua’s sales this month were 
$161,432, how much money will he take home? Produce a format-
ted report with your values labeled and number aligned showing the 
amount for each of the computed items and the sales commission per-
centage rate. Also show the total deductions. The final take home pay 
and total sales figure used for the calculations should be formatted with 
currency. All other values should have comma separators, no dollar sign, 
and display two positions to the right of the decimal. Select appropriate 
constants. After you finish displaying Joshua’s data, change his sales to 
1.3 million and rerun the application.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



136 | Chapter 2: Data Types and Expressions 

 7. Write a tip calculating applications that can be used to determine what 
the tip and final charges would be given a total bill charge. Display the 
tip for 15% and 20% along with totals for each of the percentages. On 
output, show the original bill charge and each of the tip calculations 
with a final amount. Be sure to provide labels and number align the 
values.

 8. Write a program that computes a weighted average giving the following 
weights.

Homework: 10%
Projects: 35%
Quizzes: 10%
Exams: 30%
Final Exam: 15%

Do a compile-time initialization with the following values:
Homework: 97; Projects: 82; Quizzes: 60; Exams: 75; Final Exam 80. 
 Display all values, including the weights, appropriately labeled and 
 formatted. Rerun the application with different values.

 9. Write a program that computes the amount of money the computer club 
will receive from the proceeds of their granola sales. They sell the gra-
nola bars for $1.50 per bar. Purchases for the granola are in cases, with 
each case having 100 bars. Each case costs $100.00. They are required to 
give the student government association 10% of their earnings. Display 
their proceeds, showing the amount given to the student government 
association. Show all the values formatted with currency. How much 
money would they make if they sold 29 cases?

 10. In countries using the metric system, many products are sold by grams 
and kilograms as opposed to pounds and ounces. Write an application 
that converts grams to pounds and will display the price of the product 
by pound. Test your application by doing a compile-time initialization of 
Poutine, a common Canadian dish, made with French fries, which sells 
for $1.29 per 100 grams. Display both the metric and customary U.S. 
units. Be sure to provide labels for all values. Once you get that portion 
running, go into your source code and rerun the application using addi-
tional items, such as haricot verts, which are a type of green beans sold 
at 0.75 per 100 grams.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Neale Cousland / Shutterstock.com

Methods and Behaviors
IN THIS CHAPTER, YOU WILL:

 ? Become familiar with the components of a method

 ? Call class methods with and without parameters

 ? Use predefined methods in the Console and Math classes

 ? Write your own value- and nonvalue-returning class methods  
(with and without parameters)

 ? Distinguish between value, ref, and out parameter types

 ? Explore the use of named and optional parameters with default  
values

 ? Work through a programming example that illustrates the  
chapter concepts

3CHAPTER

© zeljkodan/Shutterstock.com

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



138 | Chapter 3: Methods and Behaviors

In Chapter 2, you learned how to declare variables and data members. You discovered 
that data is stored in memory in variables. You learned how to perform arithmetic 
procedures on the data and how expressions are evaluated using the rules of prece-
dence. You also learned how to display formatted data. This chapter focuses on meth-
ods. Methods provide the operations, or behavior, for the data members of a class. 
Methods facilitate dividing a problem into manageable units for ease of development 
and reuse of code. You will learn about different types of methods in this chapter, 
how to call predefined methods, and how to create your own methods and call them. 
You will write methods that perform processing and return the results of their work 
and you will write methods that perform procedures without returning a value. You 
will learn how to pass arguments to methods and learn about the different types of 
parameters that can be used with methods. You will begin by examining what com-
ponents make up a method.

Anatomy of a Method
A method is really nothing more than a group of statements placed together under 
a single name. Methods are defined inside a class. As you learned in Chapter 1, a 
class includes a collection of data and methods. Methods are the members of a 
class that perform an action, and through writing methods you describe the behav-
ior of data. Methods are similar to functions, procedures, and modules found in other 
programming languages. They allow program statements to be grouped together 
based on the functionality of the statements and to be called on one or more times 
when needed.

Unlike some languages such as C and C++ that allow methods to be defined globally 
 outside a class, C# requires all methods to be members of a class.

All programs consist of at least one method. For both console and Windows applica-
tions, the required method is Main( ) in C#. Main( ) is a method you have already 
written as the entry point into your program. It does not matter where you physi-
cally place the Main( ) method in your program. When your program runs, the first 
statement in the Main( ) method is the first statement executed. Control continues 
in Main( ) until the closing curly brace is encountered.

When you wrote programs earlier as part of the body of Main( ), you wrote 
 statements that invoked, or called, other methods. Example 3-1 contains calls to 
two methods: WriteLine( ) and ReadKey( ). Main( ) is the only user-defined 
method included in Example 3-1.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Anatomy of a Method | 139

3

EXAMPLE 3-1

Line  1  /* ********************************************
Line  2   * SquareExample.cs       Author:       Doyle 
Line  3   * Computes the square of a variable initialized
Line  4   * at compile time.
Line  5   * ********************************************/
Line  6  using System;
Line  7  using static System.Console;
Line  8  namespace SquareExample
Line  9  {
Line 10     class SquareExample
Line 11     {
Line 12        static void Main( )
Line 13        {
Line 14             int aValue = 789;
Line 15             int result;
Line 16
Line 17             result = aValue * aValue;
Line 18             WriteLine("{0} squared is {1}", aValue,
Line 19                       result);
Line 20             ReadKey( );
Line 21        }
Line 22     }
Line 23  }

The output of Example 3-1 is:
768 squared is 589824

The value in the result variable can be formatted using the number format string (n or 
N). By adding the N format argument to the string ({1:N0}), a comma is inserted 
so that the value is more readable.

WriteLine("{0} squared is {1:N0}", aValue, result);

produces 

768 squared is 589,824

The zero in {1:N0} indicates that no digits should be printed to the right of the decimal 
point. When zero (0) is included with the format specifier, the decimal point is not printed 
either.

The last statement, ReadKey( ), in Example 3-1, is a method invocation. The 
 ReadKey( ) method is added to hold the screen when the program runs. This 
is  necessary if the program is executed in Visual Studio using the Debug, Start 
 Debugging (F5) option.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



140 | Chapter 3: Methods and Behaviors

The first line of a method is called the heading of the method. Figure 3-1 labels the 
components that make up the heading.

You will notice that no semicolon is placed at the end of method headings, such as 
Main( ). Nor do you place semicolons at the end of the class headings (e.g., class 
SquareExample) or namespace headings. Semicolons are placed at the end of 
 variable declarations, calls to methods, and assignment statements.

Some programmers refer to the heading for the method as the prototype for the 
method. The definition of the method includes the heading and the body of the 
method, which is enclosed in curly braces.

FIGURE 3-1 Method components

Modifier

Return
type Method

name

Parameter
©

 C
en

ga
ge

 L
ea

rn
in

g

The programs you create include definitions for dozens of methods, calls to those 
methods, and calls to methods that are part of the .NET FCL (Framework class library). 
The components identified in Figure 3-1 are described in the following section.

Modifiers
Modifiers appear in the headings of methods. They also appear in the declaration 
heading for classes and class members, as shown in Figure 3-1. A modifier is added 
to a type or a type member’s declaration to change or alter it or to indicate how it 
can be accessed. In Chapter 2, you learned about and used the const modifier. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Anatomy of a Method | 141

3

const is added to a declaration to indicate that a value is constant and cannot be 
changed. You have previously seen two other types of modifiers: static and access 
modifiers.

Static Modifier
You have already encountered static used with the Main( ) method. All Main( ) 
method headings must include the static modifier. C# issues an error message 
if you forget to include static when you write a Main( ) method. Write( ), 
 WriteLine( ), and ReadLine( ) are all static methods of the Console 
class. In order to invoke or call these methods, you have to place the class name 
 (Console) before the method name as is illustrated in Figure 3-1 or as you saw pre-
viously, you can also include an additional using directive that reads using static 
System.Console;. Once this is added to your program, you no longer have to fully 
quality calls to Write( ), WriteLine( ), or other static members of the  Console 
class. You can simply type the method’s name.

You will soon explore the members of the Math class. The Math class is also in 
the System namespace. The heading for each of the Math class members includes 
the static keyword. The method in Example 3-2 raises a value to a specified power. 
Examine its heading.

EXAMPLE 3-2

static double Math.Pow(double, double)

Static is used in this context to indicate that a method belongs to the type itself rather 
than to a specific object of a class. This means that it is not necessary to instanti-
ate an object of the class to use the method member. If you want to call a static 
method, which is defined in the same class where it is being called from, the method 
can be called by simply typing its identifier (without an object or class name). 
However, if you are calling a static method from another class, the class name 
normally must be used. For example, to call the Sqrt( ) method of the Math class, 
you would write:

double answer = Math.Sqrt(25);

You will define nonstatic methods in Chapter 4.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



142 | Chapter 3: Methods and Behaviors

Methods that use the static modifier are called class methods. A single copy of 
the method is made instead of copies for each object. Instance methods require that 
an object be instantiated before the method is accessed. You will read more about 
instance methods in Chapter 4 when you create your own classes. When you write 
your own methods, the static modifier can be added; however, for most classes 
designed for object-oriented applications, the static keyword is rarely used. Much 
of the power of object-oriented development comes from encapsulating (packag-
ing) methods and data members together so that objects can be defined with their 
own members and be totally independent of each other. A single copy of a method is 
 created for use with all objects when the method is defined as static.

Another type of modifier is an access modifier. It specifies the level of accessibility for 
types and their members. You will work with access modifiers in Chapter 4. In Chapter 4, 
you will read about one other type of modifier: override. This keyword is added to the 
heading of a method to declare a new definition for a previously defined method.

Recall that if you are using Visual Studio 2015 or later, you have the option of adding a 
reference to static classes with the using directive. This enables use of its static 
class members of that class without having to fully qualify them.

If you are planning to use a number of methods in the Math class, and if you are using 
Visual Studio 2015 or later, you could add the following directive,

using static System.Math;

and now execute the method by omitting the qualifier, Math, as is shown in the following.

double answer = Sqrt(25);

Calls to Write( ) are made throughout the book without qualifying with the Console 
class because using static System.Console; is included at the top of  program 
examples.

Return Type
The return type identifies what type of value is returned when the method is com-
pleted. Any of the predefined or valid user-defined types can be returned. Methods 
can return a value when all the statements of the method are complete, or they can 
simply return control to the method that called them, without bringing a value back.

The return type is always listed immediately preceding the name of the method, 
as shown in Figure 3-1. Methods do not have to return anything; however, they can 
return at most one data type through the method’s name.

If a method does not return a value, the void keyword is placed at the return type 
location in the method heading, as shown in the following line of code:
void DisplayInstructions( )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Anatomy of a Method | 143

3

If a return type other than void is specified in the method heading, there must be 
a return statement included in the body of the method. The value returned must be 
a compatible value—one that either matches the type in the heading or can be stored 
in that type.

The return statement takes the form:

Note that value is enclosed in square brackets to indicate that it is optional. If the 
method heading uses void as the return type, the return statement can be omitted 
or included as follows:
return;

Whenever the return type is not void, you must have a return value following the 
return keyword. This value can be a literal, arithmetic expression, or variable that 
holds a value. Example 3-3 illustrates returning a calculated value.

EXAMPLE 3-3

static double CalculateMilesPerGallon
                   (int milesTraveled, double gallonsUsed)
{
    return milesTraveled / gallonsUsed;
}

The method heading in Example 3-3 indicates that a double value is returned. This 
is the double that precedes CalculateMilesPerGallon, the name of the method. 
Inside the body of the method, the result of the division produces a compatible 
 double value.

The value being returned is sent back to the location in the program that called the 
method. For example, the value returned from the CalculateMilesPerGallon( ) 
method is sent back to the WriteLine( ) method for display in the call that follows:
WriteLine("Miles per gallon = {0:N2 }",
          CalculateMilesPerGallon(289, 12.2));

The output produced from the WriteLine( ) method would be
Miles per gallon = 23.69

return [value];

Your programs are easier to modify and debug if your methods have one entry and one 
exit. This is a problem-solving technique you should try to include in your design. The 
 implication is that you should try to have only one return statement in a method.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



144 | Chapter 3: Methods and Behaviors

Method Name
When naming a method, you follow the rules for creating an identifier, which were 
described in Chapter 2. Identifiers should be meaningful names that label the overall 
purpose of the segment of code. Many programmers use the standard convention of 
naming the method with an action verb phrase. This verb phrase should describe what 
the method is intending to accomplish. Pascal case style is used for class and method 
identifiers. This C# convention specifies that the first character is uppercase when the 
identifier has at least three characters. Subsequent words that are part of the identifier 
also begin with an uppercase character. Examples of method identifiers following these 
style conventions include  CalculateSalesTax( ),  AssignSectionNumber( ), 
DisplayResults( ), InputAge( ), and ConvertInputValue( ).

Parameters
The items inside the parentheses of the method heading are called the parame-
ters, or arguments. Sometimes, a method requires the supply of unique data. For 
example, if a method is written to calculate the average of three values, the method 
requires that these three values be sent to it. The CalculateMilesPerGallon(int 
 milesTraveled, double gallonsUsed) method in Example 3-3 required two 
arguments: an int value for milesTraveled and a double value for gallonsUsed. 
It is through parameters and arguments that the data can be sent into a method.

When writing a method, you decide what type of unique data is needed for the method. 
You then place the data type and an identifier for the data type inside the parentheses. 
You must include matched pairs of types and identifiers inside the parentheses. The 
two matched pairs of parameters for the CalculateMilesPerGallon( ) method 
are as follows:
(int milesTraveled, double gallonsUsed)

In the body of the method, the identifiers are used to reference where and when 
the unique data item should be used. For the CalculateMilesPerGallon(int 
 milesTraveled, double gallonsUsed) method, milesTraveled and 
 gallonsUsed were used in an arithmetic expression. The result of the expression is 
returned to the calling method.

Some programmers make a distinction between parameters and arguments, using 
the term parameter to refer to items appearing in the heading of the method and 
argument for the items appearing in the call to the method. Others make a dis-
tinction between arguments and parameters by adding actual and formal onto the 
terms.  Formal parameters, or arguments, appear in the heading of a method. Actual 
 arguments, or parameters, appear in the call. Think of the actual argument as being 
the actual data that is sent to the method. The formal parameters are like placehold-
ers; they formally indicate what type of data is expected to be sent for the method 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Anatomy of a Method | 145

3

to use. This book uses the term “parameters” to refer to the items in the method 
heading and the term “arguments” for items sent into the method via a method 
call. For  Example 3-3, the arguments for the CalculateMilesPerGallon(int 
 milesTraveled, double gallonsUsed) method are 289 and 12.2. This is actual 
data or numbers; however, the actual argument used to call the method could be an 
identifier for a  variable. It could be an expression involving an arithmetic statement or 
a call to another method, just as long as it produces a compatible type.

Similar to return types, parameters are optional. If no parameters are included, an 
open and closed parenthesis is used. If more than one parameter is included, they are 
separated by a comma.

Some languages place the void keyword inside the parentheses in place of the parameter 
list to indicate that no parameters are needed. C# does not allow this and generates a 
 syntax error.

There are several different types of parameters, which are explored later in this 
chapter.

Method Body
As you saw in Example 3-1, statements making up the method body are enclosed in 
curly braces. The body for the following DisplayMessage( ) method consists of two 
calls to the Write( ) method in the Console class, one call to the  WriteLine( ) 
method in the Console class and a return statement that does not return a value.
void DisplayMessage( )
{
    Write("This is ");
    Write("an example of a method ");
    WriteLine("body. ");
    return;  // no value is returned
}

Normally, the statements inside the body of a method are executed in sequential order. 
The body of a method can include statements that declare variables, do arithmetic, 
and call other methods. These same rules and concepts apply whether you are using 
your own methods or predefined methods that make up the FCL. When the last state-
ment in the method finishes, control is returned to the method that made the call.

Notice that the return type for the DisplayMessage( ) method is void. 
A return statement is included. Return is optional here because no value is returned 
when the method is finished. Normally you will not include the optional return statement 
when the return type is void.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



146 | Chapter 3: Methods and Behaviors

Example 3-2 showed you the heading of the Pow( ) method. It is repeated here:
static double Math.Pow(double, double)

This method returns the result of raising a number to a specified power. Inside the 
parentheses, two parameters of type double are required. These values refer to the 
base number and an exponent in that order. These identifiers are inserted in the body 
of the method at locations where the calculations on the values should occur. When 
the method is called, the specific values that are sent as arguments replace the place-
holders in the body of the method. For example, if you make the following call:
double result = Math.Pow(5, 2); // Requires using System;

the value returned when Pow( ) is finished is stored in result. It would be 25 
because 52 = 25.

You did not see the actual statements that made up its body for the Pow( ) method. This 
is one of the beauties of object-oriented development. It is not necessary for you to know 
how the method produces a result. To use the Pow( ) method, all you need to know is 
what type of values to send it and what type of value you can expect to receive back. The 
black box concept of object-oriented programming hides method implementation details 
from you.

[qualifier].MethodName(argumentList);

When an application is run, Main( ) serves as the controlling method. Execution 
always starts in the body of the Main( ) method. Execution begins with the first 
line in Main( ) and stops when the closing curly brace in Main( ) is reached. Lots 
of other methods can, of course, be executed in your application; however, they 
must be called from either Main( ) or from a method that has been called from 
Main( ). In Example 3-1, you saw how control was passed to the WriteLine( ) 
and  ReadKey( ) methods by calling, or invoking, these methods.

Calling Class Methods
Invoking a method means calling the method. When a method call is encountered, 
the .NET execution engine, the common language runtime (CLR), halts execution 
in the current method and transfers control to the body of the method called. After 
completing the called method’s body, control is returned back to the location in the 
calling method that made the call. A call to the method that does not return a value 
uses the following syntax:

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Calling Class Methods | 147

3

As stated previously, not all methods require an argument list. Both of the follow-
ing statements are legal calls to the WriteLine( ) method. The first takes no argu-
ments; the second call sends one data item to the method.
WriteLine( );    // No arguments. Writes a blank line
WriteLine("Ok"); // Single argument

When the argument list contains more than one data item, the values are separated 
by commas, as follows:
WriteLine("Value1({0}) + Value2({1})" +
          " = Value3({2})", 25, 75, (25 + 75));

Output from the last call to the WriteLine( ) method would be
Value1(25) + Value2(75) = Value3(100)

The call included four arguments:
1. "Value1({0}) + Value2({1})" + " = Value3({2})"
2. 25
3. 75
4. (25 + 75)

A call to a method never includes the data type as part of the argument list, but 
rather the actual data. The actual argument can, of course, take the form of a literal, 
as shown previously, or it can be a variable or an expression. The expression can be 
quite sophisticated and even include a call to another method.

If you are developing your applications using Visual Studio, when you call methods 
you should take advantage of the IntelliSense feature of the IDE. After you enter a 
class or object name and then type a dot (.), the list of members is displayed. As 
you move down the member list, a pop-up window displays information about each 
member. The Console class was typed in Figure 3-2 followed by a dot. Then the 
WriteLine( ) method member is selected. Notice in Figure 3-2 that two different 
icons appear to the left of member names. Methods appear with a three- dimensional 
box. The icon featuring the wrench beside Title and WindowWidth is used to 
 reference a property. You will learn more about properties later in Chapter 4.

Whenever square brackets are inserted into a syntax reference, the entry is optional. With 
static methods, the qualifier is the class name. Visual Studio 2015 enables you to 
avoid qualifying calls to static class members if you add a using directive for the 
static class. Both Console and Math are static classes found in the System 
namespace.

using static System.Console;
using static System.Math;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



148 | Chapter 3: Methods and Behaviors

In the sections that follow, you will explore some of the predefined methods you have 
already seen and used. This should help you gain a better understanding of how to use 
those and the other predefined methods that make up the FCL.

IntelliSense lists user-created identifiers as well as .NET identifiers. To open IntelliSense in 
Visual Studio quickly, type the first character of any identifier. You get a list of members 
from which to choose. This also works if you type two or three characters. By typing more 
characters, you reduce the number listed.

FIGURE 3-2 Console class members

Predefined Methods
A key feature of the .NET Framework is the extensive class library. Within the library 
of classes, each class has a number of predefined methods. The WriteLine( ) 
method shown in Figure 3-2 is a predefined member method of the Console class. 
These .NET methods have been thoroughly tested by the .NET developers and pro-
vide a great deal of functionality. Avoid making work for yourself by using predefined 
methods whenever possible.

In the programs you have already seen and developed, the using directive made the 
System namespace available and the using static System.Console; reference 
enabled you to call static members of the Console class without having to first 
type the class name as was done in Figure 3-2. The Console class provides methods 
for reading characters from, and writing characters to the console. There are methods 
for working with individual characters or entire lines of characters. The methods you 
have used most often are Write( ) and WriteLine( ). They are both overloaded 
methods, which means that there are multiple methods with the same name, but each 
has a different number or type of parameter. First examine the Write( ) method.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Predefined Methods | 149

3

Write( ) Method
As you saw in Figure 3-2, the IntelliSense feature of Visual Studio shows information 
about the method in a pop-up window on the right. Use this information to determine 
how to call the method. The pop-up window includes the signature for the method 
along with the return type and a short description of the member’s functionality. 
The name of the method, the modifiers, and the types of its formal parameters make 
up the signature. Even though the return type is displayed first in the IntelliSense 
pop-up window, the return type is not considered part of its signature.

With IntelliSense, as soon as the desired member is identified and selected, type the 
next character following the member’s name. For example, when you type W, if Write is 
selected, you could next type the left parenthesis following the W. This would populate the 
text editor with Write(., without your having to type the characters rite. By learning to use 
this feature, you won’t mind declaring longer descriptive identifiers and you will have fewer 
typing errors.

To add as much functionality as possible to the methods, they are sometimes over-
loaded. .NET includes 18 different Write( ) methods. The Write( ) method signa-
ture shown in Figure 3-3 has one formal parameter, a string value. All 18 methods 
have the same name, but each one has a different signature. Notice how the first line 
of the pop-up display for Figure 3-3 starts with “10 of 18.” This is only one of the eigh-
teen (18) Write( ) method signatures. Example 3-4 lists four of the other Write( ) 
signatures. In addition to these four, there are 14 other Console.Write( )  methods. 
The implication is that you can send to the method, as an argument, any of the 
 predefined basic types and get the results you would expect displayed on the console.

EXAMPLE 3-4

Write(int)
Write(double)
Write(object)
Write(bool)

So how does the CLR know which of these 18 methods to use? The answer is simple, 
but important for you to understand. When the method is called, the argument used 
to make the call is matched with the signature to determine which of the methods 
to execute. Remember, the signature of the method includes the formal parameters, 
which include the data type that can be used for the method.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



150 | Chapter 3: Methods and Behaviors

In Visual Studio, after you select the Write( ) member and type the opening paren-
thesis, IntelliSense displays a drop-down list with a scroll bar that allows the viewing 
of all 18 signatures. This gives you an opportunity to know what type of argument is 
needed with a call. Figure 3-3 shows the 10th one of the 18 signatures.

FIGURE 3-3 IntelliSense display

The Write( ) method in Figure 3-3 is called by entering the name of the method, an 
open parenthesis, a string value, and a closing parenthesis. In the call, the string 
value can be a string literal, a string variable, or a value of another data type con-
verted into a string. From Chapter 2, you learned that a string literal is one or 
more characters enclosed in double quotation marks. A valid call to the Write( ) 
method using the displayed overloaded method from Figure 3-3 would be
Write("Any string value will work!" );

The 18 overloaded Write( ) methods include parameters for common types, such 
as int, double, decimal, bool, and object. You should explore the other options.

WriteLine( ) Method
As shown previously, the WriteLine( ) method behaves like the Write( ) method 
with the exception that it writes the current end-of-line terminator after it displays the 
arguments. There are 19 overloaded WriteLine( ) methods. Example 3-5 includes 
valid calls to the WriteLine( ) method.

EXAMPLE 3-5

WriteLine (45);
WriteLine ("An apple a day" + " keeps the doctor away.")
WriteLine (67.28 + 10000);
WriteLine (true);
WriteLine ("Score on the next exam: {0}", 100);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Predefined Methods | 151

3

The output generated from each of the preceding statements is
45
An apple a day keeps the doctor away.
10067.28
True
Score on the next exam: 100

Notice in the output generated for Example 3-5 that True is printed when the bool variable 
is displayed. The first character is capitalized. Yet the valid values for a bool variable are 
true and false, all lowercase characters. Do not be confused by this inconsistency.

The Write( ) and WriteLine( ) methods did not return anything when they 
were called. They performed their tasks and then relinquished control to the next 
sequential statement in the Main( ) method. Their task was to write the specified 
information to the console. No value was returned to the calling method, Main( ), 
when they completed their jobs. Notice that the heading for the Write( ) method 
in the pop-up window displayed by IntelliSense shown in Figures 3-1 and 3-2 begins 
with “void …”.

The Console class also includes methods that allow you to enter values from the 
keyboard. When entered, these values are returned to the program. Three methods 
used for console input are Read( ) and ReadLine( ), and ReadKey( ). The first 
two methods are not overloaded.

Read( ) Method
Read( ) was used previously to hold the output window open until a character from 
the keyboard was pressed. This enabled the user of your program to leave the output 
on the screen as long as necessary.

The pop-up window in Figure 3-4 shows the method heading for Read( ).

FIGURE 3-4 Console.Read ( ) signature

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



152 | Chapter 3: Methods and Behaviors

As Figure 3-4 shows, the Read( ) method returns an int representing the next char-
acter input from the keyboard. The heading for the method in the box on the right 
displayed using IntelliSense begins with the int keyword. The int is the Unicode 
representation of the single char value entered. Example 3-6 illustrates what is stored 
in memory when the Read( ) method is used.

EXAMPLE 3-6

// Assumes using static System.Console; directive added
int aNumber;
Write("Enter a single character: ");
aNumber = Read( );
WriteLine("The value of the character entered: " + aNumber);

If the user types the alphabetic character a when prompted, the output is as follows:
The value of the character entered: 97

This might be a good time for you to review Appendix C. Notice that the Unicode 
decimal representation for the character a is 97.

To display the actual character entered, you could cast the value, as shown in 
Example 3-7.

EXAMPLE 3-7

WriteLine("The value of the character entered: " + (char)aNumber);

If the user types the character 'a' using the cast, the output becomes
The value of the character entered: a

Notice that because the Read( ) method returned a value, provisions had to be 
made for a location to store the value on return from the method. For this, an assign-
ment statement is used. Another option is to include the call to Read( ) as part of 
the argument to the WriteLine( ) method at the location where aNumber should 
be displayed. The single statement in Example 3-8 could replace all four lines from 
Examples 3-6 and 3-7.

EXAMPLE 3-8

// Notice the (char) cast
WriteLine("The value of the character entered: " + (char) Read( ));

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Predefined Methods | 153

3

This single line is possible because the Read( ) method in the Console class 
allows the user to enter one character. The Read( ) method returns an int. The int 
value is cast to a char for display purposes. This value is then concatenated onto the 
end of the string, with the “+” operator. Although the preceding is syntactically cor-
rect and works for entering a single character, it is not as readable. It does not prompt 
users by telling them to enter a character. Another disadvantage of replacing the four 
lines with the single line is the fact that the entered value is not stored in a variable; 
thus, it is only available for use with that specific output statement.

ReadKey( ) method in the Console class is another option for holding the screen. 
ReadKey( ) obtains the next character or function key from the user. This is the method 
that has been invoked with previous examples.

ReadLine( ) Method
The ReadLine( ) method is much more versatile than the Read( ) method. Any 
number of characters can be entered using the ReadLine( ) method, and it returns 
all characters up to the current end-of-line terminator, the Enter key.

As Figure 3-5 shows, no arguments are included inside the parentheses to the 
 ReadLine( ) method. ReadLine( ) is not an overloaded method. It always returns 
a string. Even if numbers are entered, a string representing the concatenation of 
these numbers is returned. When the user types the number 786 at the keyboard, the 
result returned is ‘7’ + ‘8’ + ‘6’ or the string "786". An extra step is needed before 
any mathematical operations can be performed on the value. The string value must 
be parsed into an appropriate number type.

This feature was probably borrowed from Java. All values are entered as strings in Java. 
This enables values to be entered as strings and checked for typing errors before parsing 
or translating them into numbers.

FIGURE 3-5 Console.ReadLine ( ) signature

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



154 | Chapter 3: Methods and Behaviors

Example 3-9 shows calls to the predefined Write( ), ReadLine( ), Parse( ), and 
WriteLine( ) methods. An integer is requested. ReadLine( ) returns a string 
value. An extra step is needed before any arithmetic can be performed on the value 
that was entered. The string value must be changed or converted into an appropri-
ate number type. The Parse( ) method does that conversion. It is discussed in the 
 following section.

EXAMPLE 3-9

Line  1  /* *********************************************
Line  2   * AgeIncrementer.cs            Author: Doyle 
Line  3   * Displays age one year from now.
Line  4  ***********************************************/
Line  5  using System;
Line  6  using static System.Console;
Line  7  namespace AgeIncrementer
Line  8  {
Line  9     class AgeIncrementer
Line 10     {
Line 11        static void Main( )
Line 12        {
Line 13          int age;
Line 14          string aValue;
Line 15          Write("Enter your age: ");
Line 16          aValue = ReadLine( );
Line 17          age = int.Parse(aValue);
Line 18          WriteLine("Your age next year will be {0}",
Line 19                    ++age);
Line 20          ReadKey( );
Line 21        }
Line 22     }
Line 23  }

ReadKey( ) Method
The ReadKey( ) method obtains the next character or function key pressed by the 
user. This method can be called if you want the user to press some key to continue 
processing. It could also be placed as the last line of executable code in the Main( ) 
method.

Parse( ) Method
Another predefined static method you will use often is the Parse( ) method. As 
stated previously, Parse( ) returns the number representation of its string argu-
ment. All numeric types have a Parse( ) method. In Example 3-9, an int value is 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Predefined Methods | 155

3

returned when the Parse( ) method finishes. Parse( ) can also be called with a 
double object, as illustrated in Example 3-10.

EXAMPLE 3-10

Line  1  /**********************************************
Line  2   * SquareInputValue.cs          Author: Doyle 
Line  3   * Allows an integer value to be input. 
Line  4   * Computes and displays the square of the 
Line  5   * value that is input.
Line  6   *********************************************/
Line  7  using System;
Line  8  using static System.Console;
Line  9  namespace SquareInputValue
Line 10  {
Line 11     class SquareInputValue
Line 12     {
Line 13        static void Main( )
Line 14        {
Line 15           string inputStringValue;
Line 16           double aValue;
Line 17           double result;
Line 19
Line 20           Write("Enter a value to be squared: ");
Line 21           inputStringValue = ReadLine( );
Line 22           aValue = double.Parse(inputStringValue);
Line 23           result = Math.Pow(aValue, 2);
Line 24           WriteLine("{0} squared is {1}", aValue,
Line 25                      result);
Line 26           ReadKey( );
Line 27        }
Line 28     }
Line 29  }

Calls to methods char.Parse( ) and bool.Parse( ) produce similar results with 
their respective data types, as shown in Example 3-11.

EXAMPLE 3-11

string sValue = "true";
WriteLine(bool.Parse(sValue));   // displays True
string strValue = "q";
WriteLine(char.Parse(strValue)); // displays q

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



156 | Chapter 3: Methods and Behaviors

If you attempt to parse an incompatible value, a System.FormatException error, 
similar to that shown in Figure 3-6, is generated. The error in Figure 3-6 was gener-
ated from WriteLine(char.Parse(sValue)) when sValue referenced "true" as 
shown in Example 3-11.

FIGURE 3-6 System.FormatException run-time error

sValue is a string variable that contains more than one character. The argument to 
char.Parse( ) must be a single-character string.

There is more than one way to convert from one base type into another. As part of the 
.NET FCL, in the System namespace, a number of static methods are found in the 
Convert class. These include Convert.ToDouble( ), Convert.ToDecimal( ), 
Convert.ToInt32( ), Convert.ToBoolean( ), and Convert.ToChar( ). Used 
like the Parse( ) method, they convert data from one base type into another base 
type. The following converts an entered string value into an int base type:

int newValue = Convert.ToInt32(stringValue);

These methods are all overloaded so that the argument to the method can be of vary-
ing type. If, for example, you send a char argument to the Convert.ToInt32( ) 
method and store the result in an int variable, you get the Unicode numeric repre-
sentation for that character.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Methods in the Math Class | 157

3
You might be wondering whether you should use the Parse( ) methods or meth-
ods from the Convert class to convert your string values into their appropriate 
data types. It is really a matter of choice whichever you use. Both work well if the 
string is storing the correct data that you are attempting to convert. When you call 
the  Convert.ToInt32( ), it actually calls the Int32.Parse( ) method. There-
fore, there is a little more overhead involved in the call to methods in the Convert 
class. The difference is that if you pass an empty string to the Convert class, 
it returns 0. If you pass an empty string (null string) to the Int32.Parse( ) 
method, it creates an error, similar to that illustrated in Figure 3-6, by throwing 
an  ArgumentNullException. You will learn about how to handle exceptions in 
 Chapter 11.

int.Parse( ) could be replaced by Int32.Parse( ). Int32 is the class in .NET. 
The int type is an alias for Int32. All .NET-supported languages recognize Int32.

You might also want to explore the TryParse( ) method. Int32.TryParse( ) 
attempts to convert a string to an int without throwing an exception.

One advantage the Convert class offers is that it makes it easier to convert between 
all the base types—not just from a string into another data type. The Parse( ) 
method only works well for string conversions. For example, Int32.Parse( ) only 
converts strings into integers. Convert.ToInt32( ) converts any base type into an 
integer.

Methods in the Math Class
The Math class has a number of predefined static methods you will find helpful. 
The Math class, such as the Console class, is located in the System namespace. 
This class provides constants and methods for trigonometric, logarithmic, and 
other common mathematical functions. The Pow( ) method that you saw previously 
is a member of the Math class. You learned that the first argument to the Pow( ) 
method is the base, the number to be raised. The second argument is the exponent, 
or the specified power value. Table 3-1 identifies, describes, and gives examples of the 
more commonly used methods from the Math class. The signature and the return 
type are included in the third column.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



158 | Chapter 3: Methods and Behaviors

Method Description Method heading

Abs Returns the absolute value 
of a specified number. 
Overloaded—can be used with 
int, double, decimal, 
short, float, sbyte, 
and long.
Example:
Math.Abs(-88.62)  
returns the value 88.62

static int Abs(int)

Ceiling Returns the smallest whole 
number greater than or equal to 
the specified number.
Example:
Math.Ceiling(88.12) 
returns the value 89

static double Ceiling(double)

Cos Returns the cosine of the 
specified angle measured in 
radians.

static double Cos(double)

Exp Returns e raised to the specified 
power. e is defined as a constant in 
the Math class. It has a value 
of 2.7182818284590452354.
Example:
Math.Exp(2) returns the 
value 7.38905609893065

static double Exp(double)

Floor Returns the largest whole number 
less than or equal to the specified 
number.
Example:
Math.Floor(88.62) 
returns the value 88

static double Floor(double)

TABLE 3-1 Math class methods

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Methods in the Math Class | 159

3

TABLE 3-1 Math class methods (continued )

Method Description Method heading

Log Returns the logarithm of a 
specified number. Two overloaded 
methods. The first one returns the 
natural (base e) logarithm of a 
specified number. It takes a single 
argument of type double. The 
second one (signature to the right) 
returns the logarithm of a specified 
number.
Example:
Math.Log(4) returns the 
value 1.38629436111989

static double Log(double, double)

Max Returns the larger of two specified 
numbers.
Overloaded with 11 different 
methods (byte, decimal, 
double, short, int, 
long, sbyte, float, 
ushort, uint, and ulong). 
All require the same type for both 
arguments.
Example:
Math.Max(87, 13)  
returns 87

static double Max(double, double)

Min Returns the smaller of two 
numbers. Overloaded—exactly like 
Max in the previous row.
Example:
Math.Min(87, 13) 
returns 13

static int Min(int, int)

Pow Returns a specified number 
raised to the specified power. Not 
overloaded. Arguments can be 
entered as int. They are implicitly 
converted. Return value must be 
stored in double; otherwise, 
you receive a syntax error.
Example:
Math.Pow(5, 3) 
returns 125

static double Pow(double, double)

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



160 | Chapter 3: Methods and Behaviors

Because each of the methods in Table 3-1 is static, calls to them must include the 
Math class name as a qualifier. Or, as noted previously, with Visual Studio 2015, an 
additional using static System.Math; directive must be added at the top of the 
application.

Method Description Method heading

Round Returns the number nearest the 
specified value. Overloaded. Can 
return a number with the specified 
precision indicated by the second 
argument, as illustrated with the 
signature to the right.
Example:
Math.
Round(87.982276, 4) 
returns 87.9823

static double Round(double, int)

Sign Returns a value indicating the 
sign of a number (−1 for negative 
values; 1 for positive; and 0 for 
zero values). Overloaded—each 
returns an int. Argument can be 
used with double, decimal, 
long, short, sbyte, int, 
or float.
Example:
Math.Sign(46.3) returns 1

static int Sign(double)

Sin Returns the sine of the specified 
angle measured in radians

static double Sin(double)

Sqrt Returns the square root of a 
specified number. Return value 
must be stored in double; 
otherwise, you receive a syntax 
error.
Example:
Math.Sqrt(25) returns 5

static double Sqrt(double)

Tan Returns the tangent of the 
specified angle measured in 
radians.

static double Tan(double)

TABLE 3-1 Math class methods (continued )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Methods in the Math Class | 161

3

The following are examples of valid calls to methods of the Math class:

double aValue = 78.926;
double result1,
       result2;
result1 = Math.Floor(aValue);//result1 = 78 
result2 = Math.Sqrt(aValue); //result2 = 8.88403061678651
Write("aValue rounded to two decimal places" + " is {0}", 
        Math.Round(aValue, 2));

The output for the last statement is

aValue rounded to two decimal places is 78.93

As you look at the examples using the predefined methods from the Math class, 
you can see that they all have something in common. Each of the methods returns a 
value. Calls to methods returning values usually are placed in an expression or in an 
output statement. When the value is returned, there has to be a place for the value 
to be used.

A class can define a static method, or a class can use a static method defined 
in another class. If you are calling a method that is a member of the same class 
from where it is being called, the call statement does not have to include the class 
name. If you are calling a static method defined in another class, the name of the 
class must be included. When you use the methods in the Math class, you are 
using methods that are defined outside the boundaries of your class. Exp( ) is a 
static member of the Math class. In the following example, it returns e, the natu-
ral logarithmic base, raised to the fifth power. It is necessary to use the class name 
Math as a qualifier.

double result;
result = Math.Exp(5);

You learned about implicit conversion in Chapter 2. C# provides for conversion from 
smaller data types into larger when you send arguments to methods. For example, implicit 
conversion occurs from int to long, float, double, or decimal types. Thus, if the 
formal parameter enclosed inside the parentheses for the method’s heading is a double, 
you can usually send an int argument when you call the method. The int is converted 
into a double by the CLR.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



162 | Chapter 3: Methods and Behaviors

Calls to value-returning methods must be placed at a location in your code where the 
value could be accepted when the method is finished. The call can appear anywhere 
a compatible value of that type can be placed. The statements in Example 3-12 on 
Lines 4, 5, and 9 illustrate three different places to which the static method Max( ) 
returns a value.

The Math class also has two static data field members defined as constants. 
A call to static field members also requires prefixing the member name with the 
class name. Their declarations follow:

const double E = 2.7182818284590452354;
const double PI = 3.14159265358979323846;

An example of their use is as follows:

circumference = 2 * Math.PI * radius;

EXAMPLE 3-12

Line 1  int aValue = 200;
Line 2  int bValue = 896;
Line 3  int result;
Line 4  result = Math.Max(aValue, bValue); // result = 896
Line 5  result += bValue * Math.Max(aValue, bValue) – aValue;
Line 6  // result = 896 + (896 * 896 − 200)
Line 7  // result = 803512
Line 8  WriteLine("Largest value between {0} and {1} is {2}", +
Line 9             aValue, bValue, Math.Max(aValue, bValue));

The output generated is
Largest value between 200 and 896 is 896

As given in Table 3-2, the heading for Max( ) is
static int Max(int, int)

As shown with the preceding three statements in Lines 4 through 8, values returned 
from a value-returning method can be returned to any location in your program where 
a variable of that return type can be used. The int returned in Line 4 is assigned to 
result. The int returned in Line 5 is used as part of an arithmetic expression. The 
int returned in Line 9 is an argument to the WriteLine( ) method.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Methods in the Math Class | 163

3

Writing Your Own Class Methods
There are many classes containing member methods that make up the .NET FCL. 
You should explore and make use of them whenever possible. However, for specific 
tasks relating to building your unique applications, it is often necessary for you to 
write methods of your own.

The syntax for defining a method follows. The square brackets used with the modifier 
indicate an optional entry.

As noted previously, the returnType specifies what kind of information is returned 
when the body of the method is finished executing. This can be the name of any 
predefined or user-defined type, such as int or double. The returnType can also 
be replaced with the keyword void. void is used to indicate that no value is being 
returned. Notice that there is only room for one returnType per method. Thus, a 
method can return at most only one value type under its name.

User-defined methods in C# can be classified into two categories:

 ? Methods that do not return a value, called void methods

 ? Methods that do return a value, called value-returning methods

You will write both types in the sections that follow.

Void Methods
void methods are the simplest to write. No return statement is needed in the body 
of the method.

[modifier(s)] returnType MethodName(parameterList)
{
     // body of method - consisting of executable statements
}

It is permissible to include the return keyword as the last statement in a nonvalue- 
returning method. Some programmers feel this adds to the readability. If you do add 
a return statement, a semicolon is placed after the keyword. No value is sent back 
with nonvalue-returning methods.

The keyword void is used for the return type in the heading. Example 3-13 illus-
trates a nonvalue-returning method. This one does not expect any data to be sent 
into it. No parameters are included inside the parentheses. The keyword static is 
included so that the methods can be called without instantiating an object of the 
method’s class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



164 | Chapter 3: Methods and Behaviors

EXAMPLE 3-13

static void DisplayInstructions( )
{
     WriteLine("This program will determine how " +
               "much carpet to purchase.");
     WriteLine( );
     WriteLine("You will be asked to enter the" +
               " size of the room and ");
     WriteLine("the price of the carpet, " +
               "in price per square yards.");
     WriteLine( );
}

Nonvalue-returning methods can include parameters. Example 3-14 illustrates a 
void method that requires that data be sent to it when it is called.

EXAMPLE 3-14

static void DisplayResults(double squareYards,
                           double pricePerSquareYard)
{
    Write("Total Square Yards needed: ");
    WriteLine("{0:N2}", squareYards);
    Write("Total Cost at {0:C} ", pricePerSquareYard);
    WriteLine(" per Square Yard: {0:C}",
               (squareYards * pricePerSquareYard));
}

To call these nonvalue-returning methods, simply enter the method’s identifier fol-
lowed by a set of parentheses. If the method has parameters, the call will include 
actual arguments inside the parentheses. These methods are class methods; they 
include the static keyword in the heading. Calls to methods in Examples 3-13 and 
3-14 follow:
DisplayInstructions( );
DisplayResults(16.5, 18.95);

The 16.5 and 18.95 could be replaced by double variables containing values.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Methods in the Math Class | 165

3

Notice how each of these methods is called without qualifying it with a class or 
object name. This is possible when a static method is called from within the 
class where it resides as a member. This is different from the calls to methods in 
other classes, such as Console and Math classes. Recall you needed to either qual-
ity the call to the method with the class name and a dot, or add a using directive 
referencing the class.

Value-Returning Method
Every method that has a return type other than void must have a return statement 
in the body. A compatible value of the type found in the heading follows the return 
keyword. As stated previously, this return does not actually have to appear as the 
last statement; however, it is good practice to design your methods so they have one 
entry and one exit. Placing the return as the last statement helps you follow this 
guideline. Example 3-15 illustrates a value-returning method that does not require 
any arguments. To call this method, no data need to be passed to it.

EXAMPLE 3-15

static double GetLength( )
{
     string inputValue;
     int feet,
         inches;
     Write("Enter the Length in feet: ");
     inputValue = ReadLine( );
     feet = int.Parse(inputValue);
     Write("Enter the Length in inches: ");
     inputValue = ReadLine( );
     inches = int.Parse(inputValue);
     return (feet + (double) inches / 12);
}

Three variables are declared in the GetLength( ) method in Example 3-15. They 
are considered local variables. A local variable exists only inside the method where 
it is declared. This method is the only place these three variables can be referenced. 
The term visible is often used to indicate where an identifier has meaning and can be 
used. A variable’s life begins with its declaration in a method and ends when it exits 
the method. Scope is very similar to visibility in that it is used to describe where in 
the program’s text the identifier can be used. Thus, the variable’s scope covers the 
location where it is declared to the closing curly brace of the method. The scope of 
an identifier is simply the region of the program in which that identifier is usable. 
Scope applies to methods and variables. An attempt to use any of the local variables 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



166 | Chapter 3: Methods and Behaviors

declared in the GetLength( ) method in another method results in a syntax error 
stating that the identifier is unknown.

Be cautious about declaring local variables using a name that is already associated with 
another variable. This often leads to unreadable code that is more difficult to debug and 
maintain.

IntelliSense in Visual Studio will often help you determine when an identifier is visible. If, 
after typing a dot, you do not see the identifier, it is normally not in scope. Of course, this 
assumes you have no errors in your program text.

It is possible to use exactly the same name as an identifier for a local variable that 
has already been used for an instance variable or a parameter identifier. When this 
happens, the innermost declaration takes scope when you are inside that method. 
Thus, the local variable would be visible and the other(s) hidden. If, for example, the 
identifier feet is used as a variable in the Main( ) method and that same identifier, 
feet, is declared as a variable inside the GetLength( ) method, no syntax error is 
generated. Instead, the feet variable declared in the GetLength( ) method is vis-
ible as long as execution is inside that method. When the method is completed, the 
GetLength( ) feet identifier becomes out of scope. You can think of it as “dying” 
or no longer existing as soon as the closing curly brace is encountered. As soon as that 
happens, if control returns back to Main( ) where the other feet is declared, the 
Main( ) method’s feet goes back into scope and becomes visible again.

Similar to nonvalue-returning methods, one or more data items can be passed as 
arguments to these types of methods, as illustrated in Example 3-16.

EXAMPLE 3-16

static double DeterminePrice(double squareYards,
                             double pricePerSquareYard)
{
    return (pricePerSquareYard * squareYards); }
}

Calls to value-returning methods require a location for the value to be returned. As 
you saw previously, calls can be placed in assignment statements, output statements, 
or anywhere a value can be used. If the method has parameters, the call includes 
the actual data inside the parentheses. Because the static keyword appears in the 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Methods in the Math Class | 167

3

heading, these are still considered class methods. Calls to methods in Examples 3-15 
and 3-16 follow:
double roomLength;
roomLength = GetLength( );
WriteLine("Total cost of the carpet: {0:C}",
          DeterminePrice(squareYards, pricePerSquareYard));

An error would be generated if you place a call to a nonvalue-returning method as an 
argument to the Write( ) or WriteLine( ) methods. Both of these methods are 
expecting to receive a value back from a method so that the value can be displayed. 
Placing a call to the DeterminePrice( ) method is an appropriate argument to the 
WriteLine( ) method because DeterminePrice( ) returns a double.

Signatures of methods that appeared in Examples 3-13 through 3-16 follow. The 
 signature consists of the name of the method, modifiers, and the formal parameter 
types.
static DisplayInstructions( );
static DisplayResults(double, double);
static GetLength( );
static DeterminePrice(double, double);

The complete program listing using the class methods introduced as part of the 
CarpetExampleWithClassMethods class is shown in Example 3-17. Notice that 
there is no GetLength( ) method in the program listing. Instead a method named 
GetDimension( ) is used to get both the length and the width. The heading for the 
method includes a string parameter representing which side, length, or width is 
being entered. This method is called twice. It is called first with the string argument 
of “Length” and second with “Width” as the argument. The value that is returned 
from the GetDimension( ) method each time is stored in different variables.

Whenever possible, you should write code that can be reused. Often, if you spend a little 
extra effort thinking through your design, you can write a generalized solution and reap 
the benefits later. A simple example of this is writing one method, GetDimension( ), 
to retrieve both the width and the length. It is called two times with different messages or 
arguments.

EXAMPLE 3-17

Line  1  /* CarpetExampleWithClassMethods.cs
Line  2   * Author: Doyle
Line  3   * Calculates the total cost of carpet. User
Line  4   * inputs room dimensions and carpet price.
Line  5   */
Line  6  using System;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



168 | Chapter 3: Methods and Behaviors

Line  7  using static System.Console;
Line  8  namespace CarpetExampleWithClassMethods
Line  9  {
Line 10       class CarpetExampleWithClassMethods
Line 11       {
Line 12          static void Main( )
Line 13          {
Line 14               double roomWidth;
Line 15               double roomLength;
Line 16               double pricePerSquareYard;
Line 17               double noOfSquareYards;
Line 18               DisplayInstructions( );
Line 19                  // Call GetDimension( ) to get the length
Line 20               roomLength = GetDimension("Length");
Line 21                  // Call GetDimension( ) again to get the
Line 22                  // width
Line 23               roomWidth = GetDimension("Width");
Line 24               pricePerSquareYard = GetPrice( );
Line 25               noOfSquareYards =
Line 26                   DetermineSquareYards(roomWidth,
Line 27                                   roomLength);
Line 28               DisplayResults(noOfSquareYards,
Line 29                             pricePerSquareYard);
Line 30               ReadKey( );
Line 31          }
Line 32          static void DisplayInstructions( )
Line 33          {
Line 34               WriteLine("This program will " +
Line 35                         "determine how much " +
Line 36                         "carpet to purchase.");
Line 37               WriteLine( );
Line 38               WriteLine("You will be asked to " +
Line 39                         "enter the size of " +
Line 40                         "the room ");
Line 41               WriteLine("and the price of the " +
Line 42                         "carpet, in price per" +
Line 43                         " square yds.");
Line 44               WriteLine( );
Line 45          }
Line 46          static double GetDimension(string side )
Line 47          {
Line 48               string inputValue;// local variables
Line 49               int feet,   // needed only by this
Line 50                   inches; // method
Line 51               Write("Enter the {0} in feet: ",
Line 52                     side);
Line 53               inputValue = ReadLine( );
Line 54               feet = int.Parse(inputValue);
Line 55               Write("Enter the {0} in inches: ",
Line 56                        side);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Methods in the Math Class | 169

3

Line 57               inputValue = ReadLine( );
Line 58               // Note: cast to avoid integer division
Line 59               return(feet + (double) inches / 12);
Line 60          }
Line 61          static double GetPrice( )
Line 62          {
Line 63               string inputValue; // local variables
Line 64               double price;
Line 65               Write("Enter the price per " +
Line 66                     "Square Yard: ");
Line 67               inputValue = ReadLine( );
Line 68               price = double.Parse(inputValue);
Line 69               return price;
Line 70          }
Line 71          static double DetermineSquareYards
Line 72                      (double width,
Line 73                           double length)
Line 74          {
Line 75               const int SQ_FT_PER_SQ_YARD = 9;
Line 76               double noOfSquareYards;
Line 77               noOfSquareYards = length * width
Line 78                        / SQ_FT_PER_SQ_YARD;
Line 79               return noOfSquareYards;
Line 80          }
Line 81          static double DeterminePrice
Line 82                      (double squareYards,
Line 83                      double pricePerSquareYard)
Line 84          {
Line 85               return (pricePerSquareYard *
Line 86                         squareYards);
Line 87          }
Line 88          static void DisplayResults
Line 89                      (double squareYards,
Line 90                      double pricePerSquareYard)
Line 91          {
Line 92               WriteLine( );
Line 93               Write("Square Yards needed: ");
Line 94               WriteLine("{0:N2}", squareYards);
Line 95               Write("Total Cost at {0:C} ",
Line 96                      pricePerSquareYard);
Line 97               WriteLine(" per Square Yard: " +
Line 98                        "{0:C}",
Line 99                        DeterminePrice(squareYards,
Line 100                       pricePerSquareYard));
Line 101         }
Line 102      }
Line 103 }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



170 | Chapter 3: Methods and Behaviors

Figure 3-7 shows the output produced when the user types 16 feet, 3 inches for 
length; 14 feet, 7 inches for width; and 14.95 for price.

The console window screen background and text colors were changed by selecting 
Defaults or Properties option from the command window. These selections are revealed 
by clicking on the icon at the top left corner in the command window. Clear the prompts for 
input by calling the Clear( ) method of the Console class. This clears the screen 
and positions the cursor in the top-left corner of the command window.

FIGURE 3-7 Output from CarpetExampleWithClassMethods

The Debug, Start Without Debugging option (Ctrl+F5) holds the output screen 
without adding the extra call to the ReadKey( ) method.

Types of Parameters
The examples using parameters presented thus far used value parameters. C# offers 
both call by value and call by reference parameters. Call by value is the default type. 
With call by value, a copy of the original value is made and stored in a separate, 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Types of Parameters | 171

3

different memory location. If the method changes the contents of the variable sent to 
it, this does not affect the original value stored in the variable from the calling method. 
The original value is retained when control passes back to the calling method. There 
are three other types of parameters available in C#:

 ? ref

 ? out

 ? params

The params parameter will be discussed when arrays are presented in Chapter 7. The 
params type facilitates sending a varying number of arguments into a method. The 
other two, ref and out, are useful now. Earlier, you learned that when a method was 
called, you could receive only one data type back as a return type. This holds true for 
receiving the value back through the name of the method. Only one return type can 
be specified. However, think about a situation in which you might write a method that 
allows the user to enter several values. If only one of those values could be returned 
to the calling segment, how would you decide which one to return? What happens to 
the other values? If you need a method to return more than one value, the values can 
be returned through parameters, in particular call by reference parameters. The ref 
and out keywords facilitate this process.

Both ref and out cause a method to refer to the same variable that was passed into 
the method. Instead of making a copy of the original value and storing the copied 
value in a different memory location, as happens when you send in a value param-
eter, when you use ref or out the method gains access to the original memory loca-
tion. Both identifiers, the one in the calling method and the identifier in the method, 
refer to the same area of memory. Any changes made to the data in the method are 
reflected in that variable when control passes back to the calling method.

When you use the keywords ref and out, call by reference is assumed. With call by 
reference, you send the address of the argument to the method. You must include 
either ref or out in both the call and in the method’s heading parameter list. They 
must match. In other words, you cannot use ref in the heading and out in the call. 
This is different from languages such as C++, in which you just indicate a refer-
ence parameter in the method heading. The actual call in C# must also include the 
keyword.

The keywords differ in that the ref keyword cannot be used unless the original argu-
ment is initialized before it is sent to the method. This restriction does not exist for 
out. The out keyword is useful for methods that allow users to enter the variable’s 
value in a method and have those values available back in the calling method when 
control returns.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



172 | Chapter 3: Methods and Behaviors

EXAMPLE 3-18

Line  1 /* Parameters.cs
Line  2  * Author Doyle
Line  3  * This class demonstrates the difference between the
Line  4  * default, ref, and out parameter types */
Line  5
Line  6 using System;
Line  7 using static System.Console;
Line  8
Line  9 namespace Parameters
Line 10 {
Line 11      class Parameters
Line 12      {
Line 13            static void Main( )
Line 14            {
Line 15               int testValue = 1;
Line 16               WriteLine("Original Value: {0} ", testValue);
Line 17
Line 18               TestDefault(testValue);
Line 19               WriteLine("Upon return from TestDefault " +
Line 20                         "Value: {0}", testValue);
Line 21                  
Line 22               WriteLine( );
Line 23               WriteLine("Original Value: {0}", testValue);
Line 24
Line 25               TestRef(ref testValue);
Line 26               WriteLine("Upon return from TestRef Value:" +
Line 27                         " {0}", testValue);
Line 28
Line 29               WriteLine( );
Line 30               // variable not initialized
Line 31               // for out parameter type
Line 32
Line 33               int testValue2;
Line 34               // however, you cannot display its
Line 35               // value yet!

Java does not have reference parameters. Java’s objects simulate call by reference, but the 
language does not offer call by reference for its primitive types.

All three types, value, ref, and out, are demonstrated in Example 3-18.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Types of Parameters | 173

3

Line 36               // WriteLine("Original Value: {0}", +
Line 37               //           testValue2);
Line 38               TestOut(out testValue2);
Line 39               WriteLine("Upon return from TestOut Value:" +
Line 40                        " {0}", testValue2);
Line 41               ReadKey( );
Line 42            }
Line 43
Line 44            static void TestDefault(int aValue)
Line 45            {
Line 46               aValue = 111
Line 47               WriteLine("Inside TestDefault - Value: {0} ",
Line 48                         aValue);
Line 49            }
Line 50
Line 51            static void TestRef(ref int aValue)
Line 52            {
Line 53               aValue = 333;
Line 54               WriteLine("In TestRef - Value: {0}",
Line 55                         aValue);
Line 56            }
Line 57
Line 58            static void TestOut(out int aValue)
Line 59            {
Line 60                aValue = 222;
Line 61                WriteLine("In TestOut - Value: {0} ",
Line 62                          aValue);
Line 63
Line 64            }
Line 65      }
Line 66 }

The output shown in Figure 3-8 illustrates how value parameters remain unchanged. 
They retain their original value in the calling method. This is because a copy is actu-
ally made of the original value. On return to the calling method, the original retained 
values are visible.

Arguments sent using ref and out are changed when control is returned to the 
 calling method. The out parameter does not have to be initialized before the call; 
however, the out parameter must be assigned a value before the method returns. C# 
does not allow the use of uninitialized variables.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



174 | Chapter 3: Methods and Behaviors

Figure 3-9 illustrates graphically the difference between call by value and call by refer-
ence. It also calls attention to the fact that the out parameter type does not have to 
be initialized before the call. Notice that the program statements from Example 3-18 
are used for this figure.

FIGURE 3-9 Call by reference versus value

©
 C

en
ga

ge
 L

ea
rn

in
g

FIGURE 3-8 Output from ParameterClass example

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Types of Parameters | 175

3

As you review Example 3-18, notice that the names of the parameters in the method 
headings differ from the names used as arguments to the call back in the Main( ) 
method. This does not present a problem. For the default parameter type, call by 
value, naming them using a different identifier might help you note that they are 
referring to two different memory locations. However, you should note, as illustrated 
in Figure 3-9, aValue in the TestRef ( ) method refers to the same memory loca-
tion that testValue in Main( ) references. The parameter aValue in TestOut( ) 
references the same location as testValue2 in Main( ). Calls using the ref and 
out keywords, call by reference, can use different identifiers for the parameters in the 
method heading and the argument in the call. However, they are referencing the same 
memory location. It would have been appropriate to have used the same name for 
the parameter identifier as was used for the argument in these calls. Using the same 
identifiers, when you use the ref or out keywords, might help you note that they are 
referring to the same memory locations. When you are designing your solutions, you 
might want to use the same identifiers for call by reference and different names for 
call by value parameters.

In the preceding program example, Example 3-18, notice how one of the calls to the 
WriteLine( ) method appears as a comment. In Visual Studio, two tools are avail-
able that allow you to select a segment of code with only one click, commenting or 
uncommenting the section. This can be useful during debugging. The icon circled in 
Figure 3-10 is used for commenting as the ToolTip shows. Uncomment appears to 
the right.

FIGURE 3-10 Visual Studio comment out icon

The lines in the preceding code were commented out to eliminate a syntax error. The 
contents of testValue2 could not be displayed until it had a value.

Named and Optional Parameters
With each new version release of C#, new features are introduced. C# 6.0 was intro-
duced with Visual Studio 2015. C# 4.0 included several new features associated with 
methods. With these new features, you now have the option of naming an argument 
in a method invocation. This can add to the readability of method calls and also enable 
you to send in values through using the names of the parameters instead of having to 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



176 | Chapter 3: Methods and Behaviors

worry about getting the exact order of which argument goes where when you call the 
method. You may also assign default values to parameters so that a call to the method 
does not need to send in a value unless it is different from the associated default value. 
While these features should probably be used sparingly, they are good additions to 
the language and are discussed in the following sections.

Default Values with Optional Parameters
When you assign a default value to a parameter, it then becomes an optional param-
eter. You do not have to send in a value every time you call the method. Instead the 
default value is used if no value is sent in as a parameter. You may have more than one 
optional parameter associated with a method. However, if you have more than one, the 
optional parameters must be placed last in the list of parameters, after any required 
parameters. Example 3-19 illustrates optional parameters with default values.

EXAMPLE 3-19

static void DoSomething(string name, int age = 21,
                        bool currentStudent = true,
                        string major = "CS")
{
     // additional program statements go here
}

You can now call DoSomething( ) and send in arguments for the default value or 
the default values will be assigned to the parameters. Example 3-20 shows valid calls 
to the DoSomething( ) method.

EXAMPLE 3-20

DoSomething ("Elizabeth Abbott", 20);
DoSomething ("James Gabriel");
DoSomething ("Jonathan Byrle", 25, false, "MS");

Default values must be constants. If no arguments are sent for a particular parameter, 
the default value is used. One of the limitations on using optional parameters is if 
you need to send in arguments for any of the optional parameters, you must pro-
vide arguments for all preceding optional parameters. Thus, the call DoSomething 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Types of Parameters | 177

3

("Gabriella Henson", "MS"); is not a valid call, but DoSomething ("Joe Smith", 
20, false); is a valid call. Notice it was not necessary to send a value for the major, 
but if you need to send a boolean value for currentStudent, you must also send 
in values for all preceding parameters. In this case, you had to send a value for the 
optional parameter age.

Named Parameters
Named arguments free you from the need to remember or to look up the order of 
parameters for the method call. The parameter for each argument can be specified 
using the parameter’s name followed by a colon ( : ) and then the assigned argument’s 
value. Naming parameters also has the added feature that you can send the arguments 
into the method in any order. Example 3-21 illustrates calls to  DoSomething( ) 
using named parameters.

EXAMPLE 3-21

DoSomething (name: "Robert Wiser", age: 20);
DoSomething (name: "Paul Nelson", major: "BIO");
DoSomething (name: "Fredrick Terrell", age: 25, major: "MS");

You will notice that optional and named parameters are very useful together. As long 
as a parameter has a default value, it can be omitted when you use named parameters. 
You can just supply values for arguments you want to assign new values for.

Optional parameters have been part of Visual Basic for quite a while. With the introduction 
of C#, 4.0, developers can make use of this feature in C# and also be able to use named 
parameters.

Optional parameters give you the ability to omit arguments to method invocations, 
whereas named parameters allow you to specify the arguments by name instead of 
by position. A lot of material is presented in this chapter. The programming example 
that follows makes use of most of these new concepts.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



178 | Chapter 3: Methods and Behaviors

This example demonstrates the use of methods in a program. The problem speci-
fication is shown in Figure 3-11.

PROGRAMMING EXAMPLE: JoggingDistance

FIGURE 3-11 Problem specification for JoggingDistance example

©
 C

en
ga

ge
 L

ea
rn

in
g

ANALYZE THE 
PROBLEM

You should review the problem specification in Figure 3-11 and make sure you 
understand the problem definition. Several values must be entered into the pro-
gram. These values must be entered as string variables and then parsed into 
numeric fields, so that arithmetic can be performed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3

Programming Example: JoggingDistance | 179

Table 3-2 lists the data items needed for the JoggingDistance problem.VARIABLES

CONSTANTS The stride (feet per step) is set as a constant value. The identifier and preset 
 constant value will be

STRIDE = 2.5.

The number of feet per mile is also set as a constant.

FEET_PER_MILE = 5280;

Data item description Type Identifier

Number of strides during first minute int initialStrideCount

Number of strides during last minute int finalStrideCount

Jogging time int hrs, mins, totalMinutes

Average number of strides per minute double numberOfStepsPerMin

Total distance traveled double distanceTraveled

TABLE 3-2 Variables for the JoggingDistance class

DESIGN A 
SOLUTION

The desired output is to display the distance traveled, in miles, for a given jogging 
session. Figure 3-12 shows a prototype of the desired final output. The xxx.xx is 
placed in the prototype to represent the location in which the calculated values 
should appear.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



180 | Chapter 3: Methods and Behaviors

The object-oriented approach focuses more on the object. Class diagrams are 
used to help design and document these characteristics. Figure 3-13 shows the 
class diagrams for the JoggingDistance example.

During design, it is important to develop the algorithm showing the step-by-step 
process to solve the problem. Structured English, also called pseudocode, is suited 
for the object-oriented methodology. Seven additional methods, in addition to the 
Main( ) method, need to be designed. Figure 3-14 shows the Structured English 
design for the JoggingDistance example.

FIGURE 3-13 Class diagram

©
 C

en
ga

ge
 L

ea
rn

in
g

FIGURE 3-12 Prototype

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3

Programming Example: JoggingDistance | 181

The methods illustrate both void and value-returning operations. Notice that 
 DisplayInstructions( ), InputJoggingTime( ), and  DisplayResults( ) 
are all nonvalue-returning methods. When you implement the solution, the key-
word void appears in their headings. No return statement appears in the body 
of these methods. When the methods’ statements are completed, control returns 
back to Main( ) from where the methods were invoked.

FIGURE 3-14 Structured English for the JoggingDistance example

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



182 | Chapter 3: Methods and Behaviors

The other methods (GetNumberStrides( ), CalculateTime( ), 
 CalculateAvgSteps( ), and CalculateDistance( )) all return values back 
to Main( ). Instead of having void preceding the method name, a data type 
appears before the method name. This data type describes what will be returned 
when the method is finished. You also find a return statement as the last line in 
each of these four methods.

Also notice some of the methods have parameters, some do not. The 
 InputJoggingTime( ) method has two special parameters. A method can only 
return one value through its name. There can also only be one value following 
a return statement. The InputJoggingTime( ) method needs to return hours 
and minutes both back to Main( ). Two separate value-returning methods could 
have been written. Another option is to use the out reference type. This essentially 
gives the address of the hrs and mins to the method. Any changes, like inputting 
values into the memory location, will be available back in Main( ). Without the 
out or ref parameter type, the values would be lost when control is returned back 
to Main( ).

After the algorithm is developed, the design should be checked for correctness. 
When you desk check your algorithm, begin in Main( ). When you encounter 
method calls, keep your location in that method, go to the called method, and 
perform the statements. When you finish with the called method, return back to 
your saved location.

Test your algorithm with the following data:

Steps during first minute: 185

Steps during last minute: 120

Time spent jogging—Hrs: 1 Min: 12

Use a calculator and write down the results you obtain. After you implement your 
design, you can compare these results with those obtained from your program 
output.

CODE THE 
SOLUTION

After you complete the design and verify the algorithm’s correctness, it is time to 
translate the design into source code.

The final application listing for the file appears here:
Line  1  /* JoggingDistance.cs
Line  2   * Author: Doyle
Line  3   * This application calculates the jogging distance.
Line  4   * Users are asked to enter the number of
Line  5   * strides ran during the first and last minute

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3

Programming Example: JoggingDistance | 183

Line  6   * and the total jogging time. A 2.5 stride is used
Line  7   * for calculation.
Line  8   */
Line  9  using System;
Line 10  using static System.Console;
Line 11  namespace JoggingDistance
Line 12  {
Line 13      class JoggingDistance
Line 14      {
Line 15         static void Main(string[] args)
Line 16         {
Line 17             int initialStrideCount,
Line 18                 finalStrideCount,
Line 19                 hrs,
Line 20                 mins,
Line 21                 totalMinutes;
Line 22             double numberOfStepsPerMin,
Line 23                    distanceTraveled;
Line 24             DisplayInstructions( );
Line 25             initialStrideCount = GetNumberStrides("first");
Line 26             finalStrideCount = GetNumberStrides("last");
Line 27             InputJoggingTime(out hrs, out mins);
Line 28             totalMinutes = CalculateTime(hrs, mins);
Line 29             numberOfStepsPerMin = CalculateAvgSteps(
Line 30                             initialStrideCount, finalStrideCount);
Line 31             distanceTraveled = CalculateDistance(
Line 32                             numberOfStepsPerMin, totalMinutes);
Line 33             DisplayResults(numberOfStepsPerMin, hrs, mins, 
Line 34                            distanceTraveled);
Line 35             ReadKey( );
Line 36         }
Line 37         static void DisplayInstructions( )
Line 38         {
Line 39             WriteLine("How many miles did you jog?");
Line 40             WriteLine("Distance (in miles) will be calculated");
Line 41             WriteLine("based on stride and number of steps");
Line 42             WriteLine("taken per minute. \n");
Line 43             WriteLine("You will be asked to enter ");
Line 44             WriteLine("your initial and ending strides...");
Line 45             WriteLine("OR how many steps you took the ");
Line 46             WriteLine("first minute and how many ");
Line 47             WriteLine("steps during the last minute.");
Line 48             WriteLine("Average stride is calculated " +
Line 49             WriteLine("from those entries. \n");
Line 50             WriteLine("Calculations are based on a ");
Line 51             WriteLine("2.5 feet stride-each step is 2.5 " +
Line 52                       "feet long.");
Line 53             WriteLine( );

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



184 | Chapter 3: Methods and Behaviors

Line 54             WriteLine("\nYou will also be asked " +
Line 55             WriteLine("to enter the length ");
Line 56             WriteLine("of time (hours and minutes)");
Line 57             WriteLine("you jogged.");
Line 58             WriteLine( );
Line 59             WriteLine("Press any key when you are ready " +
Line 60                       "to begin!");
Line 61             ReadKey( );
Line 62             Clear( );
Line 63         }
Line 64         static int GetNumberStrides(string when)
Line 65         {
Line 66             string inputValue;
Line 67             int numberOfSteps;
Line 68             Write("Enter number of steps taken " +
Line 69                   "during {0} minute: ", when);
Line 70             inputValue = ReadLine( );
Line 71             numberOfSteps = int.Parse(inputValue);
Line 72             return numberOfSteps;
Line 73         }
Line 74         static int CalculateTime(int hrs, int mins)
Line 75         {
Line 76             return hrs * 60 + mins;
Line 77         }
Line 78         static double CalculateAvgSteps(int initialStrideCount,
Line 79                                         int finalStrideCount)
Line 80         {
Line 81             return (initialStrideCount + finalStrideCount) / 2.0;
Line 82         }
Line 83         static void InputJoggingTime(out int hrs, out int mins)
Line 84         {
Line 85             string inputValue;
Line 86             WriteLine("\nHow much time did you spend jogging?");
Line 87             Write("Hours: ");
Line 88             inputValue = ReadLine( );
Line 89             hrs = int.Parse(inputValue);
Line 90             Write("Minutes: ");
Line 91             inputValue = ReadLine( );
Line 92             mins = int.Parse(inputValue);
Line 93         }
Line 94         static double CalculateDistance(double numberOfStepsPerMin,
Line 95                                         int totalMinutes)
Line 96         {
Line 97             const double STRIDE = 2.5;
Line 98             const int FEET_PER_MILE = 5280;
Line 99             return numberOfStepsPerMin * STRIDE * totalMinutes / 
Line 100                 FEET_PER_MILE;
Line 101        }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3

Programming Example: JoggingDistance | 185

Line 102        static void DisplayResults(double numberOfStepsPerMin,
Line 103                      int hrs, int mins, double distanceTraveled)
Line 104        {
Line 105            Clear( );
Line 106            WriteLine("{0,35}", "Jogging Distance Calculator");
Line 107            WriteLine( );
Line 108            WriteLine("{0,−25} {1} Feet Per Step ", "Stride:",
Line 109                      2.5);
Line 110            WriteLine("{0,−25} {1} Steps", "Strides Per " +
Line 111                      "Minute: ", numberOfStepsPerMin);
Line 112            WriteLine("{0,−25} {1} Hour(s) and {2} Minute(s)", +
Line 113                      "Jogging Time:", hrs, mins);
Line 114            WriteLine("{0,−25} {1:f2} Miles", "Distance  Traveled:",
Line 115                      distanceTraveled);
Line 116        }
Line 117     }
Line 118 }

IMPLEMENT 
THE CODE

Compile the source code. If you have any rule violations, make corrections until 
no errors are present. Run the application entering the values indicated previously 
(185, 120, 1, 12).

TEST AND 
DEBUG

During this final step, test the program and ensure you have the correct result. 
The output for the test values should match your prototype. Figure 3-15 shows the 
output generated from the preceding source code.

FIGURE 3-15 Output from JoggingDistance example

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



186 | Chapter 3: Methods and Behaviors

Coding Standards
It is important to establish and follow good coding standards. The intent of creating a 
set of coding standards is to have an acceptable list of guidelines that can be followed 
by all members of a team. The following list of standards is recommended as they 
relate to methods.

Naming Conventions

 ? Use Pascal Casing (first character of all words are uppercase; all other 
characters are lowercase) for method identifiers.

 ? Use Camel Casing (first character of all words, except the first word, 
are uppercase; all other characters are lowercase) for local variable 
identifiers and parameters.

 ? Use a verb or action clause to name a method. Do not use misleading 
names. Method names should tell what the method does. If you select 
a good method name, there is no need for additional documentation 
explaining what the method does.

Spacing Conventions

 ? Align curly braces ( { } ) up with the method heading.

 ? Declare each local variable independently on separate lines. It is 
permissible to reuse the data type, but each variable should be on a 
separate line.

 ? There should be one and only one single blank line between each 
method inside the class.

 ? Avoid writing long methods. Consider refactoring when the method 
exceeds 25 lines of code.

 ? Avoid extremely large source code files. Consider refactoring when the 
file size exceeds 300–400 lines in a single class.

Declaration Conventions

 ? Do not have more than one class in a single file.

 ? Declare and initialize local variables in the method where they are used.

 ? Try to initialize variables when they are declared.

 ? Avoid passing too many parameters to a method. If you have more than 
four to five parameters, it is a good idea to define a class or structure.

 ? A method should do only one thing: have a single theme.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3

Quick Review | 187

 ? Methods that have a return type other than void should be invoked from 
a program statement that can accept a returned value (i.e., assignment 
statement or output statements).

 ? Methods should have one entry and one exit.

Commenting Conventions

 ? Good, readable code will require very few comments. If you use mean-
ingful variables and method names, you will not need many comments.

 ? Include comments to explain complex or confusing logic in a method 
that might not be completely understandable.

Resources
Additional sites you might want to explore:

 ? C# Dev Center— 
http://www.csharp.net

 ? Code Gallery site— 
http://code.msdn.microsoft.com

 ? Methods (C# Programming Guide)— 
http://msdn.microsoft.com/en-us/library/ms173114.aspx

 ? downloadfreetutorial.com— 
http://www.downloadfreetutorial.com/how-to-call-a-method-in-c-5-
0-with-example-declaration-syntax-with-parameter-tutorial-download

QUICK REVIEW
 1. Methods are the members of a class that describe the behavior of the data.
 2. The Main( ) method is required for both console and Windows 

applications.
 3. Main( ) should include the static keyword.
 4. The heading to a method can consist of modifiers, a return type, a method 

identifier, and parameters. The body of the method is enclosed in curly braces.
 5. When the static modifier is included with a method, it becomes a 

class method.
 6. The return type identifies what type of value is returned when the 

method is completed. Any of the predefined or valid user-defined types 
can be returned.

 7. The void keyword specifies that the method does not return a value.
 8. Many programmers employ the standard convention of using an action 

verb phrase to name methods.
 9. Formal parameters appear in the heading of a method. Actual argu-

ments appear in the call. The actual arguments are the actual data that 
is sent to the method.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



188 | Chapter 3: Methods and Behaviors

 10. The signature of a method consists of the name of the method, modifiers, 
and the types of its formal parameters. It does not include the return type.

 11. The ReadLine( ) method returns all characters up to the current 
end-of-line terminator, the Enter key. It returns a string that must be 
parsed into a number before the value can be used in arithmetic.

 12. Variables declared in the Main( ) method and other methods are con-
sidered local variables and are visible only inside the body of the method 
in which they are declared.

 13. If a value is being returned from a method, such as with an expression 
or output statement, there must be a location in which the value can be 
accepted when the method is finished. The call may actually appear at 
any location where a compatible value of that type can be placed.

 14. To call nonvalue-returning methods, simply type the method’s name. If 
the method has parameters, the call includes actual arguments inside 
the parentheses, without the types.

 15. C# offers both call by value and call by reference. Call by value is the 
default if no keyword is added in the heading. Call by reference is pos-
sible through using the ref and out keywords. They must appear both 
in the heading and in the call. ref requires that the argument be initial-
ized before it is sent.

 16. Named arguments enable you to send in values through using the names 
of the parameters instead of the order of the parameters.

 17. When you assign a default value to a parameter, it then becomes an 
optional parameter.

EXERCISES

 1. Which of the following is placed in a method heading to indicate that no 
value will be returned?
a. noReturn
b. void

c. arguments
d. static

e. public

 2. Functions or modules found in other languages are similar to __________ in C#.
a. modifiers
b. parameters
c. arguments
d. methods
e. classes

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3

Exercises | 189

 3. Which of the following modifiers is the least restrictive?
a. private

b. static

c. public

d. internal

e. protected

 4. Which of the following identifiers follows the standard naming conven-
tion for a method?
a. Calculate Final Grade

b. MilesPerGallon

c. InputValue

d. Report

e. Method1

 5. Which of the following would be the most appropriate way to invoke the 
predefined Floor( ) method found in the Math class?
static double Floor (double)

a. answer = Floor(87.2);

b. answer = Math.Floor(87.2);

c. Floor(87.2);

d. Math.Floor(double);

e. Math.Floor(87.2);

 6. Given the following statement, what would be the best heading for the 
DetermineAnswer( ) method?
int aValue,
    result;
result = DetermineAnswer(27.83, aValue);

a. void DetermineAnswer(27.83, aValue)

b. int DetermineAnswer( )

c. int DetermineAnswer(double v1, int v2)

d. double int DetermineAnswer( )

e. void DetermineAnswer(double v1, int v2)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



190 | Chapter 3: Methods and Behaviors

 7. After completing the called method’s body, control is returned:
a. back to the location in the calling method that made the call.
b. to the last statement in the method that made the call.
c. to the first statement in the method that made the call.
d. to the Main( ) method.
e. to the method that is listed next in the printed source code.

 8. Which of the following is a valid method call for DetermineHighestScore?
void DetermineHighestScore(int val1, int val2)

a. void DetermineHighestScore(int val1, int val2)

b. DetermineScore(int val1, int val2)

c. DetermineHighestScore(val1, val2)

d. DetermineHighestScore(2, 3.5)

e. GetHighestScore( )

 9. What is the signature of the following method?
void SetNoOfSquareYards(double squareYards)
{
   noOfSquareYards = squareYards;
}

a. void SetNoOfSquareYards(double squareYards)

b. SetNoOfSquareYards(double squareYards)

c. SetNoOfSquareYards

d. void SetNoOfSquareYards(double)

e. SetNoOfSquareYards(double)

 10. Variables needed only inside a method should be defined as:
a. private member data
b. local variables
c. properties
d. arguments
e. parameters

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3

Exercises | 191

 11. Given the call to the method ComputeCost( ) shown below, which of the 
 following would be the most appropriate heading for the method? The variable 
someValue is declared as an int.
someValue = ComputeCost(27.3);

a. static void ComputeCost(double aValue)

b. static int ComputeCost( )

c. static double ComputeCost(int someValue)

d. static int ComputeCost(double aValue)

e. static int ComputeCost(int aValue)

 12. The following is probably an example of a _________.
DisplayInstructions( );

a. call to a value-returning method
b. call to a void method
c. method heading
d. method definition
e. call to a method with multiple arguments

 13. If you follow the standard C# naming conventions, the local variable names:
a. follow the Camel case convention.
b. should use an action verb phrase.
c. begin with an uppercase character.
d. are named like namespace identifiers.
e. are defined inside parenthesis of the method header.

 14. Which of the following would be a valid call to a method defined as shown 
below?
static void InitializeValues( )

a. void InitializeValues( );

b. WriteLine(InitializeValues( ));

c. int returnValue = InitializeValues( );

d. InitializeValues( );

e. InitializeValues(aVariable );

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



192 | Chapter 3: Methods and Behaviors

 15. Given the following method definition, what would be a valid call? The variable 
someIntValue is defined as an int.
static int GetData(out int aValue, ref int bValue)

a. someIntValue = GetData(aValue, bValue);

b. someIntValue = GetData(out aValue, ref bValue);

c. someIntValue = GetData(out, ref);

d. someIntValue = GetData(int out aValue, int ref bValue);

e. GetData(out aValue, ref bValue);

 16. If a method is to be used to enter two values that will be used later in the pro-
gram, which of the following would be the most appropriate heading and call?
a.  heading: void InputValues(out int val1, out int val2) call: 

InputValues(out val1, out val2);
b.  heading: void InputValues(int val1, int val2)  

call: InputValues(val1, val2);
c.  heading: void InputValues(ref int val1, ref int val2)  

call: InputValues(ref val1, ref val2);

d.  heading: int int InputValues( )  
call:  val1 = InputValues( );  

val2 = InputValues( );

e. none of the above

 17. Which of the following is not a modifier in C#?
a. int

b. private

c. public

d. static

e. protected

 18. Given the following task, which would be the most appropriate method head-
ing? A method displays three integer values formatted with currency.
a. static int int int DisplayValues( )
b. static int DisplayValues(int v1, int v2, int v3)

c. static void DisplayValues( )

d. static void DisplayValues(int v1:C, int v2:C, int v3:C)

e. static void DisplayValues(int v1, int v2, int v3)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3

Exercises | 193

 19. Given the following task, which would be the most appropriate method head-
ing? A method receives three whole numbers as input. The  values  represent 
grades. They should be unchangeable in the method. The method should return 
the average with a fractional component.
a. static double DetermineGrade( int grade1, int grade2, int 

grade3)

b. static int DetermineGrade( int grade1, int grade2,  
int grade3)

c. static int DetermineGrade(double finalAverage)

d. static double DetermineGrade( ref int grade1,  
ref int grade2,  
ref int grade3)

e. static void DetermineGrade( )

 20. Given the following task, which would be the most appropriate method head-
ing? Results have been calculated for taxAmount and totalSales. Write a 
method heading that accepts these values as input for display purposes.
a. static DisplayResults( )

b. DisplayResults(double)

c. static void DisplayResults( )

d. static void DisplayResults( double taxAmount,  
double totalSales)

e. static void DisplayResults(taxAmount, totalSales)

 21. Use the following method headings to answer the questions below:
static int DetermineResult(int value1, ref double value2)
static void DisplayResult(int value1, double value2)
static int GetValue( )

a. How many parameters does each method have?
b. What is the return type for each of the methods?
c.  Which of the preceding methods will have a return statement  

as part of its body?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



194 | Chapter 3: Methods and Behaviors

 22. Write methods to do the following:
a. Display three full lines of asterisks on the screen.
b.  Accept as an argument your name, and display that value along with 

an appropriate label.
c.  Accept two floating-point values as arguments. Display the values 

formatted with three digits to the right of the decimal.
d. Accept three int arguments and return their sum.

 23. Write statements to invoke each of the methods defined above in Exercise 22.

 24. What will be produced from the following predefined Math class 
method calls?
a. WriteLine(Math.Pow(4,3));

b. WriteLine(Math.Sqrt(81));

c. WriteLine(Math.Min(−56, 56)); 

 25. The following program has several syntax errors as well as style inconsistencies. 
Identify a minimum of five syntax errors and three style violations. For an added 
challenge, correct all errors.
/****************************************
using System;
namespace ErrorExample
{
class ErrorExample
{
static void Main( )
       {
       int VAL1;
       string aValue;
       val1 = GETVal1(aValue);
       WriteLine("value entered, plus one is  {0}", 
                 ++val1);
       Readkey( );
      }
      static GETVal1( )
      {
             Write("Enter a value: ");
             aValue = readline( );
             val1 = int.Parse(aValue);
             return int VAL1;
      }
}
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3

Programming Exercises | 195

PROGRAMMING EXERCISES

 1. Design a message display application which will allow users to enter 
their name and favorite saying. Begin by providing instructions to the 
user about what the application will be requesting. Include one method 
for input. Invoke the input method two times. First call the method ask-
ing for the person’s name. Send a string argument indicating what 
value should be entered. Invoke the method a second time to retrieve 
the favorite saying. Return the string values back to the Main( ) 
method. Call another method, sending the name and saying. From that 
method, display the message showing the person’s name and their  saying 
 surrounded by rows of greater than/less than symbols(<><><>).

 2. Write an application that includes two additional methods in addition 
to the Main( ) method. One method should return a string consisting 
of four or five lines of information about your school. The other method 
should return a string consisting of asterisks. First call the method that 
returns the string of asterisks. Call the method that returns the asterisk 
a second time after you invoke the method that displays the information 
about your school. Items you might include are the name of your school, 
number of students enrolled, and school colors. Include appropriate 
labels. The display should be aesthetically pleasing so include enough 
asterisks to surround your listing.

 3. Write an application that allows a user to input the height and width of 
a rectangle. It should output the area and perimeter of the rectangle. 
Use methods for entering the values, performing the computations, and 
displaying the results. Results should be formatted with one position to 
the right of the decimal and printed number aligned in a tabular display.

 4. Design an application using methods that convert an integer number 
of seconds into an equivalent number of hours, minutes, and seconds. 
Use methods for entering the initial seconds, performing the computa-
tions, and displaying the results. You should have separate methods for 
each computation. Results should be formatted and printed in a tabular 
 display with the values number aligned.

 5. Write a program that converts a temperature given in Fahrenheit into 
Celsius. Allow the user to enter values for the original Fahrenheit value. 
Display the original temperature and the formatted converted value. 
Number align values. Use appropriate methods for entering, calculat-
ing, and outputting results.

 6. Write a program that can be used to convert meters into feet and inches. 
Allow the user to enter a metric meter value in a method. Provide input, 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



196 | Chapter 3: Methods and Behaviors

calculation, and display methods. Be sure to provide labels for values 
and number align them.

 7. Write a program that can be used to determine the tip amount that 
should be added to a restaurant charge. Allow the user to input the 
 restaurant charge, before taxes. Produce output showing the calculated 
values including the total amount due for both 15% and the 20% tips. 
Tax of 9% should be added to the bill before the tip is determined. Write 
appropriate methods for your solution. Display subtotal showing the 
amount owed prior to applying a tip. Show each tip amount and the 
totals with each tip amount. Be sure to provide labels for values and 
number align them.

 8. Write a program that computes the amount of money the computer club 
will receive from proceeds of their granola bar sales project. Allow the 
user to enter the number of cases sold and the sale price per bar. Each 
case contains 12 bars; each case is purchased at $5.00 per case from a 
local vendor. The club is required to give the student government asso-
ciation 10% of their earnings. Display instructions to the user about the 
application. Display all inputs and calculated values. Proceeds should be 
formatted with currency. Modularize your solution by writing appropri-
ate methods.

 9. Write a program that calculates and prints the take-home pay for a com-
missioned sales employee. Allow the user to enter values for the name 
of the employee and the sales amount for the week. Employees receive 
7% of the total sales as their commission. Use 18% as the federal tax rate. 
Retirement contribution is 15%. Use 9% as the social security tax rate. 
Define appropriate constants. Write input, display, and calculation meth-
ods for each of the deductions. Your final output should display all calcu-
lated values, including the total deductions and all defined constants.

 10. Write an application that helps landowners determine what their prop-
erty tax will be for the current year. Taxes are based on the property’s 
assessed value and the annual millage rate. The established millage rate 
for the current year is $10.03 per $1000 value. Homeowners are given 
a $25,000 exemption, which means they may subtract $25,000 from the 
assessed value prior to calculating the taxes. Enable users to enter the 
property address and the prior year’s assessed value. The township has 
decided to increase all properties’ assessed value 2.7% for the current 
year to add additional monies to the school budget line. Provide meth-
ods to compute and return the new assessed value and the proposed 
taxes for the current year. Provide another method that displays the 
 formatted values.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Neale Cousland / Shutterstock.com

Creating Your Own  
Classes

IN THIS CHAPTER, YOU WILL:

 ? Become familiar with the components of a class

 ? Write instance methods and properties used for object-oriented development

 ? Create and use constructors to instantiate objects

 ? Call instance methods including mutators and accessors

 ? Become familiar with auto property initializers

 ? Work through a programming example that illustrates the chapter’s concepts

4CHAPTER

© zeljkodan/Shutterstock.com

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



198 | Chapter 4: Creating Your Own Classes 

In Chapter 3, you examined the anatomy of methods. You learned how to invoke pre-
defined methods and how to write methods that performed some type of specific 
processing. You wrote methods that returned results and methods that performed 
procedures without returning a value. You learned how to pass arguments to methods 
and about the different types of parameters that can be used with methods. In this 
chapter, you learn how to design classes that include data, method, and property mem-
bers. You begin by examining concepts as they relate to object-oriented development.

The Object Concept
C# is an object-oriented language. All the code that you wrote for your applications 
has been placed in a class. Thus far, you have not really taken advantage of the 
object-oriented approach to systems development.

To use an object-oriented approach, the solution is defined in terms of a collection 
of cooperating objects. Each of the objects is capable of sending messages to other 
objects and receiving messages from objects. Each object is also capable of processing 
data. In the simplest terms, you can think of the object as a separate little machine 
with distinct capabilities. The machine receives a message, it performs its intended 
role, and then it sends back a message indicating it is finished. This message coming 
back might also include results from some type of processing.

Recall that an object is one instance or example of a class. You cannot create an object 
until its structure is defined. This is done through defining a class. So, a class is like a 
template. It defines the structure for all objects that are going to be of that class type. 
When you define the class, you describe its attributes, or characteristics or fields, in 
terms of data and its behaviors, or methods, in terms of what kinds of things it can do. 
Once a class is created, it can be viewed as a new customized data type, similar to an 
int or a double. To define, for example, a Car class, you might include attributes 
shared by all cars, such as color, manufacturer, and model year. All cars also have the 
ability to start, stop, and show fuel consumption. These behaviors become the meth-
ods of the Car class. One example of a car is a Corvette. The Corvette might be a 
red 2016 model with, of course, the abilities to start, stop, and show its fuel consump-
tion. The object 2016 Corvette then is an instance of the Car class and the set of 
values for its attributes is called its state. The red Corvette object has the abilities 
or behaviors of starting, stopping, and showing fuel consumption. These behaviors 
Start( ), Stop( ), and ShowFuelConsumption( ) are its methods.

Remember that one of the underlying assumptions of the object-oriented method-
ology is that a number of entities exist in our world, in our environment that can 
be identified and described. An entity, usually associated with a person, place, or 
thing, is normally a noun. The entity can be defined in terms of its current state and 
behaviors. By abstracting out the attributes (data) and the behaviors (processes on the 
data), you can create a class to serve as a template from which many objects of that 
type can be instantiated. Then, just as you declare objects of the int type and use all 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Object Concept | 199

4

its predefined methods, after you define your own classes, you can declare objects of 
your user-defined types and use the methods that you define.
To program an object-oriented solution, a few new concepts are needed. You read 
about one type of modifier, static, in Chapter 3. Another type of modifier, access 
modifiers, specifies the level of accessibility for types and their members. C# includes 
the following accessibility modifiers:

 ? public

 ? protected

 ? internal

 ? protected internal

 ? private

Public access offers the fewest access limitations; there are basically no restrictions 
on accessing public members or classes. Notice in Example 4-1 that the class defi-
nition includes the public access modifier. By specifying a public access, other 
classes can reuse your classes in different applications.
Private is the most restrictive access modifier. Private members are accessible only within 
the body of the class in which they are declared. Often in object-oriented design, data is 
defined with a private modifier and methods that access the data are declared to have 
public access. By defining the data members as private, you restrict access to the data 
through the members’ methods or properties that you will learn about in this chapter.
Table 4-1 presents the different accessibility levels of access modifiers.

Modifiers Explanation of accessibility

public No restrictions

protected Limited to the containing class or classes derived from the 
containing class

internal Limited to current project

protected internal Limited to current project or classes derived from class

private Limited to containing class

TABLE 4-1 C# access modifiers

When a class or a class member does not specify a modifier, the default accessibility 
level of private is assumed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



200 | Chapter 4: Creating Your Own Classes 

With object-oriented development, instead of thinking about what processes need to 
be programmed, begin by determining what objects are needed in the solution. From 
that, determine what data characteristics will belong to the objects and what kind of 
behaviors the data will need to perform. When you are defining a class, you find 
that there are common features that are included with your object-oriented solutions, 
as described in the following sections.

Private Member Data
You learned in Chapter 2 to declare variables. Those variables were defined inside 
the Main( ) method. In Chapter 3, you saw how methods other than Main( ) could 
define local variables. The variables declared in these methods and in Main( ) were 
only visible inside the body of the method in which they were declared. When you 
define a class and determine what data members it should have, you declare instance 
variables or fields that represent the state of an object. These fields are declared 
inside the class, but not inside any specific method. They become visible to all mem-
bers of the class, including all of the method members. Consider Example 4-1.

EXAMPLE 4-1

public class Student
{
     private string studentNumber;
     private string studentLastName;
     private string studentFirstName;
     private int score1;
     private int score2;
     private int score3;
     private string major;

Example 4-1 defines a blueprint for Student in terms of what kinds of data will be asso-
ciated with each Student. No actual data is stored with the data members. There might 
be thousands of students associated with this class definition. Each of the students has 
different values for their studentNumber, studentFirstName,  studentLastName, 
score1, score2, score3, and major. No compile-time initialization, or assignment 
of initial values, is added to the data member declaration like you did with variables 
defined in the Main( ) method. Instead you simply identify what characteristics all 
students will include. You define the template or the blueprint for the class.

Normally, the data members are defined to have a private access. This enables the 
class to protect the data and allow access to the data only through the class mem-
ber methods or properties. Look ahead to Figure 4-3. Figure 4-3 illustrates where 
the fields or data members (instance variables) are declared. As shown, data fields 
are declared first inside the body of the class definition. There are a number of tools 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Object Concept | 201

4

available in Visual Studio to aid in the development of applications. To add a second 
class to your solution, use the File, New, File, Visual C# class menu or the Solution 
Explorer Window. In the Solution Explorer Window, if you select your project file 
and right-mouse click, the option Add Class will be available. Add Class is also an 
option from the Project menu. New classes added will not include another Main( ) 
method. Only one Main( ) method can be associated with each solution/project.

When you first create your project, append App onto the end of the project or solution 
name. This will enable you to know where the Main( ) method is located. For example, 
when you initially set up a project that will include a Student class, the solution will be 
called StudentApp. The StudentApp.cs file will now hold the Main( ) method. 
You then add another class to the StudentApp project, called Student. The 
 Student.cs file will hold your template for student objects.

After a project has been created and a new class added to your application, the  Solution 
Explorer Window enables you to create a class diagram. When you right-click on the 
source code file, one option is to View Class Diagram. Once the diagram is opened 
you can define the template for the class without writing any code. Figure 4-1 shows a 
class diagram for the Student class created with Visual Studio.

FIGURE 4-1 Student class diagram created in Visual Studio
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



202 | Chapter 4: Creating Your Own Classes 

After the class diagram is created, add the names of data members or fields and meth-
ods using the Class Details section. Data types can be selected from a drop-down 
menu. By default, data members or fields are assigned a private access modifier. 
Figure 4-2 shows a snapshot of the Class Diagram tool.

FIGURE 4-2 Student class diagram details

When you complete the class details illustrated in Figure 4-2, code is automatically 
placed in the file with each entry you add to the class diagram. Figure 4-3 shows the 
code that was automatically generated from the Student class diagram.

If the Class Details pane is not visible, right clicking on the class diagram reveals an 
option to open the pane.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



The Object Concept | 203

4

Using the Class Diagram tool in Visual Studio gives you the added benefit of graphi-
cally viewing the class. You can define the template for the class just using the code 
editor as was done with previous applications. However, if you use the Class Diagram 
tool, you can also switch back and forth between the class diagram and the code win-
dow. Each has a separate tab. You will notice in Figure 4-2 that Solution Explorer 
window reveals that file that holds the class diagram has a .cd extension.

Figure 4-3 illustrated where the fields or data members (instance variables) are 
declared. As illustrated in Examples 4-1 and 4-2, data fields are normally declared 
first inside the body of the class definition. In the examples that follow, the 
 CarpetCalculator, from Chapter 3, is revisited using an object-oriented approach.

FIGURE 4-3 Auto-generated code from Student class diagram

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



204 | Chapter 4: Creating Your Own Classes 

EXAMPLE 4-2

public class CarpetCalculator
{
     private double pricePerSqYard;
     private double noOfSqYards;
:    // The : indicates other lines follow.

Notice that the public access modifier was added to the class heading. This will 
enable the class to be referenced outside this file.

Constructor
Constructors are special types of methods used to create objects. Object-oriented 
design of applications facilitates reuse of code. After the class is defined, you cre-
ate instances, or examples, of the class. This is called instantiating the class. An 
instance of a class is called an object. When you instantiate the class, you actu-
ally create an instance of the class, an object that takes up space and exists. It is 
through this special type of method, called a constructor, that you create instances 
of a class. Constructors differ from other methods in two ways:

 ? Constructors do not return a value, but the keyword void is not included. 

 ? You receive an error message if you type void as part of the constructor 
method heading.

 ? Constructors use the same identifier (name) as the class name.

 ? Constructors are methods. Similar to other methods, they can be 
overloaded.

A public access modifier is always associated with constructors so that other classes 
can instantiate objects of their type. When you write a class, a constructor is auto-
matically created for you if you do not explicitly define one. This one is called the 
default constructor. It has no functionality, other than the fact that it can be used to 
create an instance of the class. Default values are assigned to each member data field 
if the default constructor is used to create an object of the class type. No param-
eters are included with the default constructor. It has no body, simply opening and 
closing curly braces. For a class called Student, a default constructor is shown here:
public Student ( )
{
}

Constructors are used to provide initial values for the object’s data members. These ini-
tial values can be sent as arguments to the constructor method, or the initial values can 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Constructor | 205

4

be hard coded in the body for the constructor. To add full functionality to your classes, 
you normally write multiple constructors for all classes in which objects will be instan-
tiated. When you explicitly write even one constructor for a class, you lose the default 
one that is created automatically. When you write your constructors, think about how 
objects will be created of that class type. If you had a  Student class, you might 
want a constructor that lets you create a Student object when a studentNumber 
is given. You might want another constructor that lets you create a Student object 
when a  studentNumber and studentFirstName and studentLastName are given. 
Another constructor might be useful if you had all of the data (studentNumber, 
 studentFirstName,  studentLastName, score1, score2, score3, and major). 
Thus, for a Student class, at least four constructors might be designed, as shown 
in Example 4-3.

EXAMPLE 4-3

//Default constructor
public Student ( )
{
}

//Constructor with one parameter
public Student (string sID )
{
     studentNumber = sID;
}

//Constructor with three parameters
public Student (string sID, string firstName,
                string lastName)
{
     studentNumber = sID;
     studentFirstName = firstName;
     studentLastName = lastName;
}

//Constructor with all data members 
public Student (string sID, string firstName, string lastName,
                int s1, int s2, int s3, string maj)
{
     studentNumber = sID;
     studentFirstName = firstName;
     studentLastName = lastName;
     score1 = s1;
     score2 = s2;
     score3 = s3;
     major = maj;
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



206 | Chapter 4: Creating Your Own Classes 

Notice that the first constructor shown in Example 4-3 is one that takes no arguments. 
This is the default constructor. As previously noted, you lose the default constructor 
that is automatically generated when you start writing your own constructors. How-
ever, you will normally want to offer the flexibility of allowing an object of your class 
to be instantiated without any arguments. This is where the default constructor is 
needed. So, you need to create one.

The body of the constructor methods consists primarily of assignment statements. 
Notice that the private data member identifier appears on the left side of the equal 
symbol. A different name, from the data member, is used as a parameter identifier. 
This is done to avoid using the this keyword to reference the data member. You will 
read more about this in upcoming chapters.

Examine the second constructor in Example 4-3. The data member studentNumber 
is assigned the value stored in sID. When an object of the class is instantiated using 
that constructor, data will be passed into the constructor through sID.

A fifth constructor could not be designed with the first argument being firstName, 
the second argument being lastName followed by the string for the sID. Its signa-
ture would not be different from the constructor that has the sID parameter listed 
first. As with overloaded methods, signatures must differ for constructors. You also 
could not have one constructor that has the two string parameters of firstName 
and lastName and then define another constructor that took string parameters of 
lastName and firstName. Their signatures would be the same. Both would have 
two strings for their parameter list.

When you write your own default constructor, it does not have parameters. But, it does not 
have to have an empty body. There could be assignment statements added to a default 
constructor. These parameterless constructors are useful for assigning default values to 
data members.

You should design your classes to be as flexible and full-featured as possible. One way 
to do this is to include multiple constructors. However, it is not appropriate to simply 
attempt to define a constructor for every possible combination of data members. Identify 
and design the proper number of constructors based on how other classes might want to 
instantiate objects of that class.

Example 4-4 shows three constructors for the CarpetCalculator class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Writing Your Own Instance Methods | 207

4

EXAMPLE 4-4

// Constructor with no parameters — Default constructor
public CarpetCalculator( )
{
     //empty body
}

// Constructor with one parameter
public CarpetCalculator(double price)
{
     pricePerSqYard = price;
}

// Constructor with two parameters
public CarpetCalculator(double amountNeeded, double price)
{
   noOfSqYards = amountNeeded;
   pricePerSqYard = price;
}

All three constructors used the same identifier, that is, the name of the class. They 
each have different signatures. One requires no arguments, one requires one argument, 
and the third requires two arguments. By writing three separate constructors, more flex-
ibility is offered an application that chooses to use this class. An object of the class 
can be created by giving a price and the number of square yards needed; an object can 
be created sending it just the price; or, an object can be created without any arguments.

It might seem like overkill to write a method that does not have a body, but this is 
a common practice. If you define at least one constructor, you should write another 
constructor that takes no arguments, the default constructor. Otherwise, you are lim-
iting the functionality of your class. By having a constructor with no arguments, 
you can create instances of the class without setting the current state of its data 
members. For instance, you can create an object with default values and later give the 
object other values. When this happens, the default values for the specific types are 
used. You might want to look ahead at Example 4-11. It illustrates calling or invoking 
these CarpetCalculator constructors.

Writing Your Own Instance Methods
When you define the methods of the class, you are writing instance methods. Instance 
methods do not use the static keyword in their heading. To call an instance method, 
however, an object must be instantiated and associated with the method. There are 
several special types of methods. They are described in the sections that follow.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



208 | Chapter 4: Creating Your Own Classes 

Accessor
Another type of special method is an accessor. To read the current state or value of 
an object member’s data, accessors can be used. Accessors are also referred to as 
getters. They send back the value of a data member, without changing it. Accessors 
are used because instance variables, data members of a class, are normally defined 
using a private modifier. As you read earlier in this chapter, private limits access 
to members of the class. However, the idea behind object-oriented development is 
that objects communicate with each other by exchanging information. Objects that 
are instances of one class might need to access members of another class. They do 
this through calling methods. Because methods are usually defined as public, this 
communication is possible.

An accessor normally returns just the current value of a data member so that the cur-
rent value can be used by other classes. Many bodies of accessor methods consist of a 
single return statement, as illustrated in Example 4-5.

EXAMPLE 4-5

public double GetNoOfSqYards( )
{
     return noOfSqYards;
}

Java programmers often include an accessor method for each private data member 
that is to be accessible from outside the class. This is unnecessary in C#. Property 
 members can be defined. This reduces the number of accessors needed. You will learn 
about properties later in this chapter.

A standard naming convention is to add “Get” onto the front of the instance variable 
identifier and use that name for the accessor method name that retrieves the data 
item. Example 4-5 shows an accessor method for noOfSqYards. The identifier for 
the accessor is GetNoOfSqYards( ).

Mutators
To change the current state or value of an object member’s data, special methods 
called mutators can be used. Mutators are sometimes called setters. A mutator is 
normally written to include one parameter that represents the new value a data mem-
ber should have. Similar to accessors, mutators are needed because of the private 
accessibility of instance variables. Example 4-6 shows two overloaded mutators.  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Writing Your Own Instance Methods | 209

4

The first example is the more common way to write a mutator. The body of the 
method consists of a single assignment statement.

EXAMPLE 4-6

public void SetNoOfSqYards(double squareYards)
{
     noOfSqYards = squareYards;
}
public void SetNoOfSqYards(double length, double width)
{
     const int SQ_FT_PER_SQ_YARD = 9;
     noOfSqYards = length * width / SQ_FT_PER_SQ_YARD;
}

Property members also reduce the number of mutators needed.

A standard naming convention is to add “Set” to the front of the instance vari-
able identifier; that name becomes the mutator method name. In Example 4-6, the 
instance variable being changed is noOfSqYards; the identifier for the mutator is 
SetNoOfSqYards( ).

Other Instance Methods
You wrote class methods in Chapter 3. Class methods manipulate data by having 
information passed in as arguments through parameters. That is not necessary with 
instance methods. Instance method members of a class can directly access private data 
members of the same class. It is through instance methods that private data is manipu-
lated. Examine the instance method CalculateAverage( ) shown in  Example 4-7. 
Notice that there are no parameters for the method. CalculateAverage( ) can use 
score1, score2, and score3 because they belong to the same class.

EXAMPLE 4-7

public double CalculateAverage( )
{
     return (score1 + score2 + score3) / 3.0;
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



210 | Chapter 4: Creating Your Own Classes 

As illustrated in Example 4-7, CalculateAverage( ) can directly access score1, 
score2, and score3. It was not necessary to send that data into the method via a 
parameter.

Also notice that exam average is not one of the data members. The average is not 
stored. This was done to avoid potential inconsistencies with the data. Normally, any 
time information can be calculated from other values; it is best to define a method 
to perform the behavior. By defining a method as opposed to storing the average, it 
will reduce the chance of inaccurate or inconsistent data. If one of the object’s scores 
is changed, it would be easy to fail to change the average if it were a data member. 
This is where the potential for inconsistent data pops up. If average is only available 
through invoking a method, the current values of score1, score2, and score3 will 
always be used.

Property
One of the underlying themes of object-oriented programming is encapsulation, 
which states that the internal representation of an object is generally hidden; thus, 
member data are defined with private access. Typically, the only way to access, 
inspect, or manipulate the object’s data is through the object’s public methods. As 
you just read, many languages provide mutators, or setters that enable the data to 
be changed. They provide accessors or getters that enable the data to be retrieved. 
Another option is to define and use properties. C# introduced properties. A property 
looks like a data field, but it does not directly represent a storage location. Proper-
ties are more closely aligned to methods. They provide a way to change or retrieve 
private member data. Example 4-8 includes the property for noOfSqYards and 
pricePerSqYard data member.

EXAMPLE 4-8

public double NoOfSqYards
{
     get
     {
         return noOfSqYards;
     }
     set
     {
         noOfSqYards = value;
     }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Writing Your Own Instance Methods | 211

4

public double PricePerSqYard
{
     get
     {
         return pricePerSqYard;
     }
     set
     {
         pricePerSqYard = value;
     }
}

Properties are named using Pascal case. A standard naming convention in C# for proper-
ties is to use the same name as the instance variable or field but have the property identifier 
start with an uppercase character. NoOfSqYards follows that convention. The property 
name associated with the pricePerSqYard data member would be PricePerSqYard.

Using the same name, as shown in Example 4-8, enables the property member to 
be quickly associated with the data member. The names do not really have to match. 
Price, for example, could have been the name for the property associated with the 
 pricePerSqYard data member. No syntax errors would have been created; however, 
using Price as a property name for pricePerSqYard does not follow the standard 
naming convention.

berber.PricePerSqYard = 25.99;

After the properties are defined, they can be used in other classes as if they were fields 
of the object instantiated. When you define a property, you can define the set with-
out the get or the get without the set. It is not necessary to include both. The body 
of the get must return a value of the property type. If you include only the get, the 
property is considered a read-only property because the value of the instance variable 
cannot be changed through the property. The execution of the get is equivalent to 
reading the value of the field. After the set property for a variable is defined, you can 
change the private instance variables data using that property in any class that 
instantiates an object. For example, if an instantiated object is named berber, to 
change the pricePerSqYard you could write:

The body of the set portion in the property is similar to a mutator method. Remem-
ber that the mutator method’s return type is void. Mutators normally have one 
argument representing the value to be assigned to the instance variable. The set 
portion of the property uses an implicit parameter, called value. The type of value 
is always the same as the private member that is being associated with the property. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



212 | Chapter 4: Creating Your Own Classes 

get, set, and value are not regular keywords. It is not necessary to declare value, 
get, or set. They have special meaning when used with properties. They are contex-
tual keywords. Also notice, as shown back in Example 4-8, no parentheses or param-
eter is placed after the property identifier.

Auto Implemented Properties
There are many shortcuts that can be used by developers; one introduced with C# 
3.0 and later is auto-implemented properties. With auto-implemented properties, 
you do not have to include the return and set statements. You simply write get; 
set; as the body for the property. Auto-implemented properties make property-
declaration more concise. They can be used when no additional logic is required 
in the property accessors other than just returning the value or sending in a new 
value to change the field. The additional requirement is that you do not define a 
separate private data member to tie the property to. When you declare a property 
as shown in the Example 4-10, the compiler creates a private, anonymous backing 
field that can only be accessed through the property’s get and set accessors.

EXAMPLE 4-9

//Auto-implemented properties
public string Name { get; set; }

public int EmployeeID { get; set; }

As illustrated in Example 4-9, with the auto-implemented property no assignment state-
ment is included with the set portion and no return is written for the get. Another 
shortcut recently introduced with C# 6.0 is auto property initializers. An auto property 
initializer adds to the auto-implemented concept in that it is used to set the value of 
read-only properties during the property declaration. This is illustrated in Example 4-10.

EXAMPLE 4-10

//Auto property with initializer
public int Salary
{
      get; set;
} = 10000;
public string TypeOfEmployee
{
       get;
} = "Staff";

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Writing Your Own Instance Methods | 213

4

When you define a property member for a class as shown in Example 4-9 and 
Example 4-10, a backing field is not required, which means no private data mem-
bers with identifiers like name, employeeID, salary or typeOfEmployee would 
be defined. You could still initialize the fields in constructors via assignment state-
ments, but you do not have to define separate private data members. With C# 6.0, 
you now can take it one step further and actually add the assignment to the prop-
erty definition as is shown with Salary and TypeOfEmployee in  Example 4-10. 
This is referred to as an Auto-Properties with Initializer. This shortcut available 
in C# 6.0 greatly reduces the amount of coding. As previously noted, by including 
properties for logical member data, the number of mutator and accessor methods 
needed is reduced. Properties allow access to private data members in a simi-
lar way as public members. You will see more examples of their use in the next 
section.

ToString( ) Method
In Chapter 2, you read that all user-defined classes inherit four methods (ToString( ), 
Equals( ), GetType( ), and GetHashCode( )) from the object class. Just like 
you inherit characteristics from your parents, inheritance works similarly in C#. 
You might have inherited your eye color from your mother or your build from your 
grandfather. You might even get hair color from your great grandmother. In C#, the 
very top level class (like your great, great, great, . . . grandparent) is called object. 
C# supports only single inheritance. As opposed to getting characteristics from two 
separate parents, in C#, you only get one parent class, but that parent class can also 
have a parent class. At the very top of this hierarchy is object. When you design 
your own classes, you can make use of these methods inherited from object by call-
ing them or you can override them and give new definitions for one or more of the 
methods.

Object’s ToString( ) method is a very special method. It is called automatically by sev-
eral methods, including the Write( ) and WriteLine( ) methods. You can also invoke 
or call the ToString( ) method directly. ToString( ) returns a human-readable 
string. However, sometimes, this readable string is not what you intended. For example, 
if you send an object such as the berber object to the Write( ) method by writing 
Write(berber);, the ToString( ) method is automatically called and the namespace 
followed by a dot and the name of the class are displayed (Carpet.CarpetCalculator). 
This is not very helpful and probably not what you expected.

You could write a new definition for the ToString( ) method to include useful 
details so that if the berber object is sent to the Write( ) method, useful infor-
mation is displayed. If you wanted to display the price per square yard, the number 
of square yards needed, and the total price whenever an object of the Carpet class 
is referenced, you might write a ToString( ) method similar to what is shown in 
Example 4-11.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



214 | Chapter 4: Creating Your Own Classes 

EXAMPLE 4-11

public override string ToString( )
{
     return "Price Per Square Yard: " + 
            pricePerSqYard.ToString("C") +
            "\nTotal Square Yards needed: " + 
            noOfSqYards.ToString("F1") +
            "\nTotal Price: " +
            DetermineTotalCost( ).ToString("C");
}

As shown in Example 4-11, the keyword override is added to the heading imme-
diately preceding the return type. To override a method, the new method must 
have the same signature as the one being overridden. After this new ToString( ) 
method is defined, it can be called directly using the object with a statement such 
as Write(berber.ToString( )); or because the Write( ) and WriteLine( ) 
methods automatically call the ToString( ) method, it is automatically invoked 
with a call such as Write(berber);.

You also learned in Chapter 2 that you could add a format specifier as one of the 
arguments to the Write( ) and WriteLine( ) methods. Numeric data types 
such as int, double, float, and decimal have overloaded ToString( ) meth-
ods. One of their ToString( ) signatures enables you to send as an argument a 
format specifier. This could be one of the standard numeric format specifiers, as 
presented in Table 2-16, or you could use one or more of the characters given in 
Table 2-17 to create a customized user-defined specifier. Example 4-11 illustrated 
adding the format specifier as an argument to the ToString( ) method. When 
the ToString( ) method is invoked in the pricePerSqYard.ToString("C") 
call, the overloaded ToString( ) method of the double class is called. Now to 
display the information about the berber object, instead of writing a separate 
DisplayResults( )method, a call to the Write( ) method with the berber 
object as the argument automatically calls the overridden ToString( ) method 
of the CarpetCalculator class. The ToString( ) method returns a formatted 
string that can be displayed.

In Example 4-11, you do not fully qualify pricePerSqYard using a class or object 
name. Also notice, the property identifier was not used. The private data member, 
 pricePerSqYard, was able to be used because it was included in a member method  
of the class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Calling Instance Methods | 215

4

Calling Instance Methods
Instance methods are nonstatic methods. When instance methods are defined, you 
do not use the static keyword. When you invoke an instance method, you do not 
use the class name. Recall methods in the Math class were identified as class meth-
ods. The static keyword was used as part of their heading. In order to invoke the 
Pow( ) method for example, you had to precede the methods name with the class 
name (Math.Pow( )). A class method is a static method. The method belongs 
to the whole class. You must use the class name to call static methods. Instance 
methods belong to specific objects. You must call or invoke them with an object if you 
call them outside of the class in which they are defined. To call or invoke an instance 
method from within the same class where it is defined, simply use the method’s name. 
It is not qualified with an object or class name.

Recall with Visual Studio 2015 and C# 6.0, you can add a reference to a class that 
has static members by adding an additional using statement referencing the 
 namespace and class name. After that, you can invoke the static class  
method without fully qualifying it with a class name.

ClassName objectName = new ClassName(argumentList);

ClassName objectName;
objectName = new ClassName(argumentList);

After a class template has been defined to include private member data, public 
methods, and public properties, many different applications can use the class. To 
do so, objects of the class are instantiated using the class constructor.

Calling the Constructor
Normally, the first method called is the constructor. This is the method that actually 
creates an object instance of the class. The syntax for this is

Or

It is more common to call the constructor in a single statement as shown first.

Example 4-12 creates three objects and calls the three different constructor methods 
defined in Example 4-4.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



216 | Chapter 4: Creating Your Own Classes 

EXAMPLE 4-12

CarpetCalculator plush = new CarpetCalculator( );
CarpetCalculator pile = new CarpetCalculator(37.90, 17.95);
CarpetCalculator berber = new CarpetCalculator(17.95);

Each of the preceding statements does two things:

 ? Declares an object of a specific class

 ? Calls the constructor to create an instance of the class

The keyword new is used as an operator to call constructor methods. The first line in 
Example 4-12 is a call to the default constructor for the CarpetCalculator class. 
An object named plush is created. The pricePerSqYard and noOfSqYards are 
both set to 0.0. The system default values for double are used to initialize these 
instance variables. Table 4-2 gives the default values of the value types assigned to 
variables when no arguments are sent to member data.

Value type Default value

bool false

byte 0

char ‘\0’ (null)

decimal 0.0M

double 0.0D

float 0.0F

int 0

long 0L

short 0

uint 0

ulong 0

ushort 0

TABLE 4-2 Value type defaults

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Calling Instance Methods | 217

4

The second call to the constructor sends two arguments. An object named pile is 
created, and an object named berber is created with the third constructor. The actual 
argument of 17.95 is used to initialize the private data member pricePerSqYard.

Calling Accessor and Mutator Methods
Accessor and mutators are instance methods. All instance methods are called in 
exactly the same manner as class methods, with one exception. If the method is 
being called from another class that has instantiated an object of the class, 
the method name is preceded by the object name. If another member of the same 
class is invoking the method, all that is needed is the name of the method. You never 
precede an instance method with the name of the class like you do with static class 
methods. In order to call the method in another class, a specific object must be asso-
ciated with it.

One of the methods of the CarpetCalculator class is SetNoOfSqYards( ). 
Another class, called CarpetCalculatorApp, has instantiated an object of the 
CarpetCalculator class by using the one argument constructor shown previ-
ously in Example 4-4. The call to the constructor to instantiate the berber object is 
shown again as follows:
CarpetCalculator berber = new CarpetCalculator(17.95);

A call to the SetNoOfSqYards( ) method requires the name of the object, a dot, 
and the name of the method, as shown in the following code. This is a nonvalue-
returning method. It is a mutator method.
berber.SetNoOfSqYards(27.83);

If the method is returning a value, as accessors do, there must be a place for the value 
to be returned. Again the method is called by typing the objectName, a dot, and the 
methodName. Example 4-13 shows a call to an accessor method, which has a return 
value.

EXAMPLE 4-13

WriteLine("{0:N2}", berber.GetNoOfSqYards( ));

The value representing the number of square yards is printed on return from the 
accessor method.

Attempting to add a value to an uninitialized variable in C# is not allowed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



218 | Chapter 4: Creating Your Own Classes 

You read about Property members in the previous section. With C#, properties are 
often used instead of accessor and mutator methods. Member properties are nor-
mally defined with a public access. To reference a set member property, you can 
use the name of the property field in an assignment statement as in

PropertyName = value;

You can reference the get portion of the property as if it were an instance vari-
able. Line 2 in Example 4-14 shows how the property PricePerSqYard, which was 
declared in Example 4-8, is used.

EXAMPLE 4-14

Line 1   Write("Total Cost at {0:C} ",
Line 2         berber.PricePerSqYard);
Line 3   WriteLine(" per Square Yard: {0:C}",
Line 4             berber.DetermineTotalCost( ));

Notice that the use of the property in Line 2 differs from a method call. No parentheses 
are used with the property. The complete CarpetCalculatorApp solution is shown 
near the end of this chapter. Another example, StudentApp, is introduced here.

Calling Other Instance Methods
All behaviors associated with the data are included as method members of the class. 
These methods are called instance methods as opposed to class methods—because 
an instance of the class or an object is needed in order to invoke or call the method.

With the Student class, CalculateAverage( ) is an instance method. The body 
of the CalculateAverage( ) method was shown in Example 4-7. In order to invoke 
this method, an object must first be instantiated. This is the first statement shown in 
Example 4-15.

EXAMPLE 4-15

Student aStudentObject = new Student("1234", "Maria", "Smith",
                                      97, 75, 87, "CS");
average = aStudentObject.CalculateAverage( );

You may want to look back at Example 4-3. The seven argument constructor shown 
in that example are called here to instantiate the class. The new operator creates the 
object, aStudentObject. Once a Student object is instantiated, as illustrated in 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Calling Instance Methods | 219

4

Example 4-15, CalculateAverage( ) can now be invoked. A dot separates the 
object and the instance method name.

Since CalculateAverage( ) has a return type of double, there must be a place for a 
value to be returned. It is returned through an assignment statement. Another option 
would be to return it directly to an output statement. However, the only way it can be 
called or invoked is with an object of the Student class. Example 4-16 shows instanti-
ating another Student object using the constructor that takes one argument (review 
Example 4-3). Example 4-16 also illustrates using its properties to assign values to the 
scores and then invoking the instance method with that object. This time the value 
from the CalculateAverage( ) method is returned to a WriteLine( ) method.

EXAMPLE 4-16

Student secondStudentObject = new Student("2345");
secondStudentObject.Score1 = 95;
secondStudentObject.Score2 = 62;
secondStudentObject.Score3 = 87;
WriteLine("Student Number: " +
           secondStudentObject.StudentNumber +
          "\nAverage: {0:F1}",
           secondStudentObject.CalculateAverage( ));

Notice that no arguments are needed as parameters to the CalculateAverage( ) 
method. This is because CalculateAverage( ) is a member of the Student 
class and has full access to all of the Student class data members. The properties 
Score1, Score2, and Score3 have a public access mode. They were used to assign 
values to the private instance data members score1, score2, and score3.

Recall to clear a console window and reposition the cursor to the top of the display, invoke 
Console.Clear( ) or just Clear( ) if you have the additional using static 
System.Console; reference added at the top of your project and are using Visual 
 Studio 2015 or later versions.

Testing Your New Class
A different class is needed for testing and using your class. If you added your class as 
a second class to the application, as was recommended earlier, you already have that 
other class. This other class is the class that has Main( ) in it. Here, in Main( ), 
you can construct objects of your class, use the properties to assign and retrieve 
values, and invoke instance methods using the objects you construct. Example 4-17 
 illustrates testing your class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



220 | Chapter 4: Creating Your Own Classes 

EXAMPLE 4-17

using System;
using static System.Console;
namespace StudentApp
{
     class StudentApp
     {
         static void Main(string[] args)
         {
             Student firstStudentObject = new Student( );
             firstStudentObject.StudentName =
                              AskForStudentName("First");
             firstStudentObject.StudentFirstName =
                              AskForStudentName("Last");
             firstStudentObject.StudentNumber = 
                              AskForStudentNumber( );
             firstStudentObject.Major =
                 AskForMajor(firstStudentObject.StudentFirstName);
             firstStudentObject.Score1 = AskForExamScore(1);
             firstStudentObject.Score2 = AskForExamScore(2);
             firstStudentObject.Score3 = AskForExamScore(3);

             Clear( );
             WriteLine("First Student");
             WriteLine(firstStudentObject.ToString( ));

             Student secondStudentObject = new Student("2345");
             secondStudentObject.Score1 = 95;
             secondStudentObject.Score2 = 62;
             secondStudentObject.Score3 = 87;
             WriteLine("\n\nSecond Student");
             WriteLine("Student Number: " + 
                         secondStudentObject.StudentNumber +
                       "\nAverage: {0:F1}", 
                         secondStudentObject.CalculateAverage( ));

             Student thirdStudentObject = new Student("5432",
                                              "Randolph", "Wonder");
             thirdStudentObject.Major = "Math";
             thirdStudentObject.Score1 = 95;
             thirdStudentObject.Score2 = 87;
             thirdStudentObject.Score3 = 72;
             WriteLine("\n\nThird Student");
             WriteLine(thirdStudentObject);

             Student aStudentObject = new Student("1234","Maria",
                                        "Smith", 97, 75, 87, "CS");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Calling Instance Methods | 221

4

            WriteLine("\n\nLast Student");
            WriteLine("Student Name: " +
                   aStudentObject.StudentFirstName + " " +
                   aStudentObject.StudentLastName +
                   "\nStudent Number: " +
                   aStudentObject.StudentNumber +
                   "\nMajor: " + aStudentObject.Major +
                   "\nExam Score 1: " + aStudentObject.Score1 +
                   "\nExam Score 2: " + aStudentObject.Score2 +
                   "\nExam Score 3: " + aStudentObject.Score3 +
                   "\nExam Average: " +
                aStudentObject.CalculateAverage( ).ToString("F1"));
            ReadKey( );
         }

         static int AskForExamScore(int whichOne)
         {
            string inValue;
            int aScore;
            Write("Enter a value for Score {0}: ", whichOne);
            inValue = ReadLine( );
            aScore = int.Parse(inValue);
            return aScore;
         }

         static string AskForStudentName(string whichOne)
         {
            string inValue;
            Write("Enter Student {0} Name: ", whichOne);
            inValue = ReadLine( );
            return inValue;
         }

         static string AskForMajor(string name)
         {
            string inValue;
            Write("Enter {0}\' s Major: ", name);
            inValue = ReadLine( );
            return inValue;
         }

         static string AskForStudentNumber( )
         {
            string inValue;
            Write("Enter Student Number: ");
            inValue = ReadLine( );
            return inValue;
         }
     }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



222 | Chapter 4: Creating Your Own Classes 

Examine Example 4-17 closely. Each of the constructors are tested and the values are 
displayed using the WriteLine( ) method. As you type the program statements, 
you will be aided with IntelliSense as shown in Figure 4-4.

In addition to revealing the available constructor methods as shown in Figure 4-4, 
IntelliSense also displays all public members of the class once an object is instanti-
ated. As you examine Figure 4-5, notice that none of the data members are present.

The data members were defined with an access mode of private. They are acces-
sible only inside the Student class. You will read more about the two other types 
of access modifiers, protected and internal, in Chapter 11. Internal members are 
accessible only within files in the same assembly. Protected members are accessible to 
any class that is derived from them (child classes), but not to any other classes. With 
the fourth access specifier, public, access is not restrictive.

The StudentApp class has a number of class methods that are called from 
Main( ). You will recall that class methods require the keyword static and are not 
associated with a specific object. They are called static methods because they are 

FIGURE 4-4 IntelliSense displays available constructors

FIGURE 4-5 Public members of the Student class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Calling Instance Methods | 223

4

resolved statically, at compile time; thus not associated with any particular instance 
of an object’s data. These static or class methods, AskForExamScore( ), 
AskForStudentName( ), AskForMajor( ), and AskForStudentNumber( ), are 
used by Main( ) to enable the user to input data. The values that are returned are 
assigned to data members of firstStudentObject. However, since the data mem-
bers of the class are defined as private, the public properties must be used for the 
assignments. The output from the application is shown in Figure 4-6.

FIGURE 4-6 Output from StudentApp

As you examine the code in Example 4-17, notice that the firstStudentObject 
is displayed by explicitly calling the ToString( ) method. The same type of infor-
mation is displayed for both the first and third objects. ToString( ) is called both 
times. As you review the code in Example 4-17, notice that the third object is displayed 
with WriteLine(thirdStudentObject);. Here the ToString( ) method was 
automatically called. ToString( ) is also called with the last instantiated  student 
object, aStudentObject. This time it is used to format the value returned from the 
CalculateAverage( ) method. The format specifer, "F1," is sent as an argument. 
Here it is the double.ToString( ) method that is being executed.

When you define a multiclass solution, all input and output of data should be included 
in the class (file) that has the Main( ) method. The eventual goal will be to place your 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



224 | Chapter 4: Creating Your Own Classes 

class files, such as Student and CarpetCalculator, in a library so that the classes 
can be used by different applications. Some of these applications might be Windows 
applications. Some may be console applications. A Web application could also instan-
tiate objects of your classes. Thus, never include ReadLine( ) or WriteLine( ) in 
your class methods. These methods are only associated with the console application.

Always override the ToString( ) method in every class you define. This enables you to 
decide what should be displayed if the object is printed.

For your review, the code from the Student class is displayed in Example 4-18.

EXAMPLE 4-18

public class Student
{
     //Data members, data fields, or characteristics
     private string studentNumber;
     private string studentFirstName;
     private string studentLastName;
     private int score1;
     private int score2;
     private int score3;
     private string major;

     //Default constructor
     public Student( )
     {
     }
     //Constructor with one argument
     public Student(string sID)
     {
          studentNumber = sID;
     }

     //Constructor with two arguments
     public Student(string sID, string lastName, string firstName)
     {
          studentNumber = sID;
          studentLastName = lastName;
          studentFirstName = firstName;
     }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Calling Instance Methods | 225

4

     //Constructor with six arguments
     public Student(string sID, string lastName, string firstName,
                    int s1, int s2, int s3, string maj)
     {
          studentNumber = sID;
          studentLastName = lastName;
          studentFirstName = firstName;
          score1 = s1;
          score2 = s2;
          score3 = s3;
          major = maj;
     }

     //Properties
     public string StudentLastName
     {
          get
          {
               return studentLastName;
          }
          set
          {
               studentLastName = value;
          }
     }

     public string StudentFirstName
     {
          get
          {
               return studentFirstName;
          }
          set
          {
               studentFirstName = value;
          }
     }

     public string StudentNumber
     {
          get
          {
               return studentNumber;
          }
          set
          {
               studentNumber = value;
          }
     }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



226 | Chapter 4: Creating Your Own Classes 

     public string Major
     {
          get
          {
               return major;
          }
          set
          {
               major = value;
          }
     }

     public int Score1
     {
          get
          {
               return score1;
          }
          set
          {
               score1 = value;
          }
     }

     public int Score2
     {
          get
          {
               return score2;
          }
          set
          {
               score2 = value;
          }
     }

     public int Score3
     {
          get
          {
               return score3;
          }
          set
          {
               score3 = value;
          }
     }

     public double CalculateAverage( )
     {
          return (score1 + score2 + score3) / 3.0;
     }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Calling Instance Methods | 227

4

     public override string ToString( )
     {
          return "Name: " + studentFirstName + " " + 
                 studentLastName + "\nMajor: " + major +
                 "\nScore Average: " +
                 CalculateAverage( ).ToString("F2");
     }
}

In Visual Studio, add a second file to your application by selecting Add Class from the 
 Project menu. Only one file in your application can have a Main( ) method.

The complete program listing follows in Example 4-19.

EXAMPLE 4-19

/* CarpetCalculator.cs
 * Author: Doyle 
 * Defines the template for the 
 * CarpetCalculator class to include constructors, 
 * accessors, mutators, and properties 
 */
using System;

namespace CarpetCalculatorApp
{
     public class CarpetCalculator
     {
          private double pricePerSqYard;
          private double noOfSqYards;

In many of the examples, you saw instance methods, instance data fields, and prop-
erties defined and called as code snippets for an object-oriented solution to the 
CarpetCalculator problem. The complete listing for the object-oriented solution 
for the application follows. The solution consists of two files.

When you create an application that has two files, be sure to include only one Main( ) 
method. Only one of the files is used as the startup control file. The first file in this 
solution is the CarpetCalculator class, which defines the class template for a 
carpet object. It includes private data, public methods, and public property 
definitions. The second file is a sample application, which instantiates an object of 
the CarpetCalculator class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



228 | Chapter 4: Creating Your Own Classes 

          // Property for the pricePerSqYard data field
          public double PricePerSqYard
          {
               get
               {
                    return pricePerSqYard;
               }
               set
               {
                    pricePerSqYard = value;
               }
          }

          // Property also associated with
          // pricePerSqYard - works, but does
          // not follow naming convention
          public double Price
          {
               get
               {
                    return pricePerSqYard;
               }
               set
               {
                    pricePerSqYard = value;
               }
          }

          // Property for noOfSqYards data field
          public double NoOfSqYards
          {
               get
               {
                    return noOfSqYards;
               }
               set
               {
                    noOfSqYards = value;
               }
          }

          // Default constructor
          public CarpetCalculator( )
          {
                    //empty body
          }

          // One argument constructor
          public CarpetCalculator(double price)
          {
               pricePerSqYard = price;
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Calling Instance Methods | 229

4

          // Two argument constructor
          public CarpetCalculator(double amountNeeded,
                                  double price)
          {
               noOfSqYards = amountNeeded;
               pricePerSqYard = price;
          }

          public double DetermineTotalCost( )
          {
               return (pricePerSqYard * noOfSqYards);
          }

          // One of the overloaded mutator methods
          public void SetNoOfSqYards(double length, double width)
          {
               const int SQ_FT_PER_SQ_YARD = 9;
               noOfSqYards = length * width / SQ_FT_PER_SQ_YARD;
          }

          // One of the overloaded mutator methods
          public void SetNoOfSqYards (double squareYards)
          {
               noOfSqYards = squareYards;
          }

          // Accessor method
          public double GetNoOfSqYards( )
          {
                return noOfSqYards;
          }

          public override string ToString( )
          {
                return "Price Per Square Yard: " +
                      pricePerSqYard.ToString("C") +
                      "\nTotal Square Yards: " +
                      noOfSqYards.ToString("F1") +
                      "\nTotal Price: " +
                      DetermineTotalCost( ).ToString("C");
          }
     }
}

The following file uses the CarpetCalculator class:
/* CarpetCalculatorApp.cs
 * Author: Doyle
 * This class instantiates an object
 * of the CarpetCalculator class. It
 * demonstrates how to access and use

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



230 | Chapter 4: Creating Your Own Classes 

* the members of the class.
*/
using System;
using static System.Console;

namespace CarpetCalculatorApp
{
     class CarpetCalculatorApp
     {
          static void Main( )
          {
               CarpetCalculator berber = new
                                   CarpetCalculator(17.95);
               double roomWidth;
               double roomLength;
               DisplayInstructions( );
               // Call GetDimension( ) to get the length
               roomLength = GetDimension("Length");
               // Call GetDimension( ) again to get the width
               roomWidth = GetDimension("Width");
               berber.PricePerSqYard = 25.99;
               berber.SetNoOfSqYards(roomLength, roomWidth);

               Clear( );
               Write(berber);
               ReadKey( );
          }

          static void DisplayInstructions( )
          {
               WriteLine("This program will determine how much " + 
                         "carpet to purchase.");
               WriteLine( );
               WriteLine("You will be asked to enter the size " +
                         "of the room and the price of the");
               WriteLine("carpet, in price per " + "square yds.");
               WriteLine( );
          }

          static double GetDimension(string side)
          {
               string inputValue   // local variables
               int feet,           // needed only by this
               inches;             // method

               Write("Enter the {0} in feet: ", side);
               inputValue = ReadLine( );
               feet = int.Parse(inputValue);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Calling Instance Methods | 231

4

               Write("Enter the {0} in inches: ", side);
               inputValue = ReadLine( );
               inches = int.Parse(inputValue);

               // Note: cast required to avoid int division
               return (feet + (double) inches / 12);
          }
     }
}

As you review Example 4-19, notice that properties were defined in the 
CarpetCalculator class called NoOfSqYards, PricePerSqYard, and Price. 
The Price and PricePerSqYard properties are both tied to the pricePerSqYard 
data member, which was defined with an access mode of private. Rarely will you 
want to associate two separate properties to a single data member. Price was defined 
to illustrate that you do not have to follow the standard naming convention. Recall 
that data members are named using Camel case, while property identifiers follow the 
Pascal case convention; thus, the only difference normally in their names is the first 
character. pricePerSqYard can be referenced in the class where it is defined, but 
because it is defined with an access mode of private, it cannot be referenced outside 
of the defining class.

In the second class, CarpetCalculatorApp, an object of the CarpetCalculator 
class is instantiated. The object identifier is berber. The object is instanti-
ated with the new operator as shown here: CarpetCalculator berber = new 
CarpetCalculator(17.95); Since a double value, 17.95, is sent in as an argument 
to the constructor, the one argument constructor is used. 17.95 goes into price and 
that value is placed in the private data member pricePerSqYard as shown here 
in the constructor:
public CarpetCalculator(double price)
{
     pricePerSqYard = price;
}

In order to change berber’s pricePerSqYard in the CarpetCalculatorApp class, 
you must use one of the public properties, either Price or PricePerSqYard. The 
private pricePerSqYard data member is not accessible in the second class. The 
pricePerSqYard was changed to 25.99 with the statement shown below:
berber.PricePerSqYard = 25.99;

The PricePerSqYard property has get and set clauses. In order for classes 
that instantiate objects of the CarpetCalculator class to change the objects 
pricePerSqYard, they use the set clause associated with the public property.  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



232 | Chapter 4: Creating Your Own Classes 

The object’s private data members’ value (i.e., pricePerSqYard) is retrieved 
through the public property’s get clause.

Next, in the Main( ) method of the CarpetCalculatorApp class, the mutator 
method SetNoOfSqYards( ) was invoked. Notice that this method, like the prop-
erty reference above, had to be invoked with an object. The mutator method also 
offers a public access mode; thus, it is available in classes instantiating objects of the 
CarpetCalculator class. The object was berber for this example.

FIGURE 4-7 Output from Carpet example using instance methods

A lot of material is presented in this chapter. The programming example that follows 
makes use of most of these new concepts.

A public property is defined for noOfSqYards in addition to the mutator method. The 
public property NoOfSqYards is tied to the private noOfSqYards data member. 
It could have been used as opposed to the mutator method and obtained the same results. 
Here, in the example, SetNoOfSqYards( ) was used to to illustrate invoking a 
 mutator method with an object.

The last interesting statement in Main( ) for Example 4-19 is the Write(berber) 
statement. Here the ToString( ) method, defined in the CarpetCalculator 
class, is automatically invoked with the berber object. The CarpetCalculator 
class provided a new definition for the object’s ToString( ) method. The key-
word override was used on the method heading in the CarpetCalculator class.

Figure 4-7 shows the output for the preceding application when the user enters a 
room measurement of 17 ft. 10 in. for length and 14 ft. 6 in. for the width.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4

Programming Example: RealEstateInvestment | 233

This example demonstrates the use of methods in a program. Both static and 
instance methods are used. Properties are included in the solution. The problem 
specification is shown in Figure 4-8.

PROGRAMMING EXAMPLE: RealEstateInvestment

You should review the problem specification in Figure 4-8 and make sure you 
understand the problem definition. Several values must be entered into the pro-
gram. These values must be entered as string variables and then parsed into 
numeric fields, so that arithmetic can be performed.

Two separate classes are to be developed. Creating a separate class for the real 
estate object enables this class to be used by many different applications. One 
application is to produce a listing showing the cash flow from the investment. 
Other applications might include determining total investment dollar amounts or 
locations of investments.

ANALYZE  
THE PROBLEM

FIGURE 4-8 Problem specification for RealEstateInvestment example

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



234 | Chapter 4: Creating Your Own Classes 

If the characteristics of real estate objects are abstracted out, many applications 
can reuse the class.

VARIABLES Tables 4-3 and 4-4 list the data items needed for the RealEstateInvestment problem.

Data item description Type Identifier

Year the home was built int yearBuilt

Location of the home string streetAddress

Original purchase price double purchasePrice

Total expenses for average month double monthlyExpense

Rental premium per month double incomeFromRent

TABLE 4-3 Instance variables for the RealEstateInvestment class

The class that is using the RealEstateInvestment class also needs data. As noted 
in the problem specification, the application class allows the user to enter values 
for expenses. Table 4-4 identifies some of the local variables needed by the applica-
tion class.

Data item description Type Identifier

Cost of insurance per year double insurance

Amount of taxes per year double taxes

Estimated monthly utility costs double utilities

String value for inputting values string inValue

TABLE 4-4 Local variables for the property application class

CONSTANTS To illustrate the use of constants, a default rental rate is set as a constant value.  
The identifier and preset constant value will be

RENTAL_AMOUNT = 1000.00.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4

Programming Example: RealEstateInvestment | 235

DESIGN  
A SOLUTION

The desired output is to display the address of a property and the expected cash 
flow for a given month. Figure 4-9 shows a prototype of the desired final output. 
The xxx.xx is placed in the prototype to represent the location in which the calcu-
lated values should appear.

FIGURE 4-9 Prototype

©
 C

en
ga

ge
 L

ea
rn

in
g

The object-oriented approach focuses more on the object. The real estate prop-
erty has both data and behavior characteristics that can be identified. Class dia-
grams are used to help design and document these characteristics. Figure 4-10 
shows the class diagrams for the RealEstateInvestment example.

FIGURE 4-10 Class diagrams

RealEstateInvestment

RealEstateApp

-yearBuilt : int
-purchasePrice : double
-streetAddress : string
-monthlyExpense : double
-incomeFromRent : double
+DetermineMonthlyEarnings() : double
+RealEstateInvestment()

-invest1 : RealEstateInvestment
+RENTAL_AMOUNT : double = 1000.00
+GetExpenses() : double

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



236 | Chapter 4: Creating Your Own Classes 

The class diagrams show neither the properties needed nor the local variables 
that might be needed by specific class methods. As you learned earlier, proper-
ties are new to C# and reduce the need to write mutators and accessors for the 
private instance variables. Table 4-5 lists the data members that will have prop-
erties defined and indicates whether both get and set are needed. The name of 
the property is also given.

Data member identifier Property identifier Set Get

yearBuilt YearBuilt √

streetAddress StreetAddress √

purchasePrice PurchasePrice √

monthlyExpense MonthlyExpense √ √

incomeFromRent IncomeFromRent √ √

TABLE 4-5 Properties for the RealEstateInvestment class

The data members of yearBuilt, streetAddress, and purchasePrice are 
read-only instance variables. After an object of the class is instantiated with 
these values, they cannot be changed. By making this design choice, no default 
constructor is provided. It could never be used since no value can later be assigned 
to yearBuilt, streetAddress, and purchasePrice when the properties are 
defined with only Gets. No sets were provided for these identifiers. Notice that the 
identifiers for the properties match the data member with the exception that the 
first character in the property name is capitalized.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4

Programming Example: RealEstateInvestment | 237

Four constructors were included to provide flexibility in constructing objects. 
An object can be constructed by sending in either the streetAddress or the 
yearBuilt as the first argument with the three argument constructors. The two 
argument constructors accept values for streetAddress or purchasePrice. 
No constructors were created accepting just year and address. This was part of 
the design choice made. Signatures of methods must be different; constructors are 
methods. The identifier yearBuilt is defined to hold an integer; the identifier 
purchasePrice is defined to hold a floating-point double value. Since C# pro-
vides implicit conversion of integers to doubles, a value such as 75000 is automati-
cally converted into 75000.00 if it is stored in a floating-point double memory 
location. When an object is constructed, a best attempt is made to match the data 
with the appropriate constructor. Thus, there is the possibility that the wrong con-
structor might be invoked when a whole number is sent as an argument represent-
ing the price. Considering this, no constructors were provided accepting the two 
arguments of yearBuilt and streetAddress since constructors were provided 
accepting streetAddress and purchasePrice. One additional caution should 
be added. It is important to provide additional constructors for flexibility; however, 
do not attempt to provide a constructor with every possible combination of data 
fields. Give thought to which ones will really add value and be used.

During design, it is important to develop the algorithm showing the step-by-
step process to solve the problem. Structured English, also called pseudo-
code, is suited for the object-oriented methodology. In addition to the Main( ) 
method, two additional methods—DetermineMonthlyEarnings( ) and 
GetExpenses( )—need to be designed. Figure 4-11 shows part of the Structured 
English design for the RealEstateInvestment example. Additional objects 
should be instantiated to test the other constructors, properties, and methods of 
the RealEstateInvestment class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



238 | Chapter 4: Creating Your Own Classes 

After the algorithm is developed, the design should be checked for correctness. 
When you desk check your algorithm, begin in Main( ). When you encounter 
method calls, keep your location in that method, go to the called method, and 
perform the statements. When you finish with the called method, return back to 
your saved location.

Test your algorithm with the following data:

Insurance: 650.00
Taxes: 1286.92
Utilities: 250.00

FIGURE 4-11 Structured English for the RealEstateInvestment example

B. RealEstateApp Class

A. RealEstateApp Class

B. RealEstateApp Class

C. RealEstateInvestment Class

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4

Programming Example: RealEstateInvestment | 239

Use a calculator and write down the results you obtain. After you implement your 
design, you can compare these results with those obtained from your program output.

CODE  
THE SOLUTION

After you complete the design and verify the algorithm’s correctness, it is time to 
translate the design into source code. For this application, you are creating two 
separate files—one for each class. Only one of the classes will have a Main( ) 
method. If you create the RealEstateInvestment class first, delete the 
Main( ) method from that file. To add a second class, click Project, Add Class. 
The final application listing for both files appears here:
/* RealEstateApp.cs                 Author:  Doyle
 * This class constructs an
 * object of the RealEstateInvestment
 * class. It tests several properties and
 * methods of the class.
 * A static method is used in
 * the application class to 
 * input expenses.
 * */

using System;
using static System.Console;

namespace RealEstateApp
{
     public class RealEstateApp
     {
         static void Main( )
         {
             const double RENTAL_AMOUNT = 1000.00;
             RealEstateInvestment invest1 = new
                RealEstateInvestment (2004, 150000, "65th Street");
             WriteLine("\tFirst Investment");
             invest1.MonthlyExpense = GetExpenses( );
             invest1.IncomeFromRent = RENTAL_AMOUNT;
             WriteLine( );
             WriteLine("Property Location: {0}",
                       invest1.StreetAddress);
             WriteLine("Earnings For Month: {0:C}",
                       invest1.DetermineMonthlyEarnings( ));

             RealEstateInvestment invest2 = new
                 RealEstateInvestment("72 Westchester Dr.",
                                      229000);
             invest2.MonthlyExpense = 900;
             invest2.IncomeFromRent = 1500.00;
             WriteLine("\n\n\tSecond Investment");
             WriteLine(invest2);
             ReadKey( );
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



240 | Chapter 4: Creating Your Own Classes 

          static double GetExpenses( )
          {
             double insurance;
             double taxes;
             double utilities;
             string inValue;

             Write("Yearly Insurance: ");
             inValue = ReadLine( );
             insurance = double.Parse(inValue);
             Write("Yearly Tax: ");
             inValue = ReadLine( );
             taxes = double.Parse(inValue);
             Write("Monthly Utilities: ");
             inValue = ReadLine( );
             utilities = double.Parse(inValue);
             return (insurance / 12 + taxes / 12 + utilities);
          }
     }
}

/* RealEstateInvestment.cs
 * Author:       Doyle
 * This class defines a template
 * for a real estate object to
 * include instance data members,
 * public properties,
 * constructors, and a method to
 * determine the monthly earnings.
 */

using System;

namespace RealEstateApp
{
     class RealEstateInvestment
     {
          private string streetAddress;
          private int yearBuilt;
          private double purchasePrice;
          private double monthlyExpense;
          private double incomeFromRent;

          // Read-only property
          public double YearBuilt
          {
               get
               {
                    return yearBuilt;
               }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4

Programming Example: RealEstateInvestment | 241

          }
          // Read-only property
          public string StreetAddress
          {
               get
               {
                    return streetAddress;
               }
          }
          // Read-only property
          public double PurchasePrice
          {
               get
               {
                    return purchasePrice;
               }
          }
          // Property acting as mutator and accessor
          public double MonthlyExpense
          {
               set
               {
                    monthlyExpense = value;
               }
               get
               {
                    return monthlyExpense;
               }
          }
          // Property acting as mutator and accessor
          public double IncomeFromRent
          {
               set
               {
                    incomeFromRent = value;
               }
               get
               {
                    return incomeFromRent;
               }
          }

          // No Default constructor is provided due to the read
          // only data fields
          // Three parameter constructor with address listed first
          public RealEstateInvestment (string address, int year,
                                       double price)
          {
                streetAddress = address;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



242 | Chapter 4: Creating Your Own Classes 

                yearBuilt = year;
                purchasePrice = price;
          }

          // Two parameter constructor with address listed first
          public RealEstateInvestment (string address,
                                       double price)
          {
                streetAddress = address;
                purchasePrice = price;
          }

          // Two parameter constructor with price listed first
          public RealEstateInvestment (double price,
                                       string address)
          {
               streetAddress = address;
               purchasePrice = price;
          }

          // Three parameter constructor with year listed first
          public RealEstateInvestment ( int year, double price, 

string address)
          {
               yearBuilt = year;
               purchasePrice = price;
               streetAddress = address;
          }

          // Returns the earnings for a given month
          public double DetermineMonthlyEarnings( )
          {
               return incomeFromRent - monthlyExpense;
          }

          public override string ToString( )
          {
               return "Location: " + streetAddress +
                      //“\nYear Built: " + yearBuilt +
                      //Year omitted - A constructor is
                      //provided without year and
                      //Year is read only
                      "\nPurchase Price: " +
                      purchasePrice.ToString("C") +
                      "\nMonthly Income: " +
                      monthlyExpense.ToString("C") +
                      "\nIncome from Rent: " +

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4

Programming Example: RealEstateInvestment | 243

                      incomeFromRent.ToString("C") +
                      "\nMonthly Earnings: " +
                      DetermineMonthlyEarnings( ).ToString("C");

          }

     }

}

FIGURE 4-12 RealEstateInvestment class diagram

IMPLEMENT  
THE CODE

Compile the source code. If you have any rule violations, make corrections until 
no errors are present. Create a class diagram to go along with the application. You 
will recall that one option for creating the class diagram is to use the Solution 
Explorer window. When you right click on the source code file, one option is to 
View Class Diagram. Figure 4-12 illustrates the Class Diagram created for the 
RealEstateInvestment class. Run the application entering the values indi-
cated previously (650.00, 1286.92, 250.00).

TEST  
AND DEBUG

During this final step, test the program and ensure you have the correct result. 
The output for the test values should match your prototype. Figure 4-13 shows the 
output generated from the preceding source code.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



244 | Chapter 4: Creating Your Own Classes 

FIGURE 4-13 Output from RealEstate Investment example

Coding Standards
It is important to follow coding standards when you design classes. Developing stan-
dards that you consistently adhere to will increase your coding efficiency and make 
your code more maintainable. The naming conventions, coding standards, and best 
practices described in this section follow guidelines used in the industry.

Naming Conventions
Classes

 ? Use a noun or noun phrase to name a class.

 ? Use Pascal case.

 ? Use abbreviations sparingly.

 ? Do not use a type prefix, such as C for class, on a class name. For 
example, use the class name Student rather than CStudent.

Properties

 ? Use a noun or noun phrase to name properties.

 ? Create a property with the same name as its corresponding data member 
but use Pascal case.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Resources | 245

4

Methods

 ? Use Pascal case to name methods.

 ? Use verbs or verb phrases as part of the name to tell what the method 
does. Avoid writing long methods. Each method should focus on a single 
theme. Typically, methods should not have more than 25 lines of code.

Constructor Guidelines

 ? Constructors use the same identifier as the class.

 ? Use a consistent ordering for constructors. A common practice is to 
list constructor methods with the fewest parameters first and the most 
parameters last. This enables you to provide more details as parameters 
are added.

 ? Provide a default constructor if you define even one other constructor.

 ? Minimize the amount of work done in the constructor. Constructors 
should not do more than capture the constructor parameter or 
parameters.

Spacing Conventions

 ? Use tabs instead of spaces for indentation.

 ? Use white space (one blank line) to separate and organize logical groups 
of code within methods. There should be one and only one single blank 
line between each method inside the class.

 ? Use white space (one blank line) to separate properties and instance 
methods.

 ? Place curly braces ( { } ) at the same level as the method name, but on a 
new line.

 ? Avoid writing long instance methods.

Resources
Additional sites you might want to explore:

 ? C# Coding Standards and Best Practices— 
http://www.dotnetspider.com/tutorials/BestPractices.aspx

 ? C# Station Tutorial - Introduction to Classes— 
http://www.csharp-station.com/Tutorials/Lesson07.aspx

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



246 | Chapter 4: Creating Your Own Classes 

 ? Object - Oriented Programming— 
http://msdn.microsoft.com/en-us/library/dd460654.aspx

 ? Introduction to Objects and Classes in C#— 
http://www.devarticles.com/c/a/C-Sharp/ 
Introduction-to-Objects-and-Classes-in-C-sharp/

QUICK REVIEW
 1. A class is like a template. It defines the structure for all objects that are 

going to be of that class type.
 2. An object is an instance, example of a class.
 3. When you define a class, you describe its attributes in terms of data and 

its behaviors in terms of methods.
 4. Instance methods require that an object be instantiated before they 

can be accessed.
 5. Access modifiers specify the level of accessibility for types, or classes, 

and their members. Public access offers the fewest access limitations.
 6. Private members are accessible only within the body of the class in 

which they are declared.
 7. Often in object-oriented development, data is defined with a private 

modifier, and methods that access the data are declared to have public 
access.

 8. Methods are the members of a class that describe the behavior of  
the data.

 9. Many programmers employ the standard convention of using an action 
verb phrase to name methods.

 10. Overloaded methods are methods with the same name but a  different 
number, type, or arrangement of parameters. For example, the 
DoSomething( ) method is overloaded with the following headings: 
public void DoSomething(int x, string y) and public void 
DoSomething(string y, int x).

 11. Constructors are special methods that create instances of a class. Con-
structors do not return a value—not even void.

 12. Constructors use the same identifier as the class name. The keyword 
new is used to call the constructors.

 13. When you design a class, you normally use public access modifiers 
with constructors and most other methods and private access modi-
fiers for data members.

 14. The default constructor has an empty body and it is automatically cre-
ated if you do not write one. If you write even one constructor, you lose 
the default constructor and have to write it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4

Exercises | 247

 15. Accessors are methods that are used to access private data members. 
Accessors are also referred to as getter methods.

 16. Mutators are methods that are used to change the current state of 
object member’s data. Mutator methods are also referred to as setters.

 17. A property looks like a data field and provides a way to set or get 
private member data. You can define the set without the get or vice 
versa. It is not necessary to include both.

 18. Auto-implemented properties make property-declaration more  concise. 
The body of the property just has two statements, get; set;

 19. To call nonvalue-returning methods, simply type the method’s name. If 
it is a static method, qualify it with the class name. If it is an instance 
method, qualify the identifier with an object. If the method has param-
eters, the call includes actual arguments inside the parentheses, without 
the types.

EXERCISES
 1. Properties are defined with _____ access mode.

a. private

b. static

c. public

d. void

e. protected

 2. Objects are instances of:
a. data members
b. parameters
c. properties
d. methods
e. classes

 3. Which of the following modifiers is the most restrictive?
a. private

b. static

c. public

d. internal

e. protected

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



248 | Chapter 4: Creating Your Own Classes 

 4. Which of the following identifiers follows the standard naming conven-
tion for naming a class?
a. Calculate Final Grade

b. MilesPerGallon

c. Student

d. Reports

e. Employees

 5. Which of the following would be the most appropriate way to invoke the 
CalculateAvg( ) method found in the Student class if an object 
named gradStudent had been instantiated from the class?
public double CalculateAvg( )

a. gradStudent = CalculateAvg( );

b. answer = Student.CalculateAvg( );

c. CalculateAvg( );

d. answer = gradStudent.CalculateAvg( );

e. answer = gradStudent.CalculateAvg(87.2, 90);

 6. Which of the following is one of the user-defined methods inherited 
from the object class?
a. ToString( )

b. Main( )

c. CalculateAvg( )

d. EqualsHashCode( )

e. TypeHashCode( )

 7. Properties are associated with the _____ of the class while methods are 
affiliated with the _____ of the class.
a. activity, fields
b. accessors, mutators
c. objects, instances
d. data, behavior
e. behavior, data

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4

Exercises | 249

 8. Which of the following is a valid overloaded method for CalculateAvg( )?
int CalculateAvg(int val1, int val2)

a. void CalculateAvg(int val1, int val2)
b. int CalculateAvg(int val1, int val2)
c. int CalculateAvg( )
d. double CalculateAvg(int val1, int val2)
e. int CalculateAverage(int val2, int val1)

 9. What operator is used to instantiate the class?
a. method

b. plus symbol

c. ToString( )

d. new

e. equal symbol

 10. Instance variables are the same as:
a. private member data
b. local variables
c. properties
d. arguments
e. parameters

 11. Given the Employee class shown below, which of the following would 
be the most appropriate heading for its default constructor?
public class Employee {

a. public void Employee( )
b. public Employee( )
c. static Employee( )
d. private void Employee( )
e. private Employee( )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



250 | Chapter 4: Creating Your Own Classes 

 12. The following is probably an example of a(n):
public double GetYards( )

a. constructor
b. mutator
c. property
d. accessor
e. class definition

 13. If you follow the standard C# naming conventions, the property name 
for the following instance variable would be:
private string name;

a. propertyName

b. nameProperty

c. getName

d. name

e. Name

 14. Which of the following would be a valid call to the default constructor 
for the following class?
public class Employee {

a. Employee employee1 = new Employee( );
b. Employee employee1 = new undergrad( );
c. Employee employee1;

d. Employee employee1 = new Employee(default);
e. Not enough information is given to be able to answer.

 15. Given the following class definition, what would be a valid heading for 
a mutator?
public class Student
{

private string name;
private double gpa;

}

a. public double SetGpa(double gpaValue)
b. public void SetGpa(double gpaValue)
c. public double SetGpa( )
d. public void GetGpa(double gpaValue)
e. public double SetGpa( )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4

Exercises | 251

 16. With a UML class diagram
a. the name of the class appears at the bottom section of the diagram
b. data members show a + to indicate public access
c. methods are not shown
d. objects of the class appear in the middle section of the diagram
e. methods show the return type on the diagram

 17. Which of the following modifiers in C# is used with constructors?
a. const

b. private

c. public

d. static

e. protected

 18. Normally, member data uses a _____ access modifier, and methods use 
a _____ access modifier for object-oriented solutions.
a. protected, public
b. private, protected
c. public, protected
d. public, private
e. private, public

 19. For a class called Account that has data members of accountNumber, 
balance, and transactionAmount, which would be the most appro-
priate instance method heading for a method that reduces the transac-
tion amount from the current balance?
a. static double ReduceAccount( double accountBalance,  

double transactionAmount)
b. double ReduceAccount( double accountBalance,  

double transactionAmount)
c. static ReduceAccount( )
d. void ReduceAccount( )
e. static void ReduceAccount( )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



252 | Chapter 4: Creating Your Own Classes 

 20. In order to provide a new definition for the ToString( ) method, what 
keyword is added to the method heading?
a. static

b. override

c. new

d. overload

e. public

 21. Given the following code snippet:
public class Camera                      Line 1
{                                        Line 2
   private double zoom;                  Line 3
   private double lensSpeed;             Line 4
   public double Zoom                    Line 5
   {                                     Line 6
       get                               Line 7
       {                                 Line 8
           return zoom;                  Line 9
       }                                 Line 10
   }                                     Line 11
   public Camera ( )                     Line 12
   {                                     Line 13
   }                                     Line 14
   public Camera (double zCapacity,      Line 15
                  double ls)             Line 16
   {                                     Line 17
       int xValue = 2;                   Line 18
       zoom = zCapacity * xValue;        Line 19
       lensSpeed = ls;                   Line 20
   }                                     Line 21
   public double GetLensSpeed( )         Line 22
   {                                     Line 23
       return lensSpeed;                 Line 24
   }                                     Line 25

  Identify the following items by line number:
a. method headings
b. property identifier
c. default constructors
d. formal parameters
e. local variables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4

Programming Exercises | 253

 22. Explain how instance methods differ from class methods. What differs 
when you want to invoke each different type? Which one requires an 
object in order for it to be called?

 23. What does it mean to override a method? Why should the ToString( ) 
method be overridden for user-defined classes?

 24. Explain the role of the constructor. What is the default constructor? 
When do you automatically get a default constructor?

 25. The following program has several syntax errors as well as style incon-
sistencies. Correct the syntax errors and identify the style violations.
  public class Chair
  {
  private string type;
  private double weight;
  private double cost;
  private Chair( )
   {
   }
   private Chair(weight, type, cost)
   {
   }
   public string ChairType
   {
         get
         {
                 return type;
         }
         set
         {
                 ChairType = value;
             }
        }
        public override ToString( )
           {
              return "Type of Chair: " + ChairType;
           }
     }
  }

PROGRAMMING EXERCISES
 1. Create a Date class with integer data members for year, month, and 

day. Also include a string data member for the name of the month. 
Include a method that returns the month name (as a string) as part of 
the date. Separate the day from the year with a comma in that method. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



254 | Chapter 4: Creating Your Own Classes 

Include appropriate constructors, properties, and methods. Override 
the ToString ( ) method to display the date formatted with slashes (/) 
separating the month, day, and year. Create a second class that instan-
tiates and test the Date class.

 2. Create a class representing a student. Include characteristics such as 
student number, first and last name, classification, and major. Write at 
least two constructors. Include properties for each of the data items. 
Include an instance method that returns a full name (with a space 
between first and last name). Create a second class that instantiates 
the first class with information about yourself. In the second class, 
create a class (static) method that displays name and major using 
the instantiated object.

 3. Create a Motorway class that can be used as extra documentation with 
directions. Include data members such as name of the highway, type 
of street (i.e., Road, Street, Avenue, Blvd., Lane, etc.), direction (i.e., E, 
W, N, or S), surface (i.e., blacktop, gravel, sand, and concrete), number 
of lanes, toll or no toll, and the party that maintains it. Write instance 
methods that return the full name of the motorway, full name of the 
motorway and whether it is toll or not, and full name of the motor-
way and the number of lanes. Also include a ToString( ) method that 
returns all data members with appropriate labels. Include enough con-
structors to make the class flexible, and experiment with using the class 
diagram to create the property members. In a second class tests the 
constructors, instance methods, and properties defined in the Motor-
way class.

 4. Create an Employee class. Items to include as data members are 
employee number, first name, last name, date of hire, job description, 
department, and monthly salary. The class is often used to display an 
alphabetical listing of all employees. Include appropriate constructors 
and properties. Provide two instance methods that return the full name. 
The first should return first name, space last name. The second method 
should return the name in a format that it could be used for sorting 
(last name, followed by a comma, space, and then first name). Override 
the ToString ( ) method to return all data members. Create a second 
class to test your Employee class.

 5. Create a Receipt class that could be used by a retail store. Items to 
include as data members are receipt number, date of purchase, customer 
number, customer name and address, customer phone number, item 
number, description, unit price, and quantity purchased. For simplicity, 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4

Programming Exercises | 255

you may assume each receipt is for a single ticket item and contains 
a single item number. Include appropriate constructors and proper-
ties plus an additional method that calculates the total cost using the 
quantity and unit price. Override the ToString ( ) method to return 
the information about the customer (name and phone number) and the 
total cost of the item purchased. Create a second class to test your 
Receipt class.

 6. Create a Trip class. Include as data members destination, distance 
traveled, total cost of gasoline, and number of gallons consumed. 
Include appropriate constructors and properties. Add additional meth-
ods that calculate miles per gallon and the cost per mile. Override the 
ToString ( ) method. Create a second class to test your Trip class.

 7. There are a number of national and state parks available to tourists. Cre-
ate a Park class. Include data members such as name of park, location, 
type of (i.e., national, state, and local) facility, fee, number of employees, 
number of visitors recorded for the past 12 months, and annual bud-
get. Write separate instance methods that (1) return a string represent-
ing name of the park, the location, and type of park; (2) return a string 
representing the name of the park, the location, and facilities available;  
(3) compute cost per visitor based on annual budget and the number of 
visitors during the last 12 months; and (4) compute revenue from fees 
for the past year based on number of visitors and fee. Also include a 
ToString( ) method that returns all data members with appropriate 
labels. Create a second class to test your Park class.

 8. Write a program that includes an Employee class that can be used 
to calculate and print the take-home pay for a commissioned sales 
employee. All employees receive 7% of the total sales. Federal tax rate 
is 18%. Retirement contribution is 10%. Social Security tax rate is 6%. 
Write instance methods to calculate the commission income, federal 
and social security tax withholding amounts and the amount withheld 
for retirement. Use appropriate constants, design an object-oriented 
solution, and write constructors. Include at least one mutator and one 
accessor method; provide properties for the other instance variables. 
Create a second class to test your design. Allow the user to enter val-
ues for the name of the employee and the sales amount for the week in 
the second class.

 9. Write a program that creates a ProfessorRating class consisting of 
professor name, professor ID, and three ratings. The three ratings are 
used to evaluate easiness, helpfulness, and clarity. Include appropriate 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



256 | Chapter 4: Creating Your Own Classes 

properties. Do not allow the ID to be changed after an object has been 
constructed. Provide a method in the ProfessorRating class to 
compute and return the overall rating average. Print all ratings and the 
average rating formatted with no digits to the right of the decimal from 
the implementation class. In a separate implementation class, allow 
the user to enter the values. Use a single class method to enter all data. 
Test the class by invoking the constructors to create instances of the 
ProfessorRating class.

 10. Create a Money class that has as data members dollars and cents. 
Include IncrementMoney and DecrementMoney instance methods. 
Include constructors that enable the Money class to be instantiated 
with a single value representing the full dollar/cent amount as well as 
a constructor that enables you to create an instance of the class by 
sending two separate integer values representing the dollar and cent 
amounts. Include an instance method that returns as a string the num-
ber of dollars, quarters, nickels, dimes, and pennies represented by the 
object’s value. Override the ToString( ) method to return the mon-
etary amount formatted with currency symbols. Create a second class 
to test your Money class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Making Decisions
IN THIS CHAPTER, YOU WILL:

 ? Learn about conditional expressions that return Boolean results and those that use 
the bool data type

 ? Examine equality, relational, and logical operators used with conditional expressions

 ? Write if selection type statements to include one-way, two-way, and nested forms

 ? Learn about and write switch statements

 ? Learn how to use the ternary operator to write selection statements

 ? Revisit operator precedence and explore the order of operations

 ? Work through a programming example that illustrates the chapter's concepts

5CHAPTER

© zeljkodan/Shutterstock.com

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



258 | Chapter 5: Making Decisions

General-purpose programming languages provide three categories of program-
ming statements. These categories are referred to as the basic programming 
constructs. They are simple sequence, selection, and iteration or loop state-
ments. Simple sequence, which you have already used, is based on the concept 
that once execution begins in the Main( ) method, it continues in a linear fash-
ion one statement after the next until the end of your program is encountered. 
You can alter this sequential flow by invoking or calling other methods. When you 
do, control transfers to that method. Inside the method, statements are again exe-
cuted using a linear flow. When you reach the end of the method, control returns 
back to the place in the calling segment where the call was initiated from. This 
chapter introduces you to a second construct, which is the selection statement. 
The selection statement is used for decision making and allows your program 
statements to deviate from the sequential path and perform different statements 
based on the value of an expression. The third basic construct, iteration, is intro-
duced in Chapter 6. Iteration, or looping, enables you to write instructions that 
can be repeated.

Methods were introduced to you in Chapter 3. In this chapter, you write methods that 
use two kinds of selection statements: if. . .else and switch. You will examine one-
way, two-way, nested, multiway, and compound forms of if statements. You explore 
situations where switch statements should be used instead of if. . .else statements. 
You learn about the ternary conditional operator that can be used in your methods to 
write selection statements. By the time you finish this chapter, your methods include 
statements that perform simple and complex decisions.

Boolean Expressions
Chapter 3 introduced you to Boolean variables, represented in C# using the bool data 
type. You learned that the bool type holds values of either true or false. Boolean 
variables are central to both selection and iteration control constructs. Their values 
can be tested and used to determine alternate paths. However, many times selection 
statements are written that do not actually use a Boolean variable, but instead pro-
duce a Boolean result.

Boolean Results
One of the great powers of the computer is being able to make decisions. You can 
write program statements that evaluate the contents of a variable. Based on the value 
of the variable, differing segments of code can be executed. Consider the following 
statements in Example 5-1. They are written in pseudocode.

You will remember that pseudocode is “near code” but does not satisfy the syntax 
requirements of any programming language.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Conditional Expressions | 259

5

EXAMPLE 5-1

 1. if (gradePointAverage is greater than 3.80)
awardType is assigned deansList

 2. if (letterGrade is equal to ‘F’)
display message “You must repeat course”

 3. if (examScore is less than 50)
display message “Do better on next exam”

The three statements in Example 5-1 have common features. First, they each include 
a conditional expression, enclosed inside parentheses. Conditional expressions pro-
duce a Boolean result. The result is either true or false. The first conditional expres-
sion is (gradePointAverage is greater than 3.80). Either  gradePointAverage is 
greater than 3.8 (true) or it is not (false); similarly, letterGrade is equal to F 
(true) or it is not (false). The same holds for examScore. It does not matter how 
close the score is to 50. The result is true when examScore is less than 50. At other 
times, it is false. That is a requirement of a conditional expression. It must evaluate 
to true or false.

The second common feature of the three statements in Example 5-1 is that they each 
include an additional statement following the conditional expression. This second 
line is executed when the conditional expression evaluates to true. No statement is 
included for any of the statements in Example 5-1 for the situation when the expres-
sion evaluates to false. The conditional expression, sometimes called “the test,” uses 
English-equivalent words to represent the comparisons to be made. This is because 
the statements in Example 5-1 are written using pseudocode or Structured English. 
You will learn how to transpose these words into C# relational and equality operators 
later in this chapter. First, conditional expressions are examined.

Conditional Expressions
A conditional expression is also referred to as a test condition. To determine, for 
example, who receives an A on an exam, a relational test is made between two oper-
ands. The first operand is an exam score, and the second is a value such as 90, or some 
predetermined cutoff value for an A. After this conditional expression is written, it 
can be used with hundreds of different exam scores to determine who gets the A.

When you write an expression to be tested, you must first determine the operands. 
Unless a bool data type is used, two operands are required for equality and relational 
tests. You saw this same requirement of two operands when you used binary arithme-
tic operators such as multiply * and divide / to perform multiplication and division.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



260 | Chapter 5: Making Decisions

answer = x * y;                // Here x and y are both operands.
examScore greater than 89      // examScore and 89 are operands.
finalGrade is equal to 'A'     // finalGrade and 'A' are operands.

To construct a conditional expression, after you identify the operands, determine 
what type of comparison to make. In Example 5-1, pseudocode demonstrated how to 
compare a variable against a value. However, to write those statements in C#, you use 
special symbols to represent the operations. The next section describes the types of 
operators that can be used.

Equality, Relational, and Logical Tests
You can use equality, relational, and logical operators in conditional expressions. To 
determine whether two values are the same, use the equality operator.

EQUALITY OPERATORS

Two equal symbol characters == are used as the equality operator in C# for comparing 
operands. No space is inserted between the symbols. Recall that the single equal  symbol 
(=), called the assignment operator, is used to assign the result of an expression to a 
variable. You cannot use the assignment operator in a selection statement in C#.

Languages such as Java and C++ allow you to use a single equal symbol inside a 
 conditional expression. This often creates an error that takes time to find. Failing to put 
two equal symbols in a conditional expression leads to an assignment being made. The 
side effect of this is that the expression always evaluates to true, unless the  assignment 
 statement assigns zero to a variable. You never have this problem in C# because C# 
issues a syntax error if you use the assignment operator in a location where the equality 
operator is expected.

An exclamation point followed by a single equal symbol (!=) represents NOT equal. 
As with the equality operator, no space is embedded between the exclamation point 
and equal symbol. Table 5-1 gives examples of the use of equality operators.

Symbol Meaning Example Result

== Equal (1 == 2) false

!= NOT equal (4 != (19 % 5)) false

© Cengage Learning

TABLE 5-1 Equality operators

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Conditional Expressions | 261

5

Notice how an arithmetic operator is part of one of the operands in the last row of 
Table 5-1. The expression 19 % 5 produces 4 as a remainder; thus 4 != (19 % 5) returns 
false. The operand can also include a call to a value-returning method. You can use 
any valid executable statement that produces or returns a value as an operand.

Consider the next conditional expression. When operand1 has a value of 25, the 
expression returns true (52 is equal to 25). When operand1 is not 25, the expression 
returns false.
(operand1 == Math.Pow(5,2))

Words are placed in a dictionary in lexicographical order. The word “Able” comes before “Ada” 
in the dictionary. The Unicode uppercase character A comes before the lowercase character a.

Although not a requirement when comparing a variable to a literal value, it is conventional to 
place the variable in the first operand location with a value in the second location.

When you use the equality operator with integral values, such as variables of type 
int, the results produced are what you would expect; however, you need to be cau-
tious of making equality comparisons with floating-point (float and double) and 
decimal types. In the following code segment, consider the compile-time initializa-
tion of aValue followed by the conditional expression:
double aValue = 10.0 / 3.0;
if (aValue == 3.33333333333333)

The expression returns false. Floating-point division does not produce a finite value. 
Because of rounding, you often get unpredictable results when comparing floating-
point variables for equality.

The == and != are overloaded operators. You learned about overloaded methods 
in Chapter 4. Overloaded operators are defined to perform differently based on their 
operands. In addition to being defined for numeric data types, == and != are defined 
for strings in C#. The operators perform a completely different function when the 
operands are of string data type in contrast to numeric type. When strings are com-
pared, the first character in the first operand is compared against the first character in 
the second operand. If they are the same, the comparison moves to the second charac-
ters. The characters are compared lexicographically using the Unicode character set.

EXAMPLE 5-2

                    ↓                            ↓
("The class name is CS158" == "The class name is cs158")

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



262 | Chapter 5: Making Decisions

Example 5-2 returns false because the uppercase character C at position 19 has a 
Unicode value of 67, whereas the lowercase c at that same position on the right side 
of the comparison operator has a value of 99.

You might want to review Appendix C, which contains a table showing a subset of the 
 Unicode characters mapped to their numeric equivalent value.

Many languages require you to use special string methods, such as strcmp( ), to 
make equality comparisons on string variables. C# makes it much easier for you to 
write instructions comparing the contents of string variables for equality.

In Example 5-2, up to position 19, the strings are considered equal. When the charac-
ters at position 19 are compared, the result of the expression (false) is determined, 
and no additional comparison beyond position 19 is needed.

RELATIONAL OPERATORS

Relational operators allow you to test variables to see if one is greater or less 
than another variable or value. Table 5-2 lists the relational symbols used in C#. 
The  symbol’s meaning and a sample expression using each operator are included.

Symbol Meaning Example Result

> Greater than (8 > 5) true

(1 > 2) false

< Less than (1 < 2) true

(‘z’ < ‘a’) false

>= Greater than or equal (100 >= 100) true

(14 >= 7) true

<= Less than or equal (100 <= 100) true

(27 <= 7) false

© Cengage Learning

TABLE 5-2 Relational symbols

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Conditional Expressions | 263

5

For comparing numbers, the relational operators <, >, <=, and >= produce a 
 straightforward result, as given in Table 5-2. When you compare characters declared 
using char, they are compared lexicographically using the Unicode character set. 
A comparison to determine whether the lowercase character z is less than a produces 
false, because z has a Unicode decimal equivalent of 122 and a has a value of 97.

You cannot compare string operands using the relational symbols <, >, >=, or <= 
in C#.

The string class in C# has a number of useful methods for dealing with strings. You 
learn about these methods in Chapter 7. The Compare( ) method is used for relational 
comparisons of strings. If you want to look ahead, many methods of the string class 
are listed in Table 7-3.

Remember from Chapter 2 that strings in C# are reference types. Instead of the 
string character values being stored in binary form at the memory location of the 
variable’s identifier, the memory location of a string identifier contains the address 
in which the string of characters is stored. Normally when you compare reference 
type variables, you get a comparison of the addresses.

For debugging, it is often easier to follow and read simple relational comparisons 
than compound comparisons. You will study this in more detail in a later section in 
this chapter. With additional thought, most numeric comparisons involving the com-
pound relational operators of <= and >= can be revised. By simply adding or subtract-
ing from the endpoint, the comparison can be written in a simpler form. Consider the 
following two statements in Example 5-3, which yield exactly the same comparison.

EXAMPLE 5-3

(examScore >= 90)    // Avoid compounds if you can.
(examScore > 89)     // Better test — does the same as above.

Both of the expressions in Example 5-3 return true for integer values larger than 89. 
The first line contains a compound expression (examScore greater than 90 or 
examScore equal to 90). By simply subtracting 1 from 90, you can write a simpler 
conditional expression, as shown in Line 2 of Example 5-3.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



264 | Chapter 5: Making Decisions

Table 5-3 in Example 5-4 presents several conditional expressions. Both relational and 
equality operators are used. A result of the expression with an explanation is included.

EXAMPLE 5-4

For each expression example, use the following declaration of variables:
int aValue = 100,
    bValue = 1000;
char cValue = 'A';
string sValue = "CS158";
decimal money = 50.22m;
double dValue = 50.22;

Develop good style by surrounding operators with a space. This includes arithmetic, logical, 
and relational symbols. Readability is enhanced if you type a space before and after every 
operator, for example, x > 5; y == z; aValue = bValue + 3.

Expression Result Explanation

(money == 100.00) Syntax error Type mismatch. money is decimal, 100.00 is 
double. Receive an error message that says 
“Operator ‘==’ cannot be applied to double 
and decimal”

(money == 50.22m)
(money != dValue)

true
Syntax error

Must suffix the decimal number with M or m. 
Type mismatch. money is decimal, dValue 
is double. Receive an error message that says 
“Operator ‘==’ cannot be applied to double 
and decimal”

(aValue > bValue) false 100 is not greater than 1000

(sValue < "CS") Syntax error < cannot be used with string operand

(aValue > 
(bValue −999))

true 100 is greater than 1

TABLE 5-3 Results of sample conditional expressions

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Conditional Expressions | 265

5

In C#, the == and != are defined to work with strings to compare the characters 
lexicographically. This is not the case for other reference variables. In addition, the 
relational operators such as <, >, <=, and >= are not defined to work with strings. The 
relational operators can be used with char data types.

LOGICAL OPERATORS

Conditional expressions can be combined with logical conditional operators to form 
complex expressions. The logical operators in C# are &, &&, |, ||, and !. The 
operands to logical operators must be Boolean expressions. Just as you communicate 
a compound expression in English, you can combine expressions with AND or OR. 
C# uses two ampersands && and two pipes || to represent AND and OR, respec-
tively. These two operators are called the conditional logical operators. To add two 
points to examScore that range between 70 and 90, you might write the following 
pseudocode:

if (examScore > 69 AND examScore < 91)
    examScore = examScore + 2

When expressions are combined with AND, both expressions must evaluate to true 
for the entire compound expression to return true. As given in Table 5-4, unless 
both expression operands are true, the compound expression created using the && 
 evaluates to false.

Expression Result Explanation

(aValue > dValue) true Integer aValue is converted into double and 
compared correctly

(aValue < money) false Integer aValue is converted into decimal and 
compared correctly

(cValue = ‘F’) Syntax error Cannot use single equal symbol (=) for comparison. 
Single equal symbol (=) is used for assignment

(cValue < 'f') true Unicode A has a value of 65; Unicode f has a value 
of 102

© Cengage Learning

TABLE 5-3 Results of sample conditional expressions (continued )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



266 | Chapter 5: Making Decisions

When combining logical operators with relational tests, developers often make the 
mistake of omitting the variable for the second and subsequent conditions being 
tested. In English, you would probably say, “if examScore is greater than 69 and less 
than 91.” You normally do not repeat the variable being tested. In C#, you must repeat 
the variable. It is incorrect to write:
(examScore > 69 < 91)                       // Invalid

It is also incorrect to write:
(69 < examScore < 91)                       // Invalid

The correct way to write the expression is
((examScore > 69) && (examScore < 91))      // Correct way

Expression1 Expression2 Expression1 && Expression2

true true true

true false false

false true false

false false false

© Cengage Learning

TABLE 5-4 Conditional logical AND (&&)

Table 5-4 is sometimes referred to as a truth table.

It is not necessary to use the two innermost parentheses. Later in this chapter, in Table 5-7, 
you explore the order of operations. The relational operators (< and >) have a higher 
 precedence than the logical && and || operators, meaning that the comparisons would 
be performed prior to the &&. Including the parentheses adds to the readability.

As presented in Table 5-5, || only returns a false result when both of the expres-
sions or operands are false. At all other times, when either one of the expressions 
or operands evaluates to true, the entire compound expression evaluates to true.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Conditional Expressions | 267

5
Compound expressions using the || must also have a complete expression on both 
sides of the logical symbol. The following is invalid:
(letterGrade == 'A' || 'B')                          // Invalid

The correct way to write the conditional expression is
((letterGrade == 'A') || (letterGrade == 'B'))       // Correct way

Expression1 Expression2 Expression1 || Expression2

true true true

true false true

false true true

false false false

© Cengage Learning

TABLE 5-5 Conditional logical OR (||)

Parentheses can be added to conditional expressions to improve readability.

The ! symbol is the logical negation operator. It is a unary operator that negates 
its operand and is called the NOT operator. It returns true when the expression or 
operand is false. It returns false when the expression or operand is true. Given 
the following declaration:
char letterGrade = 'A';

When the NOT operator (!) is placed in front of the conditional expression, the state-
ment returns false, as shown in the following line:
( ! (letterGrade == 'A'))

The conditional expression first yields a true result (letterGrade is equal to 
'A'). Adding the NOT operator ! negates that result. Thus, the expression evaluates 
to false.

As presented in Table 5-6, the NOT operator ! returns the logical complement, or 
negation, of its operand.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



268 | Chapter 5: Making Decisions

This section on compound conditions is included to give you an understanding of read-
ing complex expressions. As you learn in the following sections, you can often avoid 
writing complex expressions that use logical operators with the use of a multiway or 
nested selection statement. This might take more thought than just combining a num-
ber of conditional expressions with a logical operator. However, because compound con-
ditions can be difficult to debug, you should explore other options whenever possible.

Short-Circuit Evaluation
In C#, the && and || operators are also called the short-circuiting logical operators. 
These operators enable doing as little as is needed to produce the final result through 
short-circuit evaluation. With short-circuit evaluation, as soon as the value of the entire 
expression is known, evaluation stops. A conditional expression is evaluated from left to 
right. With expressions involving &&, if the first evaluates as false, there is no need to 
evaluate the second. The result will be false. With expressions involving ||, if the first 
evaluates as true, there is no need to evaluate the second. The result will be true. Using 
the initialized variables, consider the expressions that follow in Example 5-5.

EXAMPLE 5-5

int examScore = 75;
int homeWkGrade = 100;
double amountOwed = 0;
char status = 'I';
:              // : added to indicate more lines follow
((examScore > 90) && (homeWkGrade > 80))    // Line 1 – false
((amountOwed == 0) || (status == 'A'))      // Line 2 – true

Expression ! Expression

true false

false true

© Cengage Learning

TABLE 5-6 Logical NOT (!)

As with the logical && and ||, the ! operator can also be difficult to follow. It is easier 
to debug a program that includes only positive expressions. An extra step is required in 
problem solving if you have to analyze a result that has been reversed or negated.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Conditional Expressions | 269

5

When the first part of the expression (examScore > 90) in Line 1 evaluates to false, 
there is no need to evaluate the second. The result of the entire expression is false. 
If the first part of the expression in Line 1 evaluates to true, the second expression 
has to be evaluated. Both must be true for the entire expression to evaluate to true.

Line 2 is a logical OR; thus, if the first part of the expression evaluates to true, there 
is no need to evaluate the second. The result of the entire expression is true as soon 
as one of them evaluates to true. With short-circuit evaluation, the computer is able 
to stop evaluating as soon as the value of the expression is known.

C# also includes the & and | operators. They both compute the logical AND or OR of 
their operands, just as the && and || do. The difference between them is that && and 
|| do short-circuit evaluation, whereas & and | do not. They are useful for situations 
that involve compound or complex expressions in which you want the entire expres-
sion to be performed, regardless of whether the result of the conditional expression 
returns true. Consider the following:
((aValue > bValue) & (count++ < 100))

Using the logical AND (&) always results in 1 being added to count, regardless of 
whether aValue is greater than bValue. Replacing the & with && produces the same 
result for the entire expression; however, the side effect of incrementing count might 
not happen. Using the && and doing short-circuit evaluation would only enable 1 to 
be added to count when the first part of the expression (aValue > bValue) evalu-
ates to true. With &&, if (aValue > bValue) evaluates to false, the second expres-
sion is not executed.

Because of the visual similarities between the symbols (&, && and |, ||), their use can lead 
to code that can be difficult to debug. You might want to add comments explaining the 
 conditional expressions.

Consider the code shown in Example 5-6:

EXAMPLE 5-6

int x = 0,
    y = 0,
    z = 0;
if (x > 1 && ++y > 0)
    z += 1;
WriteLine("Y is {0}, Z is {1}", y, z);

The output for Example 5-6 is
Y is 0, Z is 0

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



270 | Chapter 5: Making Decisions

If you replace the && with a single ampersand (&), as shown in Example 5-7:

EXAMPLE 5-7

if (x > 1 & ++y > 0)

It is OK to test the identifier to see if it is true. This is valid and might even be more 
 readable, especially in situations where the variable’s identifier is not very descriptive.

the variable y gets incremented by one producing the output shown here:
Y is 1, Z is 0

Boolean Data Type
A variable declared to be of bool type holds the value of true or false. When a bool 
variable is used in a conditional expression, you do not have to add symbols to compare 
the variable against a value. You simply write the bool variable name as the expression. 
Take, for example, the Boolean variable declared as shown in the following code snippet:
bool salariedEmployee;

After being declared, a conditional expression could be used to determine whether 
salariedEmployee held the values true or false. The conditional expression 
would read:
if (salariedEmployee)

It is not necessary to write if (salariedEmployee is equal to true) because 
 salariedEmployee is defined as a bool type.

BOOLEAN FLAGS

Boolean data types are often used as flags to signal when a condition exists or when 
a condition changes. To create a flag situation, declare a bool data type variable and 
initialize it to either true or false. Then use this variable to control processing. As 
long as the value of the Boolean variable remains the same, processing continues. 
When some planned condition changes, the Boolean data type is changed and pro-
cessing stops. For example, moreData is declared as a Boolean, is initialized to true, 
but can be changed to false when all of the data has been processed.
bool moreData = true;
:                     // Other statement(s) that might change
:                     // the value of moreData to false.
if (moreData)         // Execute statement(s) following the
                      // if when moreData is true.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



if. . .else Selection Statements | 271

5

The expressions you have seen thus far used English-equivalent words for the 
conditional expression. In the following sections, you examine operators used 
for conditional expressions and learn how to implement selection statements 
in C#.

if. . .else Selection Statements
The if selection statement, classified as one-way, two-way, or nested, is used in 
combination with a conditional expression. The if statement facilitates specifying 
alternate paths based on the result of the conditional expression. The expressions 
might involve values entered at run time or calculations made using data. The sec-
tions that follow illustrate how you can include these types of selection statements in 
your programs.

One-Way if Statement
A one-way selection statement is used when an expression needs to be tested. When 
the result of the expression is true, additional processing is performed. The general 
format for a one-way if statement is

 if (conditional_expression)
     statement;   // Actions to be performed when the
                  // expression evaluates to true.

In C#, the expression must be enclosed in parentheses. Notice that no semicolon is 
placed at the end of the line containing the expression. The expression must produce 
a Boolean result when evaluated—a result that can be evaluated as true or false. 
Thus, the expression can be a Boolean variable or a conditional expression involving 
two or more operands. With a one-way if statement, when the expression evaluates 
to false, the statement immediately following the conditional expression is skipped 
or bypassed. No special statement(s) is included for the false result. Execution con-
tinues with the segment of code following the if statement.

If the expression evaluates to true, the statement is performed and then execution 
continues with the same segment of code following the if statement as when the 
expression evaluates to false.

With the preceding syntax illustration, statement represents the action(s) that takes 
place when the expression evaluates as true. To associate more than one statement 
with the true result, enclose the statements inside curly braces. These statements 
are referred to as the true statements. By enclosing the true statements inside curly 
braces, you are marking the beginning and ending of the statements to be executed 
when the expression evaluates to true.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



272 | Chapter 5: Making Decisions

Consider Example 5-8.

Some programmers enclose all statements associated with if statements in curly braces. 
This includes the single-line true statements. This way, they do not forget to surround the 
body with { }. You are encouraged as a beginning programmer to follow this guideline.

When examScore is equal to 89 or any smaller value, the expression evaluates to false, 
and the true statements inside the curly braces are skipped. The  WriteLine( ) 
method following the closing curly brace is executed. When  examScore is equal to 
95, the true statements are executed and then the WriteLine( ) following the clos-
ing curly brace is executed.

Consider the following revision to Example 5-8:

if (examScore > 89)
                        // Missing opening curly brace '{'
    grade = 'A';
    WriteLine("Congratulations — Great job!");
                        // Missing closing curly brace '}'
WriteLine("I am displayed, whether the expression " +
          "evaluates true or false");

Here, WriteLine("Congratulations — Great job!"); is always executed. 
Indentation is for readability only. If the curly braces are omitted, no syntax error or 
warning is issued. The congratulations message would be displayed for all values of 
examScore (even examScore of zero).

The flow of execution in a one-way if statement is illustrated in Figure 5-1. When 
the expression evaluates to true, the true statement(s) is (are) executed. As the fig-
ure shows, execution continues at the same location whether the expression evaluates 
to true or false.

EXAMPLE 5-8

if (examScore > 89)
{
     grade = 'A';
     WriteLine("Congratulations — Great job!");
}
WriteLine("I am displayed, whether the expression " +
          "evaluates true or false");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



if. . .else Selection Statements | 273

5

EXAMPLE 5-9

A company issues $1000.00 bonuses at the end of the year to all employees who have 
sold over $500,000.00 in products. The following code segment is a program that 
allows users to enter their sales figure. It determines whether a bonus is due and 
displays a message indicating whether a bonus is awarded.

/* BonusCalculator.cs   Author: Doyle
 * Allows the user to input their
 * gross sales for the year. This value
 * is checked to determine whether
 * a bonus is in order.
 **************************************/

using System;
using static System.Console;

namespace BonusCalculatorApp

FIGURE 5-1 if One-way statement

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



274 | Chapter 5: Making Decisions

{
     class BonusCalculatorApp
     {
       static void Main( )
       {
           string inValue;
           decimal salesForYear;
           decimal bonusAmount = 0M;
           WriteLine("Do you get a bonus this year?");
           WriteLine( );
           WriteLine("To determine if you are due one,");
           Write("enter your gross sales figure: ");
           inValue = ReadLine( );
           salesForYear = Convert.ToDecimal(inValue);
           if (salesForYear > 500000.00M)
           {
               WriteLine( );
               WriteLine("YES. . .you get a bonus!");
               bonusAmount = 1000.00M;
           }
            WriteLine("Bonus for the year: {0:C}", bonusAmount);
            ReadKey( );
       }
     }
}

The special symbols m and M stand for money. Numeric literals used with decimal 
 variables require the M; otherwise, a syntax error message is issued.

Because this application involves money, the new data type, decimal, is used to hold the 
value entered and the bonus amount. Notice how the special suffix of M is placed at the 
end of the initialization when the variable is declared. The declaration is repeated here:
decimal bonusAmount = 0M;

It is also necessary to place M at the end of the decimal numeric literal used as part 
of the expression being evaluated:
if (salesForYear > 500000.00M)

It is again necessary to include the M when an assignment statement stores the 
decimal 1000.00M in the bonusAmount memory location:
bonusAmount = 1000.00M;

As you examine Example 5-9, note a call to a method in the Convert class. In  Chapter 3, 
you were introduced to the Parse( ) method to convert values stored in string vari-
ables into numeric types. You can also use the Convert class for this conversion. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



if. . .else Selection Statements | 275

5

Convert is in the System namespace and has methods for converting one base type 
into another base type. The Convert.ToDecimal( ) method was used in Example 5-9 
to change the inputted string value into a decimal value. To convert into an integer, 
use Convert.ToInt32( ), and to convert into a double, use Convert.ToDouble( ). 
If you are using Visual Studio, make sure to use the IntelliSense feature. You can explore 
the many methods and their overloads available in the Convert class.

For Example 5-9, the output produced when the user enters 600000 is shown in 
 Figure 5-2.

FIGURE 5-2 BonusApp with salesForYear equal to 600000.00

FIGURE 5-3 BonusApp with salesForYear equal to 500000.00

The problem definition indicates that sales must be over $500,000.00 before a bonus 
is awarded. The output produced when 500000.00 is entered is shown in Figure 5-3.

Beginning programmers often mistakenly place a semicolon at the end of the  parenthesized 
expression being evaluated. If you do this, your program runs, and no syntax error mes-
sage is issued. However, you are creating a null (empty) statement body in place of the 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



276 | Chapter 5: Making Decisions

true statement. The logic is basically indicating, “Do nothing when the expression eval-
uates to true.” If you are using Visual Studio and place a semicolon in the wrong place, 
as shown in Figure 5-4, you get a green squiggly indicator, alerting you to the potential 
problem. Most other language IDEs do not warn you that this problem might exist.

Notice that bonusAmount was initialized when it was declared. Without this 
 initialization, a syntax error, “Use of unassigned local variable. . .” would be issued when 
bonusAmount is referenced below the if statement. This is because there is the 
 possibility that the statements associated with the if statements, where bonusAmount 
gets its value, may not be executed. Initializing the variable kept that error from happening.

FIGURE 5-4 IntelliSense pop-up message

In Visual Studio, when you move your pointer over the red warning, IntelliSense pops 
up the message, “Possible mistaken empty statement.”

The one-way if statement does not provide an alternate set of steps for a situation in 
which the expression evaluates to false. That option is available with the two-way 
if statement.

Two-Way if Statement
An optional else clause can be added to an if statement to provide statements to 
be executed when the expression evaluates to false. With a two-way if statement, 
either the true statement(s) is (are) executed or the false statement(s), but not both. 
After completing the execution of one of these statements, control always transfers to 
the statement following the if block. The general format for a two-way if statement is

 if (conditional_expression)     // No semicolon is placed on this line
     statement;              // Executed when expression is true
 else
     statement;              // Executed when expression is false

Notice that there is no need to repeat the expression with the else. Many beginning 
programmers write the following:
if (aValue == 100)
    WriteLine("The value is 100");
else (aValue != 100) // INCORRECT! No need to repeat the expression
    WriteLine("The value is not 100");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



if. . .else Selection Statements | 277

5

The correct way to include the else is to place it on a line by itself without any 
expression. On the lines that follow the else, include the statements that are to be 
performed when the expression evaluates to false. Here is the correct way to write 
the selection statement:

if (aValue == 100)
    WriteLine("The value is 100");
else
    WriteLine("The value is not 100");

As with the one-way if statement, you can include more than one statement by 
enclosing statements in curly braces.

Readability is important. Notice the indentation used with one- and two-way if statements. 
The statements are aligned with the conditional expression. Smart indenting can be set in 
Visual Studio, so that the alignment is automatic.

Figure 5-5 illustrates the flow of execution in a two-way if statement.

FIGURE 5-5 Two-way if statement

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



278 | Chapter 5: Making Decisions

When the expression evaluates to true, the true statements are executed. As the fig-
ure shows, execution continues at the same location for both, whether the true state-
ments are executed or the false statements are executed. Consider Example 5-10.

EXAMPLE 5-10

if (hoursWorked > 40)
{
    payAmount = (hoursWorked − 40) * payRate * 1.5 + 
                 payRate * 40;
    WriteLine("You worked {0} hours overtime.",
               hoursWorked − 40);
}
else
    payAmount = hoursWorked * payRate;
WriteLine("I am displayed, whether the expression " +
          "evaluates true or false");

As shown in Example 5-10, it is permissible to have a block of statements with the 
true portion and a single statement for the false portion. No curly braces are 
required for the false statement in this example; however, adding the curly braces 
can improve readability.

TryParse( ) Method
In previous chapters, you used the Parse( ) method to convert a string value sent as an 
argument into its equivalent numeric value. You also saw that members of the Convert 
class could be used to do the conversion. However, if the string value being converted 
is invalid with either of those options, your program crashes. An exception is thrown. 
While you were testing your programs, you may have already experienced exceptions 
being thrown. If you enter, for example, an alphabetic character when a number is 
expected and then attempt to parse the value entered into a number, your program 
stops execution. If you enter too large of a value and attempt to parse it, your program 
crashes. You will read more about debugging and handling exceptions in Chapter 11.

Now that you have been introduced to if statements, you could test the value prior to 
doing the conversion to avoid having an exception thrown. Another option is to use 
the TryParse( ) method. The TryParse( ) method was mentioned in Chapter 3. 
It is like the Parse( ) method, except TryParse( ) does not throw an exception 
when the conversion fails. The TryParse( ) method converts the string represen-
tation of a value into its equivalent value of a different type. It also returns a Bool-
ean return value indicating whether the conversion succeeded or not. If you examine 
.NET documentation, you would find that the heading for the TryParse( ) method 
for the bool data type is as shown in Example 5-11.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



if. . .else Selection Statements | 279

5

EXAMPLE 5-11

public static bool TryParse(string someStringValue, out int result)

Each of the built-in data types has a TryParse( ) method. char.TryParse( )  
converts the value of the specified string into its unicode character equivalent;  
bool.TryParse( ) converts the specified string representation of a logical value into 
its Boolean equivalent. There are also TryParse( ) methods for decimal, double, 
and float. With each of these, in addition to doing the conversion, a Boolean value is 
returned indicating whether the conversion was successful or not.

Notice that the TryParse( ) method returns a boolean indicating whether it was suc-
cessful or not. After the TryParse( ) method is executed, result either holds the 
integer value equivalent to the data stored in the string argument,  someStringValue, 
or result stores a zero. If the string variable’s data is in the correct format and range, 
the conversion succeeds. Zero is only stored in someStringValue when the conver-
sion fails. In situations where an alphabetic character is stored in someStringValue, 
the conversion fails, false is returned, and zero is stored in result. The conversion 
fails whenever the someStringValue parameter is not of the correct format, is null 
or has no value, or represents a value that can’t be stored in the result parameter, such 
as the number is less than MinValue or greater than MaxValue allowable for the 
data type.

As you review Example 5-11, notice that the parameter result has an out modifier 
listed before the data type. out parameters are output-only parameters meaning that 
there is no value in result when the method is invoked. The parameter is considered 
initially unassigned. After the TryParse( ) method is executed, the out parameter 
result will hold either the converted value or zero.

When you input data, instead of just assuming the user will always enter valid char-
acters, you should check and make sure you have valid data before attempting to 
convert from the string to the appropriate equivalent value. One way to do this is 
include an if statement and test the Boolean value returned from TryParse( ) as 
illustrated in Example 5-12. When TryParse( ) returns false, you know there is a 
problem. The conversion was not successful.

EXAMPLE 5-12

if (int.TryParse(inValue, out v1) == false)
    WriteLine("Did not input a valid integer − 0 stored in v1");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



280 | Chapter 5: Making Decisions

The statement in Example 5-12 attempts to convert the string value stored in inValue 
into an integer, storing the result of the conversion in the variable v1. If it is success-
ful, the value is stored in v1 and TryParse( ) returns true. If there is a problem 
with the data, 0  is stored in v1 and TryParse( ) returns false.

Consider Example 5-13, which uses a two-way if statement in a class method. The 
user is prompted to enter two values. A two-way if statement is used to determine 
which is the largest. That value and its square root are displayed.

Recall that when you use the special out and ref modifiers as part of the parameter, they 
must appear as part of the heading for the method and also in the call to the method. You saw 
the heading for one of the TryParse( ) methods in Example 5-11. It included the out 
modifier. Example 5-12 illustrates a call to TryParse( ). It also includes the out modifier.

EXAMPLE 5-13

/* LargestValue.cs           Author: Doyle
 * Allows the user to input two values.
 * Determine the largest of the two values.
 * Prints the largest and its square root.
 ***************************************/

using System;
using static System.Console;

namespace LargestValue
{
   class LargestValue
   {
       static void Main( )
       {
            int value1,
                value2,
                largestOne;
            InputValues(out value1, out value2);
            largestOne = DetermineLargest(value1, value2);
            PrintResults(largestOne);
            ReadKey( );
       }
       public static void InputValues(out int v1, out int v2)
       {
            string inValue;
            Write("Enter the first value: ");
            inValue = ReadLine( );
            if (int.TryParse(inValue, out v1) == false)
                WriteLine("Did not input a " +
                          "valid integer − 0 stored in v1");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



if. . .else Selection Statements | 281

5

            Write("Enter the second value: ");
            inValue = ReadLine( )
            if (int.TryParse(inValue, out v2) == false)
                    WriteLine("Did not input a " +
                              "valid integer − " +
                              "0 stored in v2");
       }
       public static int DetermineLargest(int value1, int value2)
       {
            int largestOne;    // Local variable declared to
                                  // facilitate single exit from method
            if (value1 > value2)
            {
               largestOne = value1;
            }
            else
            {
               largestOne = value2;
            }
            return largestOne;
       }
       public static void PrintResults(int largestOne)
       {
            WriteLine( );
            WriteLine("The largest value entered was " 
                      + largestOne);
            WriteLine("Its square root is {0:f2}",
                      Math.Sqrt(largestOne));
            ReadKey( );
       }
    }
}

When you are writing selection statements, try to avoid repeating code. Instead of 
duplicating statements for both the true and false statements, pull out common 
statements and place them before or after the selection statement. You might have 
been tempted to solve the problem presented for Example 5-13 with the following 
two-way if statement:
if (value1 > value2)
{
    WriteLine("The largest value entered was " + value1);
    WriteLine("Its square root is {0:f2}", Math.Sqrt(value1));
}
else
{
    WriteLine("The largest value entered was " + value2);
    WriteLine("Its square root is {0:f2}", Math.Sqrt(value2));
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



282 | Chapter 5: Making Decisions

The calls to the WriteLine( ) method for displaying the largest value and its square 
root are included only once in Example 5-13. They appear twice in the last segment.

Another solution that is not modularized, but eliminates the repeating code, is as 
follows:
int largest;
if (value1 > value2)
{
    largest = value1;
}
else
{
    largest = value2;
}
WriteLine("The largest value entered was "+ largest);
WriteLine("Its square root is {0:f2}",
          Math.Sqrt(largest));

All three ways of writing the selection statement produce the same output. The 
modularized version in Example 5-13 is the preferred approach of the three. In this 
situation, you may not see a clear advantage of one approach over the other. Modular-
ization becomes more important as the complexity of a computer program increases. 
Figure 5-6 shows the output produced when the program is run with 25 entered for 
the first value and 15 entered for the second value.

FIGURE 5-6 Output from LargestValue problem

What does the program in Example 5-13 print when the values entered are the same?

Because value1 is not greater than value2, the else statement is executed and 
value2 is stored in largestOne. If you want to display a message indicating their 
values are the same, you need to add one more conditional expression as part of the if 
statement. This additional test would be to determine whether value2 is greater than 
value1. The expression would be added as the else statement. Adding this second 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



if. . .else Selection Statements | 283

5

test would enable you to include a second else statement. The last else would not 
be entered unless both of the conditional expressions evaluated to false—and in this 
case, the values are the same. If you make this revision, the logic would need to be 
revised for displaying the largest value. One approach would be to return the nega-
tive value of value1 or value2, when they have the same values. It does not matter 
which one gets returned because their values are the same. The PrintResults( ) 
method could test the largestOne variable. When it is negative, a message could be 
printed indicating that the values are the same. The additional test is as follows:

if (value1 > value2)
{
    largestOne = value1;
}
else
    if (value1 < value2)
    {
        largestOne = value2;
    }
    else
       largestOne = −(value1);

Sometimes, a single variable might need to be tested for multiple values. A nested 
if. . .else statement, like that described previously, can be used for this. You might 
also want to test a different variable inside the true (or false) statements. A nested 
if. . .else statement is also used for this. You will learn more about nested if. . .else 
statements in the following section.

Nested if. . .else Statement
Any statement can be included with the statements to be executed when the expres-
sion evaluates to true. The same holds for the false statements. Therefore, it is 
acceptable to write an if within an if. Many different expressions can be evaluated 
in a single if statement. When you place an if within an if, you create a nested 
if. . .else statement, also referred to as a nested if statement.

With a nested if statement, multiple expressions can be tested. As long as the expressions 
evaluate to true, the true statements continue to be evaluated. When another if state-
ment is one of the statements in the block being executed, another evaluation is performed. 
This continues as long as additional if statements are part of the true statements.

As with the two-way, only one segment of code is executed. You never execute the 
true and its associated false statements. When the block is completed, all remaining 
conditional expressions and their statements are skipped or bypassed. After complet-
ing the execution of that block, control always transfers to the statement immediately 
following the if block. The syntax for a nested if. . .else statement, which follows 
that of the two-way, is repeated here. The difference is that with a nested if. . .else, 
the statement might be another if statement, as is illustrated next.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



284 | Chapter 5: Making Decisions

 if (conditional_expression)    // No semicolon placed on this line
     statement;                 // Could be another if statement
 else
     statement;                 // Could be another if statement

In a nested if. . .else, the inner if statement is said to be nested inside the outer if. 
However, the inner if may also contain another if statement. There are no restric-
tions on the depth of nesting. The limitation comes in the form of whether you and 
others can read and follow your code. The mark of a good program is that it is readable.

When you are designing a solution that requires a nested if. . .else, sometimes it is easier 
to develop your algorithm if you graphically map out the different options. A flowchart 
could be used. Another option is a decision tree, which is a design tool that allows you 
to represent complex procedures visually. Nodes are used to represent decision points, 
and lines branch out from the nodes to represent either further conditions or, eventually, 
the action to be taken based on the conditions expressed to the left. Figure 5-7 shows a 
decision tree used to calculate bonus for both hourly and salaried employees. Hourly 
employees working more than 40 hours per week receive $500. Other hourly employees 
get $100. Salaried employees who have been employed longer than 10 years receive $300, 
while the others receive $200. Figure 5-7 illustrates this situation in a decision tree.

FIGURE 5-7 Bonus decision tree

Example 5-14 shows how a nested if. . .else is used to determine the bonus amount 
illustrated in Figure 5-7.

EXAMPLE 5-14

// For hourlyEmployees working more than 40 hours, a bonus of $500
// is issued. If hourlyEmployee has not worked more than 40 hours,
// issue a bonus of $100. For those non-hourlyEmployees, issue a
// $300 bonus if they have been employed longer than 10 years;
// otherwise, issue a $200 bonus.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



if. . .else Selection Statements | 285

5

bool hourlyEmployee;
double hours,
       bonus;
int yearsEmployed;
if (hourlyEmployee)
   if (hours > 40)
       bonus = 500;
   else
       bonus = 100;
else
   if (yearsEmployed > 10)
       bonus = 300;
   else
       bonus = 200;

No equality operator is needed in the first conditional expression. That is because a 
Boolean variable, hourlyEmployee, is used.

The logic for Example 5-14 could be written using four one-way if statements, as 
shown in Example 5-15. Here, each statement uses the && operator.

EXAMPLE 5-15

if (hourlyEmployee && hours > 40)   // Less desirable solution.
    bonus = 500;                    // Example 5-14 preferred.
if (hourlyEmployee && hours <= 40)
    bonus = 100;
if ((!hourlyEmployee) && yearsEmployed > 10)
    bonus = 300;
if ((!hourlyEmployee) && yearsEmployed <= 10)
    bonus = 200;

The single nested if. . .else solution in Example 5-14 is much more efficient than 
the four statements in Example 5-15. In Example 5-15, every one of the statements 
is evaluated, even if the first one evaluates to true. In Example 5-14, when the first 
two lines evaluate to true, 500 is assigned to bonus and no additional evaluations 
are performed. Notice how a statement written using a logical && can be rewritten as 
a nested if. . .else.

if (hourlyEmployee && hours > 40)

produces the same result as

if (hourlyEmployee)
    if (hours > 40)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



286 | Chapter 5: Making Decisions

EXAMPLE 5-16

if (aValue > 10)                   Line 1
if (bValue == 0)                   Line 2
amount = 5;                        Line 3
else                               Line 4
if (cValue > 100)                  Line 5
if (dValue > 100)                  Line 6
amount = 10;                       Line 7
else                               Line 8
amount = 15;                       Line 9
else                               Line 10
amount = 20;                       Line 11
else                               Line 12
if (eValue == 0)                   Line 13
amount = 25;                       Line 14

As shown in Example 5-17, the else in Line 12 matches the if in Line 1; Line 10 
matches Line 5. What value would be stored in amount if aValue, bValue, cValue, 
dValue, and eValue were all equal to 0? Did you get 25 when you traced the logic? 
Look at Example 5-17. By properly lining up the else clauses with their correspond-
ing if clauses, the answer can be determined much more quickly.

EXAMPLE 5-17

if (aValue > 10)                   //  Line 1
    if (bValue == 0)               //  Line 2
        amount = 5;                //  Line 3
    else                           //  Line 4
       if (cValue > 100)           //  Line 5
           if (dValue > 100)       //  Line 6
               amount = 10;        //  Line 7
           else                    //  Line 8
               amount = 15;        //  Line 9
       else                        //  Line 10
           amount = 20;            //  Line 11
else                               //  Line 12
   if (eValue == 0)                //  Line 13
       amount = 25;                //  Line 14

When programming a nested if.  .  .else statement, it is important to know which 
else matches which if statement. The rule for lining up, or matching, elses is that an 
else goes with the closest previous if that does not have its own else. By properly 
lining up the else clauses with their corresponding if clauses, you encounter fewer 
logic errors that necessitate debugging. Example 5-16 illustrates the importance of 
properly lining up if and else clauses. Can you match each else with the correct if?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



if. . .else Selection Statements | 287

5

The rule indicates that an else matches up with the closest previous if that does not 
already have an else attached to it. However, you can use braces to attach an else to 
an outer if, as shown in Example 5-18.

Be careful about ending a nested if statement with an if that doesn't have an else 
portion. When the statement involves an identifier that doesn't have a value, a syntax error 
“Use of unassigned local variable. . .” will be issued.

EXAMPLE 5-18

if (average > 59)
{
    if (average < 71)
        grade = 'D';
}
else
   grade = 'F';

Here average is defined as int. The braces enclose the true statement associated 
with the expression of (average > 59). The inner if statement is ended as a state-
ment when the closing curly brace is encountered.

Consider the statements in Example 5-19 that determine a grade based on testing the 
value in average.

EXAMPLE 5-19

if (average > 89)
    grade = 'A';
else
    if (average > 79)
        grade = 'B';
    else
        if (average > 69)
            grade = 'C';
        else
            if (average > 59)
                grade = 'D';
            else
                grade = 'F';

Pay particular attention to the conditional expressions in Example 5-19. It is not nec-
essary for the second expression to be a compound expression using &&. You do not 
have to write if (average > 79 && average <= 89). Make sure you understand 
that execution would never have reached the expression of (average > 79) unless 
the first expression was false. If the average is not greater than 89, it must be 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



288 | Chapter 5: Making Decisions

either equal to 89 or less than 89. Similar logic would be developed when average is 
defined as a floating point data type. Instead of the first conditional expression read-
ing if (average > 89), it might read if (average > 89.4999). The second condi-
tional expression would then read if (average > 79.4999), and so on.

As you reviewed Examples 5-17 and 5-19, you probably wondered what happens when 
you keep indenting. Your statements soon start to go off to the right, out of sight.

A solution to this problem used by many programmers is to write a series of else. . .if 
statements when they have a long, nested, multiway statement.

The lines in Example 5-19 could be written with a series of else. . .if statements, as 
shown in Example 5-20. This prevents the indentation problem.

EXAMPLE 5-20

if (average > 89)
    grade = 'A';
else if (average > 79)      // More difficult to find matching  
    grade = 'B';            // if when 'else if' is placed on    
else if (average > 69)      // same line.
    grade = 'C';
else if (average > 59)
    grade = 'D';
else
    grade = 'F';

Examples 5-19 and 5-20 are multiway if statements. A single variable is tested using 
a relational operator.

A nested if. . .else statement could also be written using the equality operator in the 
conditional expression. Consider Example 5-21, which displays the weekDay name 
based on testing an integer variable holding a number representing the day.

EXAMPLE 5-21

if (weekDay == 1)
    WriteLine("Monday");
else if (weekDay == 2)        // Less desirable else if (same line)
    WriteLine("Tuesday");     // used here because indentation 
else if (weekDay == 3)        // required when else appears on a
    WriteLine("Wednesday");   // line by itself would move 
else if (weekDay == 4)        // statements off page.
    WriteLine("Thursday");
else if (weekDay == 5)
    WriteLine("Friday");
else
    WriteLine("Not Monday through Friday");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Switch Selection Statements | 289

5

When you have a single variable, such as weekDay, being tested for equality against 
four or more values, a switch statement can be used. A switch statement is not an 
option for the nested if. . .else solution presented in Example 5-20. A switch state-
ment only works for tests of equality. The switch statement could be used to replace 
the if. . .else program statements shown in Example 5-21.

Switch Selection Statements
The switch statement is considered a multiple selection structure. It also goes by the 
name case statement. The switch or case statement allows you to perform a large 
number of alternatives based on the value of a single variable. This variable or expres-
sion must evaluate to an integral or string value. It cannot be used with a double, 
decimal, or float. But it is appropriate for short, int, long, char, and string 
data types. The general format of the switch statement follows:

 switch (expression)
 {
    case value1:
        statement(s);
        break;
    case value2:
        statement(s);
        break;
            . . .          // More case statements could go here
    case valueN:
        statement(s);
        break;
    [default:
        statement(s);
        break;]
 }

With the switch statement, the expression is sometimes called the selector. Its value 
determines, or selects, which of the cases will be executed. When a switch statement 
is executed, the expression is evaluated and its result is compared to each case’s value.

The case value must be a constant literal of the same type as the expression. You can-
not use a variable in the value spot for the case. Nor can you use an expression, such as  
x < 22, in the value spot for the case. If the expression is a string variable, the value is 
enclosed in double quotes. If the expression is a char variable, the value is enclosed in 
single quotes. For integers, the number is typed without any special surrounding symbols.

The comparison to the case values is from top to bottom. The first case value that 
matches the expression results in that case’s statements being executed. If no match is 
made, the statements associated with default are executed. Default is optional, but 
usually it is a good idea to include one. The default statements are only executed 
when there is no match of any of the case values.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



290 | Chapter 5: Making Decisions

The curly braces are required with a switch statement. That is different from an if 
 statement in which they are only required when more than one statement makes up the 
true statement or the false statement body. A syntax error is generated if you fail to use 
curly braces before the first case and at the end of the last case with the switch statement.

The last statement for each case and the default is a jump statement. The break 
keyword is used for this jump. Other types of jump statements are covered in the next 
chapter. When break is encountered, control transfers outside of the switch statement.

Unlike other languages that allow you to leave off a break and fall through executing 
code from more than one case, C# requires the break for any case that has an exe-
cutable statement(s). You cannot program a switch statement in C# to fall through 
and execute the code for multiple cases.

C# also differs from some other languages in that it requires that a break be included 
with the default statement. If you do not have a break with a default statement, 
a syntax error is issued. Many languages do not require the break on the last case 
because the default is the last statement. A natural fallout occurs.

Switch statements are often used to associate longer text with coded values as is illus-
trated in Example 5-22. Instead of asking the user to enter the full name for the day of 
the week, they could enter a number. The switch statement would then be used to 
display the related value.

EXAMPLE 5-22

switch(weekDay)
{
    case 1:
        WriteLine("Monday");
        break;
    case 2:
        WriteLine("Tuesday");
        break;
    case 3:
        WriteLine("Wednesday");
        break;
    case 4:
        WriteLine("Thursday");
        break;
    case 5:
        WriteLine("Friday");
        break;
    default:
        WriteLine("Not Monday through Friday");
        break;
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Switch Selection Statements | 291

5

C# allows strings to be used in expressions for switch statements. Consider 
 Example 5-23, which displays the full name of a state based on comparing its two-
character abbreviation to a series of string literals.

EXAMPLE 5-23

/* StatePicker.cs      Author: Doyle
 * Allows the user to enter a state
 * abbreviation. A switch statement
 * is used to display the full name
 * of the state.
 * *********************************/

using System;
using static System.Console;

namespace StatePicker
{
    class StatePicker
    {
        static void Main( )
        {
           string stateAbbrev;
           WriteLine("Enter the state abbreviation. ");
           WriteLine("Its full name will" + " be displayed.");
           WriteLine( );
           stateAbbrev = ReadLine( );
           switch(stateAbbrev)
           {
             case "AL":
                 WriteLine("Alabama");
                 break;
             case "FL":
                 WriteLine("Florida");
                 break;
             case "GA":
                 WriteLine("Georgia");
                 break;
             case "IL":
                 WriteLine("Illinois");
                 break;
             case "KY":
                 WriteLine("Kentucky");
                 break;
             case "MI":
                 WriteLine("Michigan");
                 break;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



292 | Chapter 5: Making Decisions

             case "OK":
                 WriteLine("Oklahoma");
                 break;
             case "TX":
                 WriteLine("Texas");
                 break;
             default:
                 WriteLine("No match");
                 break;
           }
           ReadKey( )
       }
    }
}

When stateAbbrev has a value of NV, no error message is issued; Nevada is not 
printed either. Instead, No match is displayed on the console screen. In addition, 
notice that Alabama is not displayed when stateAbbrev has a value of al. The 
case value must match the characters exactly; otherwise, the default option 
executes.

Multiple case values can be associated with the same statement(s), and it is not nec-
essary to repeat the statement(s) for each value. When more than one case is associ-
ated with the same statement(s), you group common cases together and follow the 
last case value with the executable statement(s) to be performed when any of the 
previous cases match. In Example 5-23, it would be useful to display Alabama for AL, 
al, Al, and maybe aL. All four of the cases could be associated with the same execut-
able statement that displays Alabama, as shown here:

case "AL":
case "aL":
case "Al":
case "al":
     WriteLine("Alabama");
     break;

You can place the executable statements for that group with the last case value. 
When you do this, you have effectively created a logical OR situation.

In Example 5-24, the result of the expression is compared against 1, 2, 3, 4, and 5. If it 
matches any of those values, Failing Grade is written. Notice that the break state-
ment is required as soon as a case includes an executable statement. No fall through 
is permitted if the previous case label has code.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Switch Selection Statements | 293

5

EXAMPLE 5-24

switch (examScore / 10)
{
    case 1:
    case 2:
    case 3:
    case 4:
    case 5:
         WriteLine("Failing Grade");
         break;
    case 6:
    case 7:
    case 8:
         WriteLine("Passing Grade");
         break;
    case 9:
    case 10:
         WriteLine("Superior Grade");
         break;
    default:
         WriteLine("Problem Grade");
         break;
}

Both the case statement and the multiway if statements are performing integer division 
with the previous example. The variable examScore is defined as an integer. Neither 
 solution works when examScore is defined as a floating point double variable.

The preceding case statement could be replaced with the following compound mul-
tiway if statement:
// Not a desirable solution!

if (((examScore / 10) == 1) || ((examScore / 10) == 2) ||
   ((examScore / 10) == 3) || ((examScore / 10) == 4) ||
   ((examScore / 10) == 5))
     WriteLine("Failing Grade");
else if (((examScore / 10) == 6) || ((examScore / 10) == 7) ||
         ((examScore / 10) == 8))
           WriteLine("Passing Grade");
else if (((examScore / 10) == 9) || ((examScore / 10) == 10))
           WriteLine("Superior Grade");
else WriteLine("Problem Grade");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



294 | Chapter 5: Making Decisions

Which do you find the most readable? A solution for this problem could also be writ-
ten using 10 separate one-way if statements. When an expression can be designed 
using the equality operator and involves more than three comparisons, the switch 
statement is almost always the best choice.

You cannot use the switch statement to test for a range of values. The only way to 
do this is to list every value using the case keyword. In addition, the case value must 
be a constant literal; it cannot be a variable. The following code segment creates a 
syntax error:
int score,
    high = 90;
switch (score)
{
     case high:    // Syntax error. Case value must be a constant.

You could write case 90:, but not case high.

You must ensure that the expression type is the same as the case value type. For exam-
ple, you can use a char variable as the selector. Each character literal value used as the 
case value must be enclosed in single quotation marks.

Ternary Conditional Operator ? :
Also called the conditional operator, the ternary operator ? : provides another 
way to express a simple if.  .  .else selection statement. The operator consists 
of a  question mark ? and a colon :. The general format for this conditional 
expression is

expression1 ? expression2 : expression3;

The ? : operator is the only ternary operator in C#. The expression that comes before 
the question mark, expression1, is evaluated first. When expression1 evalu-
ates to true, expression2, following the question mark, is executed; otherwise 
 expression3, following the colon, is executed. An example of a statement using the 
conditional operator is as follows:
grade = examScore > 89 ? 'A' : 'C';

This reads if examScore is greater than 89, assign A to grade; otherwise, assign C 
to grade. When examScore has a value of 75, the first expression, examScore > 89,  
evaluates to false; thus, expression3, C, following the colon is executed, and C is 
assigned to the grade memory location.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Order of Operations | 295

5
Consider Example 5-25.

EXAMPLE 5-25

Most service companies have a minimum charge they use for making house calls. 
Take, for example, a washing machine repairperson. He may charge $50.00 per hour; 
however, his minimum charge for traveling to your home is $100.00. Thus, when it 
takes him less than 2 hours, the charge is $100. A conditional expression to calculate 
the charges follows:
double charges,
       timeAtSite = 3.5;
charges = timeAtSite < 2.0 ? 100.00 : timeAtSite * 50.00;

The value stored in charges would be 175. The first expression (timeAtSite < 2.0) 
evaluates to false; thus, the last expression (timeAtSite * 50.00) is evaluated and 
175 is stored in charges since the assignment operator, the equal symbol, has the 
lowest precedence in the expression and is performed last.

The ternary conditional operator ( ? : ) is often used in an assignment statement.

It performs the same operation as follows:
if (examScore > 89)
    grade = 'A';
else
    grade = 'C';

The ternary conditional operator ( ? : ) is not as readable as the if statement. The if 
statement is used more often than other forms of the selection statement.

Order of Operations
When an expression contains multiple operators, the precedence of the operators 
controls the order in which the individual operators are evaluated. For example, you 
saw in Chapter 2 that an expression such as value1 + value2 * value3 is evaluated as 
value1 + (value2 * value3) because the * operator has higher precedence than the +  
operator. Generally speaking, the precedence of operators follows the following order:

 1. Unary operators
 2. Binary operators

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



296 | Chapter 5: Making Decisions

 2.1. Arithmetic operators (*  /  %  before  +  −)
 2.2. Relational operators (<  <=  >  >=  before ==  !=)
 2.3. Logical operators (&&  before  ||)

 3. Ternary operator (? :)
 4. Assignment operators (=  *=  /=  %=  +=  −=)

In Table 2-14, the operators used primarily for arithmetic were presented. Table 5-7 
adds the operators presented in this chapter.

Category Operator Precedence

Unary +   −   !   ++   −− Highest

Multiplicative *   /   %

Additive +   −

Relational <   >   <=   >=

Equality ==   !=

Logical AND &

Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ternary ?   :

Assignment =   *=   /=   %=   +=   −= Lowest

© Cengage Learning

TABLE 5-7 Operator precedence

The operators listed in Table 5-7 appear from the highest to the lowest pre-
cedence. Except for the assignment operators, all binary operators are left- 
associative, meaning that operations are performed from left to right. For example,  
aValue + bValue – cValue is evaluated as (aValue + bValue) − cValue.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Order of Operations | 297

5

The assignment operators and the conditional operator ? : are right-associative, 
meaning that operations are performed from right to left. For example,
firstValue = secondValue = thirdValue is evaluated as
firstValue = (secondValue = (thirdValue)).

Precedence and associativity can be controlled using parentheses. It is not necessary 
to include the parentheses in the previous example because the order of operations 
of the language determines the order. Parentheses can certainly be added to increase 
readability, but they are not necessary.

Example 5-26 includes an example of a selection statement using many of the opera-
tors presented in this chapter. The actual order in which the operations are performed 
is given following the declaration and conditional expression.

EXAMPLE 5-26

int value1 = 10, value2 = 20, value3 = 30, value4 = 40, value5 = 50;
if (value1 > value2 || value3 == 10 && value4 + 5 < value5)
    WriteLine("The expression evaluates to true");

The preceding expression is evaluated in the following order:

 1. (value4 + 5) → (40 + 5) → 45
 2. (value1 > value2) → (10 > 20) → false
 3. ((value4 + 5) < value5) → (45 < 50) → true
 4. (value3 == 10) → (30 == 10) → false
 5. ((value3 == 10) && ((value4 + 5) < value5)) → false && true 

→ false
 6. ((value1 > value2) || ((value3 == 10) && ((value4 + 5) < value5))) 

→ false || false → false

Because the expression evaluates to false, the line following the if statement is 
skipped or bypassed. The executable statement after the WriteLine( ) would be 
the next one performed after the expression is evaluated.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



298 | Chapter 5: Making Decisions

PROGRAMMING EXAMPLE: SpeedingTicket
This programming example demonstrates an application that calculates fines for 
traffic tickets issued on campus. A nested if. . .else selection statement is used in 
the design. Figure 5-8 shows the problem definition.

You should review the problem specification in Figure 5-8 and make sure you 
understand the problem definition. The purpose of the application is to calculate a 
fine based on the reported speed, speed limit, and classification of a student.

Two separate classes are developed. One class is designed to include character-
istics of the ticket. The other class instantiates objects of the Ticket class and 
is used to test the Ticket class to ensure that all possible situations have been 
taken into consideration. Several different conditional expressions must be con-
structed to determine the fine.

The application or client class should test for each classification type and for 
speeds over and under 20 miles over the speed limit. This class produces an out-
put listing showing the ticket cost given a number of test cases.

Tables 5-8 and 5-9 list the data items needed for the SpeedingTicket example.

ANALYZE THE 
PROBLEM

VARIABLES

Consider the situation of issuing parking tickets on campus and determining the fines
associated with the ticket.

All students are charged an initial $75.00 when ticketed. Additional charges are based on how 
much over the speed limit the ticket reads. There is a 35 miles per hour (MPH) speed limit on 
most streets on campus. Two roads are posted with a speed limit at 15 MPH. Fines are 
expensive on campus. After the initial $75 fee, an extra $87.50 is charged for every 5 MPH 
students are clocked over the speed limit.

The traffic office feels seniors have been around for a while and should know better than to 
speed on campus. They add even more fees to their fine. At the same time, they try to cut 
freshmen a little slack. Seniors are charged an extra $50 when they get caught speeding, 
unless they are traveling more than 20 MPH over the speed limit. Then they are 
charged an extra $200.

If freshmen are exceeding the speed limit by less than 20 MPH, they get a $50
deduction off their fines. However, freshmen, sophomores, and juniors traveling  
20 MPH or more are fined an additional $100.

©
 C

en
ga

ge
 L

ea
rn

in
g

FIGURE 5-8 Problem specification for SpeedingTicket example

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5

Programming Example: SpeedingTicket | 299

The application class that is using the Ticket class also needs data. The appli-
cation class allows the user to enter values for the speed limit, the speed at which 
the speeder was traveling, and the speeder’s classification. Table 5-9 identifies 
some of the local variables needed by the application class.

Data item description Data type Identifier

Street speed limit int speedLimit

Speed over the speed limit int speed

Classification of student char yrInSchool

© Cengage Learning

TABLE 5-8 Instance variables for the Ticket class

Data item description Data type Identifier

Year in school—classification char classif

Street speed limit int speedLimit

Speed traveling when ticketed int speed

string input value string inValue

© Cengage Learning

TABLE 5-9 Local variables for the SpeedingTicket application class

The cost of each 5 miles over the speed limit is a set amount that everyone pays. It 
is defined as a constant value in the Ticket class. Setting it as a constant allows 
quick modification to the memory location when the minimum charges change. 
The identifier and preset constant value are
COST_PER_5_OVER = 87.50

The desired output is to display the fine amount. Figure 5-9 shows a prototype for 
what the final output should be. The xxx.xx is placed in the prototype to represent 
the location in which the calculated value should appear. For many applications, it 
is also useful to display the values used in calculations.

CONSTANTS

DESIGN A 
SOLUTION

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



300 | Chapter 5: Making Decisions

As you read in earlier chapters, the object-oriented approach focuses attention on 
the design of the object. A Ticket object has both data and behavior charac-
teristics that can be identified. Given the characteristics of student classification, 
speed limit, and ticketed speed, the Ticket object’s major action or behavior is to 
set the fine amount. Class diagrams are used to help design and document these 
characteristics. Figure 5-10 shows the class diagrams for the SpeedingTicket 
example.

FIGURE 5-9 Prototype for the SpeedingTicket example

©
 C

en
ga

ge
 L

ea
rn

in
g

FIGURE 5-10 Class diagrams for the SpeedingTicket example

+SetFine() : decimal
+ReturnNameOfClassifcation() : string
+ToString() : string

Ticket

-studentNumber : string
-classif : char
-speedLimit : int
-speedTraveling : int

+InputStudentNumber() : string
+InputYearInSchool() : char
+InputSpeed() : int

TicketApp

-studentNumber : string
-classif : char
-speedLimit : int
-speed : int

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5

Programming Example: SpeedingTicket | 301

The class diagrams show neither the properties needed nor the local variables 
that might be needed by specific class methods. For example, a string value is 
needed for inputting data in the TicketApp class. It is not included in the class 
diagram.

As you read earlier, when you are designing a solution that requires a nested 
if.  .  .else, sometimes it is easier to develop your algorithm if you graphically 
map out the different options. Figure 5-11 shows a decision tree for part of this 
application. It pictures the logic involved to determine the additional fee based 
on classification of student and the number of miles traveling over the speed 
limit.

FIGURE 5-11 Decision tree for SpeedingTicket example
©

 C
en

ga
ge

 L
ea

rn
in

g

During design, it is important to develop an algorithm showing the systematic pro-
cess to solve the problem. This can be done using any of the design tools presented 
in previous chapters. Pseudocode for the SetFine( ) method, which contains a 
nested if, is shown in Figure 5-12.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



302 | Chapter 5: Making Decisions

The problem definition indicates that for every 5 miles over the speed limit the 
additional fine is $87.50. A whole number value representing the overage is needed. 
For example, if the speedLimit is 35 and the ticketedSpeed is 42, only one 
additional fee of $87.50 is added to the fine. If the ticketedSpeed is 45, two addi-
tional $87.50 fees are added. This value is determined by doing integer division. An 
assumption for the pseudocode is that all variables, except fine, are of type int. 
This forces the division to be integer division.

42 – 35 = 7 miles over the limit

7 / 5 = 1

Notice that the result is not 1.40, because integer division produces an integer result.

You should always desk check your design. It is especially important when selec-
tion statements are included as part of your solution. With the SpeedingTicket 

FIGURE 5-12 Pseudocode for the SetFine( ) method

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5

Programming Example: SpeedingTicket | 303

example, a large number of expressions are combined; thus, it is imperative that 
you walk through the logic and make sure that the calculations are being performed 
properly. One way to do this is to develop a table with columns for all inputted 
and calculated values. Include a row for all possible combinations of unique paths 
through the nested if. If you have developed a decision tree, it is easier to deter-
mine which cases need to be tested. Endpoints, such as for speeds over 20 miles 
per hour above the speed limit, can be especially troublesome. Make sure that 
you include rows testing those values. After you identify values to be tested, use 
a calculator to fill in the calculated values. Then, go back and reread the prob-
lem definition. Are those the correct calculated values? Table 5-10 includes the 
values selected to test the SpeedingTicket algorithm. This can be considered a 
test plan. Not only do you want to see how your algorithm handles these specific 
values, but after you implement your design, be sure to run and test your applica-
tion using the identified values for speed limit, ticketed speed, and classification. 
 Compare the results with those obtained from your program output.

Speed limit Ticketed speed

Classification 
(1=Freshman 
2=Sophomore 
3=Junior  
4=Senior) Fine

35 42 1 112.50

35 55 2 525.00

35 57 1 525.00

35 47 2 250.00

35 54 1 287.50

35 57 2 525.00

35 44 4 212.50

35 39 4 125.00

35 58 4 625.00

35 55 4 475.00

35 38 1 25.00

© Cengage Learning

TABLE 5-10 Desk check of SpeedingTicket algorithm

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



304 | Chapter 5: Making Decisions

After you complete the design and verify the algorithm’s correctness, it is time to 
translate the design into source code. For this application, you are creating two 
separate files—one for each class. As you learned in Chapter 4, only one of the 
classes has a Main( ) method.

The final application listing for both files is as follows:
/* Ticket.cs    Author:    Doyle
 * Describes the characteristics of a
 * speeding ticket to include the speed
 * limit, ticketed speed and fine amount.
 * The Ticket class is used to set the
 * amount for the fine.
 * **************************************/
using System;

namespace TicketApp
{
    class Ticket
    {
        private const
            decimal COST_PER_5_OVER = 87.50M;
        private string studentNumber;
        private char classif;
        private int speedLimit;
        private int speedTraveling;

        public Ticket( )
        {
        }
        public Ticket(string sNum, char yrInSchool, int speedLmt,
                       int reportedSpeed)
        {
             studentNumber = sNum;
             speedLimit = speedLmt;
             speedTraveling = reportedSpeed;
             classif = yrInSchool;
        }
        public Ticket(string sNum, int speedLmt, int reportedSpeed)
        {
             studentNumber = sNum;
             speedLimit = speedLmt;
             speedTraveling = reportedSpeed − speedLimit;
        }

        public string StudentNumber
        {
             get
             {

CODE THE 
SOLUTION

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5

Programming Example: SpeedingTicket | 305

                  return studentNumber;
             }
             set
             {
                  studentNumber = value ;
             }
        }
        public char Classif
        {
             get
             {
                  return classif;
             }
             set
             {
                  classif = value ;
             }
        }
        public int SpeedLimt
        {
            get
            {
                 return speedLimit;
            }
            set
            {
                 speedLimit = value ;
            }
        }
        public int Speed
        {
            get
            {
                 return speedTraveling;
            }
            set
            {
                 speedTraveling = value ;
            }
        }

        public decimal SetFine( )
        {
            int milesOverSpeedLimit = speedTraveling − speedLimit;
            decimal fine;
            fine = (milesOverSpeedLimit / 5 * COST_PER_5_OVER) +
                         75.00M;
            if (classif == '4')
                if (milesOverSpeedLimit > 20)
                    fine += 200;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



306 | Chapter 5: Making Decisions

                else
                    fine += 50;
                else
                   if (classif == '1')
                       if (milesOverSpeedLimit < 20)
                          fine −= 50;
                       else
                         fine += 100;
                   else
                       if (milesOverSpeedLimit > 19)
                          fine += 100;
                return fine;
        }

        public string ReturnNameOfClassification( )
        {
             string classificationName;
             switch (classif)
             {
                 case '1':
                      classificationName = "Freshman";
                      break ;
                 case '2':
                      classificationName = "Sophomore";
                      break ;
                 case '3':
                      classificationName = "Junior";
                      break ;
                 case '4':
                      classificationName = "Senior";
                      break ;
                 default :
                      classificationName = "Unspecified";
                      break ;
             }
             return classificationName;
        }

        public override string ToString( )
        {
             return "\tTicket App" +
                "\n\nStudent number: " + studentNumber +
                 "\nClassification: " +ReturnNameOfClassification( )+
                "\nSpeed limit: " + speedLimit +
                "\nReported speed: " + speedTraveling +
                "\n\nFine: " + SetFine( ).ToString( "C" );
        }
    }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5

Programming Example: SpeedingTicket | 307

/* TicketApp.cs            Author:    Doyle
 * Instantiates a Ticket object
 * from the inputted values of
 * speed and speed limit. Uses
 * the year in school classification
 * to set the fine amount.
 * ***********************************/

using System;
using static System.Console;

namespace TicketApp
{
     class TicketApp
     {
         static void Main( )
         {
              string studentNumber;
              char classif;
              int speedLimit,
                  speed;
              studentNumber = InputStudentNumber( );
              speedLimit = InputSpeed("Speed Limit");
              speed = InputSpeed("Ticketed Speed");
              classif = InputYearInSchool( );
              Ticket studentTicket = new Ticket(studentNumber,
                                   classif, speedLimit, speed);
              Clear( );
              WriteLine(studentTicket);
              ReadKey( );
         }
         public static string InputStudentNumber( )
         {
             string sNumber;
             Write("Enter Student Number: ");
             sNumber = ReadLine( );
             return sNumber;
         }
         public static int InputSpeed(string whichSpeed)
         {
             string inValue;
             int speed;
             Write("Enter the {0}: ", whichSpeed);
             inValue = ReadLine( );
             if (int.TryParse(inValue, out speed) == false)
                 WriteLine("Invalid entry entered " +
                           "for {0} − 0 was recorded", whichSpeed);
             return speed;
         }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



308 | Chapter 5: Making Decisions

         public static char InputYearInSchool ( )
         {
             string inValue;
             char yrInSchool;
             WriteLine("Enter your classification:" );
             WriteLine("\tFreshmen (enter 1)");
             WriteLine("\tSophomore (enter 2)");
             WriteLine("\tJunior (enter 3)");
             Write("\tSenior (enter 4)");
             WriteLine( );
             inValue = ReadLine( );
             yrInSchool = Convert.ToChar(inValue);
             return yrInSchool;
         }
     }
}

Figure 5-13 shows the output produced for a ticket issued to a junior traveling at a 
speed of 45 MPH in a 35-MPH zone.

FIGURE 5-13 Output from the SpeedingTicket example

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Coding Standards | 309

5

When the user enters an invalid character for speed, the TryParse( ) method 
stores zero in s. The way it is written the only test is for entering the wrong data 
type, a null value, or an extreme value that cannot fit in the integer memory loca-
tion. Additional tests could be performed to make sure a valid range of values were 
entered. One approach would be to add a compound test as shown below.

if ((int.TryParse(inValue, out speed) == false) || speed > 120)
{
    WriteLine("Invalid entry – must be numeric, less than 120");
    Write("Please re-enter speed: ");
    int.TryParse(inValue, out speed);
}

This approach could also be used to test for the low range. Do this by adding 
another logical or statement, as in || speed < 0. In the next chapter you will 
be introduced to loops that will enable you to test the value, and if they enter an 
invalid data item, ask them for a new value, and continue asking them until a good 
value is entered. Here once the test is performed, and the if statement returns 
false, they get one more chance to input a valid entry.

As indicated in Table 5-10, a number of different test cases should be run to verify 
the correctness of your solution. Just because you are getting output does not mean 
that your solution is correct. Compare your results with the desk checked calcu-
lated results. Are they the same? Have you considered all possible combinations?

Coding Standards
It is important to follow coding standards when you design solutions involving selec-
tion statements. Developing standards that you consistently adhere to will increase 
your coding efficiency and make your code more maintainable. One of the most 
important considerations with selection statements relates to readability. The best 
practices are described next as they relate to the consistent placement of curly braces 
and the proper use of white space.

Guidelines for Placement of Curly Braces
Curly braces are required when the body following an if or else statement has more 
than one statement. Many developers use curly braces with all selection statements—
even single if. . .else statements. In this book, curly braces are added when there are 
two or more executable statements. For single statements, curly braces were omitted. 
Whether you use curly braces with all cases or just for multi-statement executables, 
be consistent with your usage.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



310 | Chapter 5: Making Decisions

Open braces should always be at the beginning of the line after the statement that 
begins the block.

The contents of the brace should be indented by four spaces. For example:

if (someExpression)
{
    ExecuteMethod1( );
    ExecuteMethod2( );
}
else
{
    ExecuteMethod3( );
    ExecuteMethod4( );
}

Guidelines for Placement of else with Nested if Statements
Many developers place an else. . .if on the same line when a nested if is written. In 
this book, the else is placed on a line by itself. The if statement appears on the line 
below as shown in the following example:

if (someExpression)
    DoSomething( );
else
    if
    {
        DoSomethingElse( ); // Curly braces are not needed here.
    }

Guidelines for Use of White Space with a Switch Statement
Place curly braces on separate lines with a switch statement. Indent the case state-
ments. Do not place curly braces around multiline executables as shown in the fol-
lowing example:

switch (someExpression)
{
       case 0:
            DoSomething( );
            break;
       case 1:
            DoSomethingElse( );
            break;
       default:
            break;
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Resources | 311

5

Spacing Conventions
Use a single space before and after comparison operators as shown in the following:
if (x == y)

Do not place an extra space before or after the expression as shown in the following 
example:
if ( x == y ) // Incorrect — Extraneous spaces before x and after y

Use tabs instead of spaces for indentation.

Use white space (one blank line) to separate and organize logical groups of code 
within the block.

Advanced Selection Statement Suggestions
Readability and maintainability are improved when you avoid writing compound 
selection statements. Instead of writing <= or >=, add or subtract 1 from the endpoint 
(i.e., if (a >= 100) is the same as if (a > 99)). Additional thought will normally help 
you eliminate this type of compound statement.

Write a nested if as opposed to combining two expressions with &&. Doing so 
enables you to provide an else clause for each conditional expression. For example, 
replace if ((a > b) && (b > c)) with

if (a > b)
    if (b > c)

When possible use short-circuit evaluation to improve efficiency.

Switch statements should include a default label as the last case label.

Do not make explicit comparisons to true or false in a conditional expression.

Do not use the equality operators with floating-point values. Most floating-point val-
ues have no exact binary representation and have a limited precision.

Avoid using complex or compound ternary operations. Use the ternary conditional 
operator only for trivial conditions.

Resources
Additional sites you might want to explore:

 ? C# Coding Style Guide - TechNotes, HowTo Series—  
http://www.icsharpcode.net/TechNotes/SharpDevelopCodingStyle03.pdf

 ? Microsoft C# if statement Tutorial— 
http://csharp.net-tutorials.com/basics/if-statement/

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



312 | Chapter 5: Making Decisions

 ? if - else (C# Reference)— 
http://msdn.microsoft.com/en-us/library/5011f09h.aspx

 ? switch (C# Reference)— 
http://msdn.microsoft.com/en-us/library/06tc147t

QUICK REVIEW
 1. The three basic programming constructs include simple sequence, 

selection, and iteration.
 2. The selection statement allows you to deviate from the sequential path 

and perform different statements based on the value of one or more 
variables.

 3. The two types of selection statements are the if.  .  .else and switch 
statements. C# also provides the ternary operator ? : for conditional 
expressions.

 4. With selection statements, properly used indentation is for readability 
only. Curly braces are used when you have more than one expression to 
be evaluated.

 5. The result of expressions used with selection statements is either true 
or false.

 6. Testing a Boolean variable does not require the use of an equality 
operator. If salariedEmployee is of type bool, you can write if 
 (salariedEmployee). It is not necessary to include the == operator.

 7. When you compare characters or strings, the Unicode character set is used.
 8. You can compare string operands using the equality operators == and !=.
 9. The relational symbols >, <, >=, or <= are not defined for strings.
 10. Conditional expressions can be combined with logical conditional oper-

ators, && or ||, to form more complex expressions.
 11. C# uses the && and || operators to represent AND and OR, respectively.
 12. With short-circuit evaluation, as soon as the value of the entire expres-

sion is known, the common language runtime (CLR) stops evaluating 
the expression. For complex expressions using &&, when the first part 
of the expression evaluates to false, there is no need to evaluate the 
second.

 13. In C#, there is no conversion between the bool type and other types; 
thus, when x is defined as int, you cannot type if (x).

 14. Do not place a semicolon at the end of the if statement’s parenthesized 
expression being evaluated. This makes a null (empty) statement but 
does not create a syntax error.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5

Quick Review | 313

 15. With a two-way if statement, either the true statement(s) is executed 
or the false statement(s), but not both. After the execution of the 
statement(s) is (are) finished, control always transfers to the statements 
following the if block.

 16. Any statement, including another if statement, can be included within 
the statements to be executed when the expression evaluates to true. 
The same holds for the false statements.

 17. When determining which else matches which if, follow this rule: The 
else matches up with the closest previous if that does not already have 
an attached else.

 18. Use a series of else. . .if for a long, nested, multiway statement.
 19. The switch statement is considered a multiple selection structure that 

allows a large number of alternatives to be executed. The switch is used 
for equality comparisons only.

 20. The case value with a switch statement must be a constant literal of 
the same type as the expression. It cannot be a variable.

 21. With a switch statement, the occurrence of the first case value that 
matches the expression causes that case’s statement(s) to be executed. If 
no match is made with any of the case values, the statements associated 
with default are executed.

 22. Having a default is not required, but it is a good idea always to  
include one.

 23. There is no way to program a switch statement in C# to fall through to 
the code for the next case. After code is associated with a case, there 
must be a break. If used, the default statements must also end with a 
break.

 24. Multiple cases in a switch statement can be associated with the same 
statements. This works like having a logical OR operator between each 
of the cases.

 25. The switch statement cannot be used to test for a range of values or to 
perform a relational test.

 26. Also called the conditional operator, the ternary operator ? : provides a 
shorthand way to express a simple if. . .else selection statement.

 27. When an expression contains multiple operators, the precedence of 
the operators controls the order in which the individual operators are 
evaluated.

 28. Equality operators have a lower precedence than relational operators; 
&& has a higher precedence than ||, but both && and || have lower 
precedence than the relational or equality operators. The very lowest 
precedence is the assignment operators.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



314 | Chapter 5: Making Decisions

EXERCISES
 1. The result of the expression if (aValue == bValue) is:

a. aValue

b. 10

c. an integer value
d. true or false
e. determined by an input statement

 2. Which expression is evaluated first in the following statement?
if (a > b && c == d || a == 10 && b > a * b)?
a. a * b

b. b && c

c. d || a

d. a > b

e. none of the above

 3. What is the output for total after the following segment of code executes?
int num = 3, total = 0;
switch (num)
{
     case 1:
     case 2:
          total = 5;
          break;
     case 3:
          total = 10;
          break;
     case 4:
          total = total + 3;
          break;
     case 8:
          total = total + 6;
          break;
     default:
          total = total + 4;
          break;
}
WriteLine("The value of total is " + total);
a. 10
b. 15
c. 14
d. 28
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5

Exercises | 315

 4. What is displayed when the following code executes?
score = 0;
if (score > 95)
    Write("Congratulations! ");
    Write("That's a high score! ");
    Write("This is a test question!");
a. This is a test question!
b. Congratulations! That's a high score! This is a test 

question!
c. That's a high score! This is a test question!
d. Congratulations! That's a high score!
e. none of the above

 5. Which statement in C# allows you to do the following: Properly check 
the variable code to determine whether it contains the character C, and 
if it does, display “This is a check” and then advance to a new line?
a. if code is equal to C
      WriteLine("This is a check");
b. if (code = "C")
      WriteLine("This is a check");
c. if (code == 'C')
      WriteLine("This is a check");
d. if (code == C)
      WriteLine("This is a check");
e. none of the above

 6. What will be displayed from executing the following segment of code? 
You may assume testScore has a value of 90.
int testScore;
if (testScore < 60); // Note the semicolon.
    Write("You failed the test! ");
if (testScore > 60)
    Write("You passed the test! ");
else
    Write("You need to study for the next test!");" +
a. You failed the test!

b. You passed the test!

c. You failed the test! You passed the test!

d. You failed the test! You need to study for the next test!

e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



316 | Chapter 5: Making Decisions

 7. The _____ operator represents the logical AND.
a. ++

b. ||

c.  &&
d. @

e. none of the above
 8. The symbol (=) is:

a. the operator used to test for equality
b. used for comparing two items
c. used as part of an assignment statement
d. considered a logical compound operator
e. all of the above

 9. Incorrect use of spacing with an if statement:
a. detracts from its readability
b. causes a syntax error message
c. can change the program logic
d. causes a logic error message
e. all of the above

 10. What does the following program segment display?
int f = 7, s = 15;
f = s % 2;
if (f != 1)
{
   f = 0;
   s = 0;
}
else if (f == 2)
{
   f = 10;
   s = 10;
}
else
{
   f = 1;
   s = 1;
}
WriteLine(" " + f + " " + s);
a. 7 15

b. 0 0

c. 10 10

d. 1 1

e. none of the above
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5

Exercises | 317

 11. Which logical operator (op) is defined by the following table? (T and F 
denote true and false.)

P Q P op Q
T T T
T F F
F T F
F F F

a. NOT
b. AND
c. OR
d. not enough information is given
e. none of the above

 12. Examine the code. When will C be assigned 3? (Be careful.)
if (A == B);
    C = 3;

a. when A is equal to B
b. when A is not equal to B
c. never
d. every time the program is executed
e. not enough information is given

 13. Consider the following if statement, which is syntactically correct, but 
uses poor style and indentation:

if (x >= y) if (y > 0) x = x * y; else if (y < 4) x = x − y;

  Assume that x and y are int variables containing the values 9 and 3, 
respectively, before execution of the preceding statement. After execu-
tion of the statement, what value does x contain?
a. 9
b. 1
c. 6
d. 27
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



318 | Chapter 5: Making Decisions

 14. After execution of the following code, what will be the value of 
inputValue?
int inputValue = 0;
if (inputValue > 5)
     inputValue += 5;
else if (inputValue > 2)
         inputValue += 10;
else inputValue += 15;

a. 15
b. 10
c. 25
d. 0
e. 5

 15. If you intend to place a block of statements within an if statement, you 
must use around the block.
a. parentheses
b. square brackets
c. quotation marks
d. curly braces
e. none of the above

 16. Given the following segment of code, what will be the output?
int x = 5;
if (x == 2)
   Write("Brown, brown, run aground. ");
else
   Write("Blue, blue, sail on through. ");
Write("Green, green, nice and clean.");

a. Brown, brown, run aground.

b. Blue, blue, sail on through.

c. Brown, brown, run aground. Blue, blue, sail on through.

d. Blue, blue, sail on through. Green, green, nice and clean.

e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5

Exercises | 319

 17. What is the result of the following conditional expression when 
aValue = 100 and bValue = 7?
result = aValue > bvalue + 100 ? 1000 : 2000;
a. 0

b. 1000

c. 2000

d. 7

e. none of the above

 18. Given the switch statement, which of the following would be the first 
if statement to replace the first test in the switch?

switch (control)
{
  case 11 :
       WriteLine("eleven");
       break;
  case 12 :
       WriteLine("twelve");
       break;
  case 16 :
       WriteLine("sixteen");
       break;
}

a. if (case = 11)
b. if (case == 11)
c. if (control == 11)
d. if (switch == 11)
e. none of the above

 19. Which of the following statements about logical operators is correct?
a. Logical AND yields true if and only if both of its operands are 

either true or false.
b. Logical OR yields true if either or both of its operands are true.
c. Logical OR is represented in C# by && .
d. Logical NOT is represented in C# by | .
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



320 | Chapter 5: Making Decisions

 20. The string data type can be used:
a. as an operand for the == or !=
b. as an expression in the switch statement to be evaluated
c. as an operand for the > or < operator
d. a and b are correct
e. all of the above

 21. Assuming a is 5, b is 6, and c is 8, which of the following is (are) false?
a. a == 5;

b. 7 <= (a + 2);

c. c <= 4;

d. (1 + a) != b;

e. c >= 8;

f. a >= 0;

g. a <= (b * 2);

 22. Could a switch statement be designed logically to perform the same 
tests as the following nested if statement? If so, explain how it could  
be done.

if (aValue == 100)
    WriteLine("Value is 100");
else
    if (aValue < 100)
        WriteLine("Value is less than 100");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5

Exercises | 321

 23. Rewrite the following switch statement as a nested if statement using 
a series of else. . .if statements:
string birdName;
switch (birdName)
{
   case "Pelican":
        WriteLine("Lives near water.");
        break;
   case "Cardinal":
        WriteLine("Beautiful in the snow.");
        break;
   case "Owl":
        WriteLine("Night creature.");
        break;
   case "Eagle":
        WriteLine("Keen vision");
        break;
   case "Flamingo":
        WriteLine("Pretty and pink.");
        break;
   default:
        WriteLine("Can fly.");
        break;
}

 24. Rewrite the following compound expression as a nested if statement:
if ((aValue > bValue) && (bValue == 10))
    WriteLine("Test complete");

 25. Write conditional expressions to perform the following tests:
a. When amountOwed is greater than 1000.00, display an overdue 

message.
b. When amountOfRain is greater than 5 inches, add 5 to total. 

When it is between 3 and 5 inches, add 3 to total. When it is less 
than 3 inches, add 1 to total.

c. When middleInitial is equal to the character z, display message 
“You’re one in a thousand”; otherwise, check to see if it is equal to 
the character ‘a’. When it is equal to the character a, display the mes-
sage “You have a common initial”.

d. When balance > 100 and transaction < 50, subtract  transaction 
from balance. When balance is not greater than 100, add 
 transaction to balance.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



322 | Chapter 5: Making Decisions

PROGRAMMING EXERCISES

 1. Write a program that takes a decimal value between 1 and 10 and dis-
plays its equivalent Roman numeral value. Display an error message if 
the value entered is outside of the acceptable range. Write a two class 
solution. The second class should allow the user to input a test value.

 2. Ever heard of acid rain? This is rainfall with a very low pH. Write an 
application that will enable you to display the pH level for a swimming 
pool and whether an additive is needed or not. The pH is a measure of 
how acidic or basic the water is and is typically given on a 0–14 scale. 
Below 7.0 is defined as acidic, with 7 being neutral. Levels much above 
7 are said to be basic or alkaline. Everything that enters a pool has a 
pH value. To have pH in balance the water is adjusted with additions 
of pH increasers (bases) or pH decreasers (acids) to achieve the range 
of 7.2–7.8. Allow the user to input the pH level number. Display a mes-
sage indicating the health (i.e., acidic, neutral, or alkaline) and whether 
an additive is required. If an additive is required, identify the type. The 
water should be described as acidic, requiring bases, when the pH is 
lower than 7. Consider the pH level as neutral for pH levels in the range 
7–7.8 and alkaline, requiring acid for pH levels greater than 7.8. Display 
an appropriate message when invalid values are entered.

 3. Write a two-class solution to calculate and display a person’s body 
mass index (BMI). BMI is an internationally used measure of obesity. 
Depending on where you live, the Imperial BMI formula or the  Metric 
Imperial Formula is used. Once the BMI is calculated, display a message 
of the person’s status. Prompt the user for both their weight and height. 
The BMI status categories, as recognized by the U.S.  Department of 
Health & Human Services, are given in the following table:

BMI Weight Status
Below 18.5 Underweight
18.5–24.9 Normal
25–29.9 Overweight
30 & above Obese

  Provide constructors and methods so that both imperial and metric 
objects can be instantiated. Use the second class to test your design.

 4. Write a program that calculates the take-home pay for an employee. 
The two types of employees are salaried and hourly. Allow the user to 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



5

Programming Exercises | 323

input the employee’s first and last name, id, and type. If an employee 
is salaried, allow the user to input the salary amount. If an employee is 
hourly, allow the user to input the hourly rate and the number of hours 
clocked for the week. For hourly employees, overtime is paid for hours 
over 40 at a rate of 1.5 of the base rate. For all employees’ take-home pay, 
federal tax of 18% is deducted. A retirement contribution of 10% and a 
Social Security tax rate of 6% should also be deducted. Use appropriate 
constants. Design an object-oriented solution. Create a second class to 
test your design.

 5. A large Internet merchandise provider determines its shipping charges 
based on the number of items purchased. As the number increases, 
the shipping charges proportionally decrease. This is done to encour-
age more purchases. If a single item is purchased, the shipping charge 
is $2.99. When customers purchase between 2 and 5 items, they are 
charged the initial $2.99 for the first item and then $1.99 per item for the 
remaining items. For customers who purchase more than 5 items but 
less than 15, they are charged the initial $2.99 for the first item, $1.99 per 
item for items 2 through 5, and $1.49 per item for the remaining items. 
If they purchase 15 or more items, they are charged the initial $2.99 for 
the first item, $1.99 per item for items 2 through 5, and $1.49 per item 
for items 6 through 14, and then just $0.99 per item for the remaining 
items. Allow the user to enter the number of items purchased. Define 
appropriate constants, use the decimal data type, and display the ship-
ping formatted charges.

 6. Write an application that computes the area of a circle, rectangle, and 
cylinder. Display a menu showing the three options. Allow users to input 
which figure they want to see calculated. Based on the value inputted, 
prompt for appropriate dimensions and perform the calculations using 
the following formulas:

Area of a circle = pi * radius2

Area of a rectangle = length * width
Surface area of a cylinder = 2 * pi * radius * height + 2 * pi * radius2

Write a modularized solution that includes class methods for inputting 
data and performing calculations.

 7. Create a Month class that has a single data member of month num-
ber. Include a member method that returns the name of the month 
and another method that returns the number of days in the month. 
The ToString( ) method should return the name and number of 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



324 | Chapter 5: Making Decisions

days. Write a second class to test your Month class. The second class 
should allow the user to input a month number. Display the name of the 
month associated with the number entered and the number of days in 
that month. For this exercise, use 28 for February. If the user inputs an 
invalid entry, display an appropriate message.

 8. Create an application with four classes. Three of the classes should con-
tain data and behavior characteristics for circle, rectangle, and cylin-
der. You could extend your solution to problem number 6 and  provide 
behaviors based on the type of object instantiated. For example, in 
 addition to calculating the area of a circle, also provide methods to cal-
culate circumference or radius. For the rectangle, consider providing 
behaviors to calculate perimeter and the polygon diagonals. For cylin-
der, consider providing behaviors to calculate the volume and surface 
area for a closed cylinder. The fourth class should allow the user to 
input a figure type from a menu of options. Prompt for appropriate val-
ues based on the inputted figure type, instantiate an object of the type 
entered, and display characteristics about the object.

 9. Design a solution that prints the amount of profit an organization 
receives based on it sales. The more sales documented, the larger the 
profit ratio. Allow the user to input the total sales figure for the orga-
nization. Compute the profit based on the following table. Display the 
sales and profit formatted with commas, decimals, and a dollar symbol. 
Display the profit ratio formatted with a percent symbol.

0                  −      $1,000:    3.0%
$1,000.01  −     $5,000:     3.5%
$5,000.01  −     $10,000:   4.0%
over $10,000:                     4.5%

  Be sure to design your solution so that all possible situations are 
accounted for and tested. Use the decimal data type for your solution. 
What values did you enter and test to verify your program’s correctness?

 10. Two fuel stops, Canadian Fuel and American Fuel, are positioned near 
the U.S. Canadian border. At the Canadian station, gas is sold by the 
liter. On the American side, it is sold by the gallon. Write an application 
that allows the user to input information from both stations and make a 
decision as to which station offers the most economical fuel price. Test 
your application with 1.259 per liter against 4.50 per gallon. Once the 
decision is made, display the equivalent prices.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

Repeating Instructions
IN THIS CHAPTER, YOU WILL:

 ? Learn why programs use loops

 ? Write counter-, state-, and sentinel-controlled while loops

 ? Examine the conditional expressions that make up a for loop

 ? Be introduced to the foreach looping structure

 ? Compare the do . . . while looping structure with the pre-test forms of loops

 ? Write loops nested inside other loops

 ? Learn about keywords that can be used for unconditional transfer of control

 ? Be introduced to recursion and learn how recursive methods work

 ? Pick appropriate loop structures for different applications

 ? Work through a programming example that illustrates the chapter’s concepts

6CHAPTER

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



326 | Chapter 6: Repeating Instructions

Chapter 5 introduced you to the second type of programming construct, the selection 
statement. You learned that the two common forms of selection statements, if. . .else 
and switch, can change the sequential order in which statements are performed. You 
learned that a conditional expression with a selection statement produces a Boolean 
result that can be tested and used to determine alternate paths in your program.

Recall that the first programming construct is the simple sequence and that the sec-
ond construct is the selection statement. The third construct is called repetition, iter-
ation, or looping. In this chapter, you discover why loops are so valuable and how to 
write loop control structures. You learn about different kinds of loops and determine 
when one type is more appropriate than another.

Why Use a Loop?
One of the major strengths of programming languages can be attributed to loops. The 
programming examples you have seen thus far could have been solved more quickly 
through manual calculations. Take, for example, calculating your course grade aver-
age. With a calculator in hand, you could certainly add together your scores and divide 
by the number of entries. However, if you were assigned this task for everyone in your 
class or everyone at your school, you could see the value of being able to write one set 
of instructions that can be repeated with many different sets of data.

C# has a rich set of looping structures. These constructs, sometimes called repetition 
or iteration structures, enable you to identify and block together one or more state-
ments to be repeated based on a predetermined condition. For looping, C# includes 
the C-style traditional while, do. . .while, and for statements that are found in many 
other programming languages. New to C-style languages is the foreach loop construct 
used to process collections of data stored under a common name in structures such as 
arrays, which you will learn about in Chapter 7. The sections that follow introduce you 
to the different types of loops and show you how they can be used in your programs.

Using the While Statement
Probably the simplest and most frequently used loop structure to write is the while 
statement. The general form of the while statement is

while (conditional expression)
      statement(s);

The conditional expression, sometimes called the loop condition, is a logical condi-
tion to be tested. It is enclosed in parentheses and is similar to the expressions you 
use for selection statements. The conditional expression must return a Boolean result 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the While Statement | 327

6

of true or false. An interpretation of the while statement is “while condition is 
true, perform statement(s).”

The statement(s) following the conditional expression makes up the body of the loop. 
The body of the loop is performed as long as the conditional expression evaluates to 
true. Like the selection construct, the statement following the conditional expres-
sion can be a single statement or a series of statements surrounded by curly braces { }.

Some programmers use curly braces to surround all loop bodies, even loop bodies 
 consisting of a single statement. Consistently using curly braces increases readability. It 
also reduces the chance of forgetting to include the curly braces when the body contains 
multiple statements.

You can usually kill an infinite loop by closing the window or pressing the Esc key. If that 
does not work, try the key combinations Ctrl+C or Ctrl+Break. Press the two keys 
simultaneously. The easiest way to do this is to hold down the Ctrl key and then press 
the second key. If that does not work, open the Windows Task Manager by pressing 
Ctrl+Alt+Del, select Start Task Manager, select the Visual Studio application, and press 
the End Task button in the Windows Task Manager dialog box. Sometimes, this causes 
you to lose unsaved work. Thus, it is a good idea to save your work frequently, especially 
prior to running applications that contain loops.

Notice that there is no semicolon after the conditional expression. If you place a semi-
colon there, you do not get a syntax error. Your program will run. If you are using 
Visual Studio and place a semicolon on the line containing the conditional expression, 
a squiggly line is placed under the semicolon. This should alert you that there might 
be a problem. When you move your mouse pointer over the red mark, IntelliSense 
displays this message: “Possible mistaken empty statement.” You saw this same warn-
ing when a semicolon was placed at the end of the selection statement expression.

Placing the semicolon at the end of the conditional expression produces a loop that 
has no body or an empty bodied loop. Placing a semicolon at the end of the condi-
tional expression can create an infinite loop situation. Your program will run and run 
and run, accomplishing nothing. An infinite loop is a loop that has no provisions for 
termination.

The while statement is a pretest loop, which means that the conditional expression 
is tested before any of the statements in the body of the loop are performed. If the 
conditional expression evaluates to false, the statement(s) in the body of the loop 
is (are) never performed. If the conditional expression evaluates to true, the state-
ments are performed, and then control transfers back to the conditional expression. 
It is reevaluated and the cycle continues. Figure 6-1 illustrates the flow of execution 
in a pretest loop.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



328 | Chapter 6: Repeating Instructions

Counter-Controlled Loop
Many programs you develop require that you write one or more statements that must 
be performed more than once. When you know the number of times the  statements 
must be executed, you can create a counter-controlled loop. With a counter- 
controlled loop, a variable simulating a counter is used as the loop control variable 
to keep track of the number of iterations. Example 6-1 adds values to an  accumulator. 
The variable, sum, is initialized to zero and the positive integers 1 through 10 are 
added to the sum memory location, one value at a time.

EXAMPLE 6-1

/* SummedValues.cs       Author: Doyle
 * Demonstrates use of a loop to add 10
 * integers. Displays the total after
 * the loop body is completed.
 */
using System;
using static System.Console;

namespace SummedValues

FIGURE 6-1 Pretest loop

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the While Statement | 329

6

{
   class SummedValues
   {
       static void Main( )
       {
          int sum = 0;                                  //Line 1
          int number = 1;                                //Line 2
          while (number < 11)                            //Line 3
          {                                              //Line 4
             sum = sum + number;                         //Line 5
             number++;                                  //Line 6
          }                                              //Line 7
          WriteLine("Sum of values " +                  //Line 8
                    "1 through 10" +                    //Line 9
                    " is " + sum);                      //Line 10
          ReadKey( );                                   //Line 11
       }
   }
}

The output of this code is:
Sum of values 1 through 10 is 55

To include a counter-controlled loop in your program, you must design the condi-
tional expression so that you can exit the loop after a certain number of iterations. 
Normally on the outside of the loop, before the conditional expression, the loop con-
trol variable is initialized. On Line 2 in Example 6-1, number is initialized to 1. The 
variable number is the loop control variable. On Line 3, its value is evaluated and used 
to determine whether the loop should be executed.

When the while statement on Line 3 is reached, the conditional expression of 
( number < 11) produces a true result, so the statements in the body of the loop are 
 performed. Notice that the last line in the loop, Line 6, increments the loop control  variable, 
number, by one. When the closing curly brace is encountered on Line 7, control transfers 
back to the conditional expression on Line 3. The conditional expression is reevaluated 
and again produces a true result. This cycle—test, perform body of loop, test—is contin-
ued as long as the conditional expression evaluates to true. When the loop control vari-
able, number, becomes 11, the conditional expression evaluates to false (11 is not less 
than 11). At this point, control transfers to Line 8, the statement following the loop. Here, 
beginning on Line 8, the WriteLine( ) method displays the sum of the values.

What would happen if Line 6, the following line, is omitted?
number++;

If you answered “an infinite loop,” you are correct. Without changing the loop control 
variable used in the conditional expression by increasing its value, the expression 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



330 | Chapter 6: Repeating Instructions

would never evaluate to false. Careful thought must focus on how the loop will end 
with a normal termination. Without incrementing the counter used in the condi-
tional expression, the loop would go on indefinitely.

Why not put the following statement, which began on Line 8, inside the loop body?
WriteLine("Sum of values 1 through 10 is " + sum);

The final value of sum would be printed if the WriteLine( ) method is placed in the 
body of the loop. However, you would also have nine additional printed lines. Every 
time sum changes, a line would be printed showing its new value. Thus, it is better to 
print the result after all the calculations have been performed.

Visual Studio automatically references and imports a number of namespaces with the 
using directive. As you review examples, you will notice that the extraneous using 
statements were deleted and a using static System.Console; directive was 
added. Being able to reference a static class within a namespace with the using 
directive is new to Visual Studio 2015. This feature reduces the amount of typing needed 
when you invoke members of the Console class. If you are using a version prior to 
Visual Studio 2015, references to members of the Console class, like Write( ), 
WriteLine( ), ReadKey( ) and Clear( ), require the method name be pre-
ceded by the Console class identifier and a dot, as in Console.Write( ).

You could modify Example 6-1 to allow the user to input the first and last values to 
be summed. Both operands in the conditional expression could be variables. Example 
6-2 prompts the user for the boundaries.

EXAMPLE 6-2

/* InputEndPointsWithWhile.cs    Author: Doyle
 * Demonstrates use of a loop to add any range
 * of values. User inputs start and stop values.
 * Displays the result after the loop is
 * completed.
 */
using System;
using static System.Console;

namespace InputEndPointsWithWhile
{
   class InputEndPointsWithWhile
   {
       static void Main( )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the While Statement | 331

6

       {
          int sum = 0;
          int startValue,
              endValue;
          string inValue;
          Write("Enter the beginning value: ");
          inValue = ReadLine( );
          if (int.TryParse(inValue, out startValue) == false)
              WriteLine("Invalid input − " +
                        "0 recorded for start value");
          Write("Enter the last value: ");
          inValue = ReadLine( );
          if (int.TryParse(inValue, out endValue) == false)
              WriteLine("Invalid input − " +
                        "0 recorded for end value");
          Write("Sum of values {0} through {1} ", startValue,
                 endValue);
          while (startValue < endValue + 1)
          {
              sum = sum + startValue;
              startValue++;
          }
          WriteLine("is {0}", sum);
          ReadKey( );
       }
   }
}

There are a couple of interesting issues to consider with Example 6-2. The conditional 
expression now reads:
while (startValue < endValue + 1)

The same result could have been achieved using
while (startValue <= endValue)

Both cases call attention to the fact that the value entered by the user as the last number 
should be added to the total. If the conditional expression read while (startValue 
< endValue), the loop would not be executed for the last value. An off-by-one error 
would have occurred. This is a common problem associated with counter-controlled 
loops. It is important to think through test cases and check endpoints to ensure that 
they have been taken into consideration. You should always check the initial and final 
values of the loop control variable and verify that you get the expected results at the 
boundaries. Without adding one onto the endpoint or using the compound relational 
operator, the result would be incorrect.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



332 | Chapter 6: Repeating Instructions

Why did the solution print the range of values (startValue and endValue) before 
the loop executed? The following statement appeared before the loop:
Write("Sum of values {0} through {1} ", startValue, endValue);

The loop control variable, startValue, is changed inside the loop. Its original value 
is lost and no longer available when the loop is finished. Thus, to display the begin-
ning value, you would need either to store it in a different memory location (that does 
not change) or to print it before the loop body.

If you are going to print the boundaries before the loop, why not go ahead and place 
the following statement before the loop in Example 6-2?
WriteLine("is {0}", sum);

Zero would be printed for sum if you print it before the loop. The variable sum gets 
the accumulated value from the loop body; thus, it does not make sense to print the 
value until after the calculations are performed and the loop is completed.

Figure 6-2 shows the results of an execution of Example 6-2 when 14 and 33 are 
entered as the range of values.

FIGURE 6-2 Example of output from user-entered loop boundaries

With Example 6-2, what happens when the user enters a larger value for the 
 startValue than the value entered for endValue? If you answered the loop body will 
not get executed, even one time, you are correct. Because the conditional expression 
evaluates to false, the body is skipped and the lines following the loop are executed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the While Statement | 333

6

When you are requesting input from the user, you always run the risk that invalid 
characters may be entered. You have seen a number of examples that test input using 
the TryParse( ) method. You saw statements such as
if (int.TryParse(inStringValue, out integerValue) == false)
    WriteLine("Invalid input – 0 recorded for end value");

If a character such as “b” is entered by the user and stored in inStringValue, 
 TryParse( ) returns false, indicating that it was not able to do the conversion. 
When TryParse( ) returns false, the conditional expression evaluates to true. 
Then zero is stored in integerValue as a side effect of the TryParse( ) method 
not being able to properly do the conversion. There are instances when it is not 
acceptable to just print an error message. You may want to make sure that valid char-
acters are entered before proceeding with additional statements. Instead of just test-
ing to see whether TryParse( ) is able to effectively do the conversion, you could 
use the TryParse( ) method as your conditional expression for a loop as illustrated 
in Example 6-3.

EXAMPLE 6-3

/* ValidInput.cs Author: Doyle
 * Demonstrates testing input to
 * ensure that integers are entered.
 */
using System;
using static System.Console;

namespace ValidInput
{
    class ValidInput
    {
       static void Main(string [] args)
       {
           int integerValue;
           string inStringValue;
           Write("Enter an integer value. ");
           inStringValue = ReadLine( );
            while (int.TryParse(inStringValue,
                                   out integerValue) == false)
           {
               WriteLine("Invalid input");
               Write("Please re-enter an integer value. ");
               inStringValue = ReadLine( );
           }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



334 | Chapter 6: Repeating Instructions

Sentinel-Controlled Loop
If you are going to use a counter-controlled loop, you must know how many times 
the loop should be performed. There are situations where you may not know how 
many iterations are needed. Another looping option is a sentinel-controlled loop. 
Sentinel-controlled loops are often used for inputting data when you do not know 
the exact number of values to be entered. If your program inputs multiple homework 
scores, for example, you might display a message telling the users to enter a negative 
value to indicate they are finished entering scores. You would never have a negative 
score; thus, this would be an appropriate sentinel value.

Sentinel-controlled loops are also referred to as indefinite loops because the number 
of repetitions is not known before the loop’s execution. To design an indefinite loop, 
select a sentinel value to use in the expression. A sentinel value is an extreme value, 
a dummy value. It is a value that should not be processed—like a negative value when 
only positive scores are to be processed.

           WriteLine("Valid value entered: " + integerValue);
           ReadKey( );
       }
    }
}

With Example 6-3, the user is kept inside the loop until an integer is entered. If a 
character such as “b” is entered by the user, the conditional expression evaluates to 
true. Control goes back inside the loop where the error message is printed and then 
the user is re-prompted for input. If an integer is entered initially, the TryParse( ) 
method returns true. Thus, the conditional expression then evaluates to false and 
the loop body is never executed.

You could add additional tests to the conditional expression to ensure the value fell within a 
specific range. For example, to ensure that the input value was not only numeric but that it 
was a positive integer between 1 and 100, the condition expression for the while statement 
could read:

 while ((int.TryParse(inStringValue, out integerValue) == false)
                  || integerValue > 100 || integerValue < 1)

Three tests are performed. The loop body is executed when a non-integer value is entered 
and also when the value entered is not within the specified range (greater than 0 and less 
than 101). This concept was introduced in the discussion following the TicketApp Program-
ming  Example at the end of Chapter 5. With the compound tests as part of the conditional 
expression, to determine exactly what type of invalid input was entered, additional tests 
might need to be performed inside the loop body.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the While Statement | 335

6

C# does not allow you to use unassigned values. If you failed to initialize inValue, you 
would have received the error message, “Use of unassigned local variable inValue,” when 
you attempted to use inValue in the conditional expression.

The sentinel value is used as the operand in the conditional expression for an indefi-
nite loop. A sentinel-controlled loop gives you the advantage of not needing to know 
how many times the loop will be performed. When all the data has been processed, 
the sentinel value can be entered indicating the loop should terminate normally. 
Example 6-4 demonstrates how a sentinel-controlled loop can be used to input any 
number of data values.

EXAMPLE 6-4

/* InputValuesLoop.cs       Author: Doyle
 * Demonstrates loop for inputting values.
 */
using System;
using static System.Console;

namespace InputValuesLoop
{
    class InputValuesLoop
    {
       static void Main( )
       {
           string inValue = ""; //Initialized to null
           Write("This program will let you enter");
           Write(" value after value. To Stop, enter");
           WriteLine(" −99");
           while (inValue!= "−99")
           {
               Write("\nEnter value (−99 to exit): ");
               inValue = ReadLine( );
           }
           ReadKey( );
       }
    }
}

As with the counter-controlled loop, it is necessary to set up the conditional expres-
sion in Example 6-4. This must be done before the loop executes. This time, the vari-
able used to hold the inputted values, inValue, is initialized to null (""); no value is 
placed between the double quotes. The variable inValue could have been initialized 
to any value, other than −99. However, it had to be initialized.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



336 | Chapter 6: Repeating Instructions

In Example 6-4, the conditional expression continues to evaluate as true as long 
as the user does not enter −99. Notice how the input statement is placed as the last 
statement in the loop body. The placement is important. If calculations were part 
of the loop body, it would have been necessary to prime the read on the outside of 
the loop. This means that you would input a value before going into the body of the 
loop. Doing this allows the first statements in the loop to be the statements process-
ing that entered value. Then, as the last statement in the body of the loop, another 
 ReadLine( ) method is included. If you do not place the ReadLine( ) at the end 
as the last statement, you end up processing the sentinel value. As soon as the user 
enters the −99, or the sentinel value, you want to stop processing data. Placing the 
ReadLine( ) as the last line in the body enables the conditional expression to evalu-
ate to false as soon as the −99 is entered. Example 6-5 illustrates this important 
point by summing the values entered.

EXAMPLE 6-5

/* PrimeRead.cs                     Author:Doyle
 * Sentinel loop to sum values
 */
using System;
using static System.Console;

namespace PrimeRead
{
   class PrimeRead
   {
       static void Main( )
       {
           string inValue = ""; //Initialized to null
           int sum = 0,
               intValue;
           Write("This program will let you enter");
           Write(" value after value. To Stop, enter");
           WriteLine(" −99");
           Write("\nEnter value (−99 to exit): ");
           inValue = ReadLine( ); // Priming read
           while (inValue!= "−99")
           {
               if (int.TryParse(inValue, out intValue) == false)
                   WriteLine("Invalid input − 0 stored in " +
                             "intValue");
               sum += intValue;
               Write("Enter value(−99 to exit): ");
               inValue = ReadLine( );
           }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the While Statement | 337

6

           WriteLine("Total values entered {0}", sum);
           ReadKey( );
       }
   }
}

Suppose the input is

10

12

40

5

1

−99

The output for this code with the preceding input is

Total values entered 68.

When you implement a sentinel-controlled loop, it is imperative that you tell the user 
what value to type to end the loop. You should include this information inside the 
loop body. This is especially true if a large number of values are being entered. You do 
not want the user to have to guess or try to remember how to terminate the program.

To tell users what value to enter to terminate, you display a message using a Write( ) 
or WriteLine( ) method before the ReadLine( ). Otherwise, how will they know 
what value to enter to stop?

In Chapter 11, you will learn how to process data batched together and stored on 
a storage medium, such as your hard drive. Sentinel-controlled loops are useful for 
loops that process data stored in a file. The sentinel value is placed as the last entry in 
the file. Here, it is unnecessary to display a message indicating how to stop. The loop 
conditional expression looks exactly like that used for interactive input of data. The 
conditional expression matches the selected sentinel value.

WINDOWS APPLICATIONS USING LOOPS

Many C# applications developed in industry today create a Windows application 
designed with a graphical user interface (GUI). So far, the output you have displayed 
has been in the form of a console window instead of a Windows form or Web page. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



338 | Chapter 6: Repeating Instructions

Take note that all of the programming concepts you are learning are useful for any 
type of application; however, as you will learn in later chapters, an event-driven model 
is used with Windows applications. An event-driven model manages the interaction 
between the user and the GUI by handling the repetition for you. Sending your out-
put to the console made it possible for you to learn the basics of programming before 
focusing on the interface design.

C# has a predefined class called MessageBox that can be used to display informa-
tion to users through its Show( ) method member. The output generated by the 
MessageBox.Show( ) method more closely resembles the windows you are accus-
tomed to seeing and using. In later chapters of this book, all applications are built 
around windows. The example that follows produces a table showing values 1 through 
10 and their squares. The results are displayed in a dialog box window instead of the 
console to give you the flavor of displaying output to a Windows dialog box.

When you do not want to see the Command window on console applications, you need to 
indicate that the Output type should be a Windows Application. Do this by selecting the 
 project in the Solution Explorer window and then selecting that project’s Properties 
option from the Project menu. Select Windows Application as the Output type from 
the drop-down list. You can also right-click on the project’s name in the Solution Explorer 
 window. Recall the project name is shown below the solution name in the Solution Explorer 
window. Properties is shown as one of the options. The Alt+Enter shortcut also displays 
this dialog box when you have the project selected in the Solution Explorer window.

EXAMPLE 6-6

/* SquaredValues.cs    Author: Doyle
 * Displays values 1 through 10
 * along with their squares.
 */
using System;
using System.Windows.Forms; //Namespace for Windows Forms class

namespace SquaredValues
{
    class SquaredValues
    {
       static void Main( )
       {
           int counter = 0;
           string result ="\tn     Squared\n";
           while (counter < 10)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the While Statement | 339

6

           {
              counter++;
              result += " \t"   // Notice the use of += to build
                     + counter  // the string for the MessageBox.
                     + " \t"
                     + Math.Pow(counter, 2)
                     + "\n";
           }
           MessageBox.Show(result, "1 − 10 and their squares");
       }
    }
}

Figure 6-3 shows the output of this program. The figure contains text representing 
the program’s looped output and a title bar. The two buttons, an “X” indicating “close” 
and an OK button, are added automatically by the predefined MessageBox.Show( ) 
method.

To use the MessageBox class in your console application, you must do two things:

 1. Add a reference to the System.Windows.Forms.dll assembly in 
your project. This can be done by opening the Solution Explorer tab 
in Visual Studio and right-clicking on the References folder, as shown 
in Figure 6-4.

FIGURE 6-3 MessageBox dialog output

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



340 | Chapter 6: Repeating Instructions

  If the Solution Explorer is not present on your screen, you can open 
it from the View menu.

FIGURE 6-4 Add a reference to a project

Adding a reference to the System.Windows.Forms.dll will be done automatically 
for you when you create Windows applications. You will create Windows Applications in 
Chapter 9. This is accomplished by selecting a Windows Forms Application project type 
instead of the Console Application project type template. Adding the reference is required 
now because you are adding this class to your console application.

  As shown in Figure 6-5, after you right-click the References folder 
in the  Solution Explorer window and select Add Reference, the 
 Reference Manager window opens. If necessary, expand  Assemblies 
and select Framework. Scroll down the list and select System. 
Windows.Forms. The MessageBox class is located in this assem-
bly. A check box will appear beside the System.Windows.Forms. 
Click the check box to make that selection and then click OK to close 
the  Reference Manager dialog box.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the While Statement | 341

6

  After you select the System.Windows.Forms component, you can use 
the MessageBox class, but you need to specify the full name of the 
namespace in which the class is located, starting at the system level. 
If you do not perform Step 2 that follows, any reference to the Show( ) 
message of the MessageBox would require the fully qualified name of:

 System.Windows.Forms.MessageBox.Show( )

 2. By adding a using directive, you can use types defined in the Sys-
tem.Windows.Forms namespace without qualifying the name. The 
following using directive is added to the Example 6-6 program:

 using System.Windows.Forms;

FIGURE 6-5 Class libraries of .NET

Notice that it is not enough just to include the using directive; you must also add the ref-
erence to the assembly.

The Show( ) method of the MessageBox class displays a predefined dialog box 
that can contain text, captions for the title bar, special buttons, and icons. Message 
boxes are normally used to display small messages but can also be used to accept 
input in the form of allowing users to make selections from buttons. Message boxes 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



342 | Chapter 6: Repeating Instructions

are considered dialog boxes and can display and accept simple clicks on Yes, No, 
Cancel, Abort, and OK buttons. Using your selection statement, you can write an 
expression to determine which button is clicked. In later chapters, you will learn to 
create forms for larger quantities of input. Your forms will contain text boxes, labels, 
list boxes, combo boxes, menus, radio buttons, and many other types of controls. For 
now, the MessageBox limits input to dialog types of controls.

The Show( ) method of the MessageBox class is overloaded. In its simplest form, 
a string of text is displayed on the dialog box window. The call to the MessageBox.
Show( ) method in Example 6-6 includes two arguments as follows:

MessageBox.Show(result, "1 − 10 and their squares");

The first argument, result, is the string that is displayed in the window. The vari-
able result gets its value from inside the loop body. Text is concatenated onto the 
end of the result with each pass through the loop body. Tabs and newline characters 
('\t' and '\n') are added for spacing. A tab is concatenated as the first character 
for each pass through the loop. A newline character (Enter key) is concatenated as the 
last character for each pass through the loop. After all values are placed in the result, 
its contents are displayed in the window when the Show( ) method is called. The 
contents appear in tabular form because of the tabs and newline characters.

The second argument, "1 − 10 and their squares," is placed as a caption in the 
title bar of the window, as illustrated in Figure 6-3. As noted previously, Show( ) is 
overloaded; you can include a button as a third argument. Table 6-1 lists valid options 
for the buttons that can appear as arguments to the Show( ) method.

MessageBox buttons Description of contents

MessageBoxButtons.AbortRetryIgnore Abort, Retry, and Ignore buttons

MessageBoxButtons.OK OK button

MessageBoxButtons.OKCancel OK and Cancel buttons

MessageBoxButtons.RetryCancel Retry and Cancel buttons

MessageBoxButtons.YesNo Yes and No buttons

MessageBoxButtons.YesNoCancel Yes, No, and Cancel buttons

© Cengage Learning

TABLE 6-1 Dialog button arguments

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the While Statement | 343

6

You can add a button as the third argument, as follows:
MessageBox.Show( result, "1 − 10 and their squares", MessageBoxButtons. 

YesNoCancel);

Buttons for Yes, No, and Cancel are included on the MessageBox dialog box.

As you examine Figure 6-3 or Figure 6-6, notice the last line of output is the value 10. 
However, the conditional expression indicated that the loop is executed as long as the 
counter is less than 10. The loop terminates when the counter became 10. So why 
did 10 and its square print? Also, note that the variable counter is initialized to 0, 
but the first line displayed in Figure 6-3 is for a value of 1. The loop has been included 
again in Example 6-7 so that you can examine it closely.

EXAMPLE 6-7

while (counter < 10)
{
     counter++;
     result += " \t"
            + counter
            + " \t"
            + Math.Pow(counter, 2)
            + "\n";
}

Notice where the counter is incremented and where the concatenation occurs. 
Because the counter is incremented to one as the first statement, the zero is never 
concatenated. The last time the conditional expression evaluates to true is when 
counter is equal to 9 because (9 < 10) is true. Because the counter is incremented 
to 10 inside the loop, before concatenation, the value for 10 is printed. You should pay 
careful attention to the placement of the update for your loop control variable as well 
as the conditional expression you write to allow for normal termination.

The MessageBox is a dialog box. As you know, dialog implies conversation 
between two or more individuals, so a dialog box is designed for user intervention. 
When the line of code containing the MessageBox.Show( ) method is executed, 
processing stops until the user responds by clicking the OK button on the Mes-
sageBox. This method call is placed on the outside of the loop in Example 6-6. 
Placement inside the loop would have necessitated a click from the user every time 

Using IntelliSense in Visual Studio, you can see the button property values given in Table 6-1, 
as well as the options for different icons that can be included in the MessageBox.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



344 | Chapter 6: Repeating Instructions

the MessageBox.Show( ) call was executed. The user would have had to click OK 
10 times if the method call had been included inside the loop body. That is why the 
values produced inside the loop body were concatenated onto the end of a string 
variable. Only one call to the MessageBox.Show( ) method is included and that 
is on the outside of the loop body.

The overloaded method of MessageBox.Show( ) can be sent one of the button 
types from Table 6-1 and a fourth argument of an icon, as shown in Example 6-8.

EXAMPLE 6-8

MessageBox.Show(result, "1 − 10 and their squares",
                MessageBoxButtons.YesNoCancel,
                MessageBoxIcon.Information);

Figure 6-6 shows the output produced when the Show( ) method of Example 6-8 
replaces that which appears in the full program from Example 6-6.

FIGURE 6-6 Button and icon arguments to MessageBox.Show( )

The .NET Framework class library includes several predefined icons that can be 
included as the fourth argument to the MessageBox.Show( ) method. Table 6-2 
lists some you may want to include in your applications.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the While Statement | 345

6

State-Controlled Loops
Similar to sentinel-controlled loops, state-controlled loops stop when a certain state 
is reached. Instead of requiring that a dummy value be entered after all values are pro-
cessed, as is often a requirement for a sentinel-controlled loop, another type of special 
variable is used with a state-controlled loop. This special variable is used in the con-
ditional expression for the loop. It is evaluated to determine when its state changes.

The variable used with a state-controlled loop usually differs from the variable used 
to store the data that is being processed. It must be initialized and then evaluated to 
see when it changes state. When it does, the loop is terminated. In Example 6-9, the 
special Boolean variable moreData is used. For this example, a Boolean data type is 
used; however, that is not a requirement for the variable. It can be of any type.

EXAMPLE 6-9

bool moreData = true;
while (moreData)
{
     ...
// moreData is updated inside the loop when a condition
// changes that indicates the loop should stop.

MessageBoxIcons Description of symbol contents

MessageBoxIcon.Asterisk Lowercase letter i in a circle

MessageBoxIcon.Error White X in a circle with a red background

MessageBoxIcon.Exclamation Exclamation point in a triangle with a yellow background

MessageBoxIcon.Hand White X in a circle with a red background

MessageBoxIcon.Information Lowercase letter i in a circle

MessageBoxIcon.None No symbol

MessageBoxIcon.Question Question mark in a circle

MessageBoxIcon.Stop White X in a circle with a red background

MessageBoxIcon.Warning Exclamation point in a circle with a yellow background

© Cengage Learning

TABLE 6-2 Dialog icon arguments

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



346 | Chapter 6: Repeating Instructions

    if (MessageBox.Show("Do you want another number ?",
                        "State Controlled Loop",
                         MessageBoxButtons.YesNo,
                         MessageBoxIcon.Question)
             == DialogResult.No)// Test to see if No clicked
        {
               moreData = false;
        }
}

Sometimes, state-controlled loops are referred to as flag-controlled loops. After ini-
tializing a variable to a value, flag-controlled loops remain unchanged until it is time 
for the loops to stop running. In Example 6-9, moreData is initialized to true when 
it is declared. Inside the loop, an if statement is used to test for a DialogResult.No 
value. The statement moreData = false; is executed when the user clicks No on the 
MessageBox dialog box. The next time the conditional expression while  (moreData) 
is evaluated, the variable has changed state, so the loop terminates normally.

Example 6-10 illustrates the use of a state-controlled loop to print any number of 
random positive integers less than 100.

EXAMPLE 6-10

/* StateControlled.cs Author: Doyle
 * One or more random integers are
 * printed. User is prompted to
 * determine when to stop printing
 * random values.
 */
using System;
using static System.Console;
using System.Windows.Forms;

namespace StateControlled
{
    class StateControlled
    {
       static void Main( )
       {
           bool moreData = true;
           int s;
           Random numb = new Random( );
           s = numb.Next(100); // Returns positive number < 100.
           while (moreData)
           {
              Write("{0} ", s);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the While Statement | 347

6

              if (MessageBox.Show("Do you want another number?",
                                  "State Controlled Loop",
                                  MessageBoxButtons.YesNo,
                                  MessageBoxIcon.Question)
                      == DialogResult.No)
              {
                 moreData = false;
              }
              else
              {
                 s = numb.Next(100);
              }
           }
       }
    }
}

One of the overloaded methods of the Random class is Next( ). Used with an int 
 argument, it returns a nonnegative random number between zero and the argument 
included in the call. In Example 6-10, the random number returned is a value less 
than 100.

Another one of the overloaded Next( ) methods in the Random class allows you to 
send two arguments. These values specify the range of values for the random number.
s = numb.Next(300, 1000);      // Returns random number
                              // between 300 and 1000.

The random numbers generated during one sample run of the application presented 
in Example 6-10 are shown in Figure 6-7.

FIGURE 6-7 State-controlled loop of random numbers

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



348 | Chapter 6: Repeating Instructions

Using the for Statement Loop
Another pretest looping structure is the for statement. It is considered a specialized 
form of the while statement and is usually associated with counter-controlled types 
of loops; however, it can be used to create other types of loop structures. The general 
form of the for statement is

for (initialize; test; update)
     statement;

for (statement; conditional expression; statement)
     statement;

The statements and expressions with the for loop are interpreted as follows:

Figure 6-8 illustrates the flow of execution in a for statement.

FIGURE 6-8 Flow of control with a for statement

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the for Statement Loop | 349

6

When a variable must be incremented or updated with each pass through the loop, 
the for statement is the preferred loop structure. When a for statement is reached 
in your program, the loop is executed as shown in Figure 6-9.

By separating the statements with commas, you can include more than one executable 
statement in the initialize location. The semicolon ends the initialization portion. Usually, 
however, the only variable initialized here is the loop control variable.

 1. The initialize statement is executed first and only once.

 2. The test is performed. Because the for statement is a pretest loop, 
the test is performed before the loop body is executed. When the con-
ditional expression evaluates to false, the rest of the for statement 
(the update and body of the loop) is bypassed and control transfers to 
the statement following the for statement.

 3. When the conditional expression evaluates to true, the body of the 
loop is performed.

 4. The update statement is executed. Often this involves incrementing a 
variable.

 5. Steps 2–4 are repeated until the conditional expression evaluates to 
false.

As stated, Figure 6-9 numbers the steps that a for statement goes through when it 
executes. The conditional expression is (i < 2). The body of the loop is executed 
twice for values of i = 0 and i = 1. When i is updated to 2, the conditional expression 

FIGURE 6-9 Steps of the for statement

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



350 | Chapter 6: Repeating Instructions

no longer evaluates to true. The body is bypassed and control transfers to the state-
ment following the for loop.

The for statement is a compact method of writing the same kind of loop that can be 
written using while; it packages together the initialization, test, and update all on 
one line. Take, for example, the while statement in Example 6-11 that displays three 
columns of text for all values between 0 and 10. It displays the counter’s value, coun-
ter’s square, and counter’s cubed value.

EXAMPLE 6-11

int counter = 0;
while (counter < 11)
{
    WriteLine("{0,5}\t{1,5}\t{2,5}",
              counter,
              Math.Pow(counter,2),
              Math.Pow(counter,3));
    counter++;
}

The output of this code is

0 0 0

1 1 1

2 4 8

3 9 27

4 16 64

5 25 125

6 36 216

7 49 343

8 64 512

9 81 729

10 100 1000

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the for Statement Loop | 351

6

EXAMPLE 6-12

for (int counter = 0; counter < 11; counter++)      //Line 1
{
      WriteLine("{0,5}\t{1,5}\t{2,5}",                  //Loop body
               counter,
               Math.Pow(counter,2),
               Math.Pow(counter,3));
}

The output of this code that uses the for statement is exactly the same as that shown 
from the while loop in Example 6-11.

In Example 6-12, everything is included on Line 1 except the statements to be looped 
or the body of the loop. The loop body contains one statement; thus, the curly braces 
could have been omitted without any change in the output.

In Example 6-12, the loop control variable is declared and initialized at the same time. 
This is often done with for loops when the variable is used only as a loop control 
variable. Be aware that if you do this, you cannot use the variable that is declared in 
the for statement outside of the for statement. The variable counter only exists in 
the for block. The scope of the variable declared in the for initializer is the initial-
izer, test expression, increment/update portion, and is inside the loop body. Recall 
that scope refers to the region in the program in which you can use the variable. Try-
ing to use it beyond the closing curly brace of the for body produces the syntax error 
shown in Figure 6-10.

Notice that in addition to a tab being placed between values when they are printed, a 
5 is placed inside the curly brace, that is, "{0,5}\t. This facilitates number aligning the 
values.

This is a very common type of application. It could be rewritten using a for state-
ment, as shown in Example 6-12.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



352 | Chapter 6: Repeating Instructions

In addition to declaring variables as part of the initialization of the for statement, 
some programmers declare variables inside the curly braces. You should avoid doing 
this for two reasons. First, with every iteration through the loop, a new memory loca-
tion must be set aside for that identifier. Imagine having a loop executed 1000 times. 
One thousand different memory cells would be declared, but they all hold the same 
kind of information as that previously declared. It would be best to declare variables 
on the outside of the loop body.

The second problem involves the visibility of the variable. If it is declared inside a 
block, it dies or becomes no longer available outside the block. C# performs  automatic 
garbage collection. After the loop is finished, the variable is no longer available. Its 
space is released back to the operating system for reuse. The variable is visible and 
usable inside the block in which it is defined. If it is needed outside the loop body, it 
is best to declare the variable outside the loop body.

The conditional expression is located in the center of the for statement after the first 
semicolon. The increment or update of the control variable is placed as the last entry, 

FIGURE 6-10 Syntax error

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the for Statement Loop | 353

6

after the second semicolon. This compact arrangement makes it easier to read and 
modify because you do not have to go searching through your code to find the lines 
associated with the loop control variable.

The update does not have to be a simple increment by one. It does not even have to 
be a single statement. It can be any valid executable statement. This is also true for 
the initialize statement. You can put multiple entries in the initialize and update por-
tion or you can omit one or both of them. The following six statements illustrate valid 
ways the initialize, test, and update portions can be written.

 1. for (int counter = 0, val1 = 10; counter < val1; counter++)

Here, both counter and val1 are declared and initialized as part of the for state-
ment. Notice their declaration is separated by a comma and that int is not repeated 
with val1. If these identifiers are used in another declaration outside the for state-
ment, a syntax error message is issued, such as the one shown in Figure 6-11.

FIGURE 6-11 Redeclaration error message

The second statement shows that you do not have to include an expression for the 
initialize portion. The semicolon is required. When you place a semicolon without 
anything to the left of it as shown next, it indicates that no statement or a null state-
ment is associated with the initialize portion.
// Initialization not included as part of for statement

 2.  int counter = 0;
      for ( ; counter < 100; counter+=10)

The control variable, counter, is declared outside of the for statement with the sec-
ond example. The other parts of the for statement can also have more than one or 
no statements for expressions included in the conditional expression, as shown with 
statement 3.
// No conditional expression included

 3. for  (int j = 0; ; j++)

The infinite loop created in statement 3 requires an abnormal termination. As you 
will learn in the sections that follow, either a break or continue is needed in the 
body or the user must terminate this running loop; thus, you should rarely omit the 
conditional expression.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



354 | Chapter 6: Repeating Instructions

// No initialization; but includes compound update

 4. for ( ; j < 10; counter++, j += 3)

The fourth statement indicates that more than one update can be included by sep-
arating the statements with commas. Notice that no semicolon is included after 
the update. No semicolon is placed after the parentheses ending the initialize, 
test, and update expressions unless you have a null body loop or no statements 
to loop.

Syntactically you are permitted to have a null-bodied loop. If you choose to have this, do 
not hide the semicolon. It is best to place the semicolon on a line by itself (not at the end 
of the line containing the conditional expression) with a comment indicating that the body is 
null. For example, the following loop adds values 0 through 100 in the update portion of 
the for statement.

for (int aNum = 0; aNum < 101; sum += aNum, aNum++);
      // Notice the ; Considered empty loop body

Variables declared inside the for statement are only accessible within the loop body. 
They go out of scope when the loop terminates. If the result, sum, shown in the Note 
above is to be displayed outside the loop, it must also be declared outside the loop. It 
cannot be declared in the initializer portion.

// Compound initialization, compound test, and compound update
// Compound test requires logical && or || operator

 5. for (int j = 0, k = 10; j < 10 && k > 0; counter++, j += 3)

To include more than one test as part of the conditional expression, you must use the 
&& operator as a separator between the expressions as shown in statement 5. It is not 
enough to just separate the conditional expressions by a comma. Of course, the logi-
cal OR operator could also be used. However, you should be cautious. With the || 
operator, only one of the expressions must evaluate to true for the loop body to be 
executed. It is easy to create an infinite loop.
// Use of floating point variables is permissible

 6. for (double d = 15.0; d < 20.0; d += 0.5)

Floating-point variables can be used for the initialization, conditional expressions, 
and increments of loops. It is syntactically correct to write:
for (double d = 15.0; d < 20.0; d += 0.5)
{
     Write(d + "\t");
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the for Statement Loop | 355

6

The output produced using the floating-point values is as follows:

15 15.5 16 16.5 17 17.5 18 18.5 19 19.5

You can also change the loop control variable inside the loop and alter the execution. 
If you add 2.0 to the loop control variable, you change the result produced by the loop 
as follows:
for (double d = 15.0; d < 20.0; d += 0.5)
{
     Write(d + "\t");
     d += 2.0;
}

The output produced is

15   17.5

You can even change the value of the variables used in the conditional expression 
inside the loop body. Each iteration through the loop is an independent activity. If, 
for example, you modify the variables d and endValue, which are used as the test to 
terminate the loop, the loop is altered by the new values, as shown in the following 
code segment:
double endValue = 20.0;
for (double d = 15.0; d < endValue; d += 0.5)
{
     Write(d + "\t");
     d += 2;
     endValue = 30;
}

The output produced is

15   17.5   20   22.5   25   27.5

Although it is legal to change endValue, be careful, because it is easy to create an 
 infinite loop. Also notice in the previous example that each iteration through the loop made 
the same assignment of endValue = 30. This was inefficient.

As noted earlier, the for loop can be used with loop structures that are not coun-
ter controlled. For example, applications that retrieve data from an input file could 
attempt to access the first record in the initialization section. The test section could 
be used to check to see when the end of file was encountered. The update portion of 
the for statement could be used to read the next record from the file. The body of the 
loop could then process the data that was retrieved. You will explore accessing data 
from an input file in Chapter 13. The for loop is the preferred structure used with 
arrays. Arrays are the topic of Chapter 7.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



356 | Chapter 6: Repeating Instructions

Using the Foreach Statement
The foreach statement is new to the C++/Java line of programming languages. It is 
used to iterate or move through a collection, such as an array. You will be working with 
arrays in Chapter 7. An array is a data structure that allows multiple values to be stored 
under a single identifier. Values are usually accessed in the array using the identifier and 
an index representing the location of the element relative to the beginning of the first 
element. The foreach loop offers another option for traversing through the array with-
out having to increment indexes or counter-controlled variables like is needed when 
you use a for statement. This chapter introduces the foreach loop because it is a loop-
ing structure available in C#; however, Chapter 7 explores the concept in greater detail.
To use the foreach statement, a collection must be available. You have not used or 
seen any collections yet; thus, the discussion that follows is brief but is continued in 
Chapter 7. The general form of the foreach statement is

foreach (type identifier in expression)
         statement;

The expression in the preceding syntax box is the collection, such as the array. The 
type is the kind of values found in the collection. The identifier is a user-supplied 
name used as an iteration control variable to reference the individual entries in the 
collection. The foreach statement offers a shortcut to moving through a group of 
data items. With the for statement, you understood that it was necessary to incre-
ment a loop control variable and test an expression to determine when all data had 
been processed. Neither of those statements is required with the foreach loop. 
In Example 6-13, an array called number contains five different values. Using the 
foreach statement, all five values are printed.

EXAMPLE 6-13

int [ ] number = {2, 4, 6, 8, 10};
foreach(int val in number)
{
     WriteLine(val);
}

The output of this code is

2
4
6
8
10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the Do. . .while Structure | 357

6

In order to receive the same output using a for statement, you would write
for (int index = 0; index < 5; index++)
     WriteLine(number[index]);

Notice with the for statement it is necessary to declare and increment an index to 
reference elements in the collection. You get automatic traversal through the collec-
tion with the foreach loop.

Note the following restriction on the foreach statement: You cannot change values in the 
collection. The access to the elements is read-only.

do
{
     statement;
}
while (conditional expression);

Do not be alarmed if you don’t totally understand Example 6-13. As mentioned 
previously, the foreach statement will be revisited when you learn about arrays in 
 Chapter 7. For now, recognize that the loop body is executed for every element in the 
array or collection. Like the other forms of looping structures, after the iteration has 
been completed for all the elements in the collection, control is transferred to the next 
statement following the foreach block.

Using the Do. . .while Structure
All of the loop structures you have learned up to this point are considered pretests. 
The do. . .while is the only posttest loop structure available in C#. The general form 
of the do. . .while statement is

With a posttest, the statements are executed once before the conditional expres-
sion is tested. When the conditional expression evaluates to true, the statement(s) 
are repeated. When the expression evaluates to false, control is transferred to 
the  statement following the do. . .while loop expression. Notice that the loop 
body is always executed at least once regardless of the value of the conditional 
expression.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



358 | Chapter 6: Repeating Instructions

Figure 6-12 illustrates the flow of execution in a posttest loop.

FIGURE 6-12 Do. . .while loop

©
 C

en
ga

ge
 L

ea
rn

in
g

A do. . .while loop is used in Example 6-14 to display numbers and their squares. 
The first value printed is 10. Each iteration through the loop decreases the counter by 
one until the counter reaches zero.

EXAMPLE 6-14

int counter = 10;
do                    // No semicolon on this line
{
    WriteLine(counter + "\t" + Math.Pow(counter, 2));
    counter––;
}
while (counter > 0);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using the Do. . .while Structure | 359

6

The output of this code is

10 100

9 81

8 64

7 49

6 36

5 25

4 16

3 9

2 4

1 1

No semicolon is placed on the line containing the do keyword. A semicolon is placed 
on the last line. It appears on the same line as the while keyword. As with the other 
looping structures, the curly braces are optional; however, with the do. . .while loop 
you will not forget to block the loop body when you have more than one statement as 
you might with the other formats. As shown in Figure 6-13, C# issues a syntax error 
if you have more than one statement between the do and while without including 
the curly braces.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



360 | Chapter 6: Repeating Instructions

The do. . .while loop can be used to implement a counter-controlled loop, as shown 
in Example 6-14. It can also be used to implement a sentinel- or flag-controlled 
loop. You will see an example of this in the nested loop section. The only difference 
between this structure and the while structure is in the placement of the conditional 
expression. For posttest loops, the conditional expression is placed at the end of the 
loop body.

Nested Loops
Any statement can be included within the body of a loop, which means another 
loop can be nested inside an outer loop. When this occurs, the inner nested loop is 
totally completed before the outside loop is tested a second time. You often need 
nested loops when working with arrays, especially multidimensional arrays, which 
are covered in Chapter 8. Example 6-15 illustrates a nested loop using two for 
statements.

FIGURE 6-13 Curly brace required

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Nested Loops | 361

6

EXAMPLE 6-15

int inner;
for (int outer = 0; outer < 3; outer++)
{
      for(inner = 10; inner > 5; inner --)
     {
           WriteLine("Outer: {0}\tInner: {1}", outer, inner);
     }
}

The output of this code is

Outer: 0 Inner: 10

Outer: 0 Inner: 9

Outer: 0 Inner: 8

Outer: 0 Inner: 7

Outer: 0 Inner: 6

Outer: 1 Inner: 10

Outer: 1 Inner: 9

Outer: 1 Inner: 8

Outer: 1 Inner: 7

Outer: 1 Inner: 6

Outer: 2 Inner: 10

Outer: 2 Inner: 9

Outer: 2 Inner: 8

Outer: 2 Inner: 7

Outer: 2 Inner: 6

In Example 6-15, the WriteLine( ) method is executed 15 times. As shown from 
the output, after the variable outer is initialized to zero and evaluated to determine 
whether outer is less than 3, the innermost loop is executed five times. The vari-
able inner takes on the values of 10, 9, 8, 7, and 6. When inner is updated to 5, the 
second for statement, in the innermost loop, evaluates to false (inner > 5). That 
loop is now completed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



362 | Chapter 6: Repeating Instructions

The for statement using the variable inner is the executable statement for the 
 outermost for loop. After the innermost for statement is completed, control trans-
fers back to the update portion of the outside for loop. Here, the variable outer is 
updated. Another evaluation of outer occurs to determine whether outer is less 
than 3. Because it is less, control transfers back into the nested innermost for loop. 
Here, the entire for statement is executed again. Notice the identifier inner is rede-
clared and reinitialized to 10. The sequence of evaluating the conditional expression 
using the variable inner, executing the body of the loop and updating inner, which 
is the control variable, continues until the innermost conditional expression again 
evaluates to false. At that point, outer, the loop control variable in the outermost 
loop, is updated and the outermost conditional expression is evaluated again. This 
cycle continues until the outermost for loop expression evaluates to false.

Example 6-16 shows another nested loop. This program allows any number of n fac-
torial (n!) calculations. First, a loop is used to calculate n!, which represents the 
product of the first n positive integers. If n, for example, has a value of 3, 3! is 3 * 2 * 1, 
or 6. When n is 6, n! is 6 * 5 * 4 * 3 * 2 * 1 or 720. One approach to determine the 
product is to use a loop and multiply n * n−1 * n−2 * . . . 1. Because this is a loop that 
requires that a variable be updated by decrementing a loop control variable with each 
pass through the loop, a for loop is used.

A nested loop allows the user to calculate more than one n!. The design choice for 
Example 6-16 is “at least one calculation should be run.” A posttest loop structure 
is used for the outermost nested loop. At the end of the first pass, the user is asked 
whether another value is to be calculated. The do. . .while loop is used as the outer 
loop control. A for statement is used for the inner loop. The for loop, doing the 
individual calculations, is placed in a class method. This method is called with each 
new value entered by the user. Example 6-16 follows:

EXAMPLE 6-16

/* NFactorial.cs        Author: Doyle
 * Computes n factorial –
 * the product of the first n
 * positive integers.
 */
using System;
using static System.Console;

namespace NFactorial
{
    class NFactorial
    {
       static void Main( )
       {

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Nested Loops | 363

6

       int result;                                            //Line 1
       string moreData;                                       //Line 2
       int n;                                                 //Line 3
        DisplayInformation( );                                //Line 4
       do                                                     //Line 5
       {                                                   //Line 6
            n = InputN( );                                    //Line 7
            CalculateNFactorialIteratively(n, out result);
            DisplayNFactorial(n, result);                     //Line 9
                moreData = PromptForMoreCalculations( );         //Line 10
       }                                                   //Line 11
       while (moreData == "y" || moreData == "Y");         //Line 12
       ReadKey( );                                         //Line 13
    }

     static void DisplayInformation( )                      //Line 14
    {                                                      //Line 15
       WriteLine("n! represents the "  +                   //Line 16
                   "product of the " +                           //Line 17
                    "first n integers");                         //Line 18
    }

    static void CalculateNFactorialIteratively(int n,
                           out int result)                 //Line 19
    {                                                      //Line 20
         result = 1;                                        //Line 21
         for (int i = n; i > 0; i--)                         //Line 22
        {                                                  //Line 23
              result *= i;                                 //Line 24
            }                                                      //Line 25
    }                                                      //Line 26

     static int InputN( )                                    //Line 27
    {                                                      //Line 28
        string inValue;                                    //Line 29
        int n;                                             //Line 30
           Write("\nEnter the number to " +                   //Line 31
              "use to compute n! ");                       //Line 32
        inValue = ReadLine( );                             //Line 33
        if (int.TryParse(inValue, out n) == false)         //Line 34
            WriteLine("Invalid input −" +                  //Line 35
                        "0 recorded for n");
        return n;                                          //Line 36
    }

     static void DisplayNFactorial(int n, int result)       //Line 37
    {                                                      //Line 38
        WriteLine("{0}! is {1}.", n, result);              //Line 39
    }                                                      //Line 40

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



364 | Chapter 6: Repeating Instructions

      static string PromptForMoreCalculations( )                 //Line 41
    {                                                      //Line 42
        string moreData;                                   //Line 43
          WriteLine("\nDo you want to " +                    //Line 44
                  "calculate another factorial?");
          WriteLine("Enter y for another " +                      //Line 45
                  "calculation.\nAny other" +              //Line 46
                   " character to stop.");                   //Line 47
        moreData = ReadLine( );                            //Line 48
        return moreData;                                   //Line 49
     }                                                     //Line 50
  }                                                        //Line 51
}                                                          //Line 52

FIGURE 6-14 Nested loop output

Notice that the CalculateNFactorialIteratively(int n, out int result) 
method shown on Lines 19–26 contains the for statement used as the inner nested 
loop. This is where n! is calculated. It produces result by initializing the loop 

Figure 6-14 shows the output of running the program for Example 6-16 with 9, 5, and 3.  
To exit the outer loop, the character n was entered when the user was prompted to 
“Enter y for another calculation. . .” beginning on Line 45. Any character value, 
other than the character Y or y, is entered to exit the loop.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Recursive Calls | 365

6

control variable, i, to n on Line 22. The variable n stores the user-inputted entry that 
represents the factorial to be calculated. With each iteration of the loop, the loop 
control variable is multiplied by result. The out keyword is included in the method 
call and method heading for the variable result, indicating that result does not 
contain a value on entry into the method.

The first statement in the CalculateNFactorialIteratively( ) method 
 initializes result to 1. During each iteration through the loop, the update  portion 
of the for statement decrements the loop counter. The conditional expression 
is reevaluated to determine whether the calculations are finished. This cycle of 
 execute body, update loop control variable, and evaluate expression continues until 
the loop control variable reaches 0. When this occurs, the innermost for statement 
is completed. This also completes the  CalculateNFactorialIteratively( ) 
method. Control transfers back to the outer loop at Line 9, which calls another 
method  DisplayNFactorial( ), to display the original value of n and result, 
the product of the calculations. After control returns to the Main( ) method, the 
 PromptForMoreCalculations( ) method found on Lines 41–50 is called 
next. It returns a value indicating whether the loop body should be executed 
again.

Recursive Calls
Another option for repeating a program statement is recursion. Recursion is a 
technique used where a method calls itself repeatedly until it arrives at the solu-
tion. Recursion is somewhat similar to a circular definition, in that the recursive 
method contains a call to itself. It is a very powerful control mechanism. When 
you write iteration or looping statements, such as a while or for statement, you 
must write statements to deal with the loop variables. With recursion, much of 
the details of the calls are handled for you behind the scenes. To write a recursive 
solution, a different problem-solving technique is employed. You must identify a 
terminating condition so that the method branches to a non-recursive solution at 
some point.

In C# and most other languages, a method can call itself. Another approach that can 
be used to solve the n! problem, introduced in Example 6-16, is to develop a recur-
sive solution. To write a recursive solution, an algorithm has to be developed so as 
to avoid an infinite loop. There must be a way for the method to know that it should 
stop calling itself. This is accomplished by identifying a base case. The base case is a 
simple, direct answer that is arrived at without another call to the method. The base 
case is the simplest form of the solution. The other cases are all solved by reducing 
the value and calling the method again. Example 6-17 illustrates a recursive method 
that would replace the method CalculateNFactorialIteratively( ), which 
was called iteratively.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



366 | Chapter 6: Repeating Instructions

EXAMPLE 6-17

static int Fact(int n)
{
     if (n == 1 || n == 0)
        return 1;
     else
        return (n * Fact(n−1));
}

For this algorithm, the base case is 1. When Fact( ) is called with an argument of 1, 
the method returns 1; otherwise, it returns the product of Fact(n−1) times n. Notice 
that with each call, 1 is subtracted from n so that the new argument is eventually 
reduced to the simplest or base case. The conditional statement includes the addi-
tional compound test of ( || n == 0) because the int.TryParse( ) method stores 0 
in n when invalid data, such as an alphabetic character, is entered.

Both Examples 6-16 and 6-17 solve the n! problem. In terms of comparing the 
code of the iterative to the recursive solution, the Fact( ) method replaces the 
 CalculateNFactorialIteratively( ) method and the call in the Main( ) 
method would be changed. Because the Fact( ) method returns a value, a vari-
able was set aside in the Main( ) method to hold the answer. The call changed from 
 CalculateNFactorialIteratively(n, out result) to answer = Fact(n).

When the factorial of 4 is calculated, a test of n causes the Fact( ) method to be 
called a second time. The value for the n argument in the second call is 3 or n−1. 
Another test of n’s value causes a third call to Fact( ) with n−1 value, or 2. The 
fourth call to Fact( ) sends in the value of 1. When this occurs, 1 is returned and 
that value is used in place of the previous call, which causes 1 to be multiplied by 2 
and then that value returned back to the previous call where n was equal to 3. When 
the 2 is returned, it is multiplied by n (or 3) and 6 is returned. When 6 is returned, it is 
multiplied by n, which is 4 for this call, and the solution for 4! is 24. This is illustrated 
in Figure 6-15.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Recursive Calls | 367

6

When a recursive solution is used, the system stack is used to store the values for the 
local variables. You can think of the memory representation of a stack as analogous 
to a stack of books. Think of placing the books in a tall, shallow box. The first book 
is placed in the bottom of the box. The second is placed on top of it. If this were to 
continue and you placed five books on the stack, to retrieve the first one that went on 
the stack, you would need to pick up book 5, then book 4, and so on until you finally 
reached the one on the bottom. As each recursive call is returned, the old variables 
are removed from the stack and used. They are retrieved, or popped off the stack, 
using a LIFO (Last In/First Out) approach. When the method is complete, execution 
always resumes at the point where the call was made and the value returned from the 
method is used in place of the call.

FIGURE 6-15 Recursive evaluation of n!

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



368 | Chapter 6: Repeating Instructions

The n! recursive example shows a simple mathematical use of recursion. Another 
area where recursion is very useful is with processing lists of items. With this type 
of application, you can test for an empty list as the base case. Calls to the recursive 
methods continue with each call sending the list minus its first element. When the 
call sends in an empty list, the base case is met. Chapter 7 introduces you to collec-
tions, such as arrays, where lists of items can be stored.

Recursion is considered an elegant approach for solving problems. It is sometimes 
less intuitive and more complicated than iterative approaches to solving the same 
problem. There is also additional overhead required with recursive solutions because 
multiple method calls are made and with each call, the local variable’s data must 
be saved so that when control returns back, the values of the local variables can be 
restored. More memory is used with recursive calls. However, it is another tool or 
approach that programmers can take to solve problems. And, sometimes a shorter, 
more straightforward solution can be written using recursion.

Unconditional Transfer of Control
C# provides a couple of options to alter the flow of control in a program. You have been 
introduced to the break statement. It is used with the switch selection statement 
to provide an immediate exit from the switch structure. You can also place a break 
statement in the body of a loop to provide an immediate exit. If you do, when the break 
statement is reached, control immediately transfers to the statement on the outside 
of the loop body. The conditional expression is never evaluated again.  Example 6-18 
 illustrates what happens when a break statement is placed inside a loop.

When you use a break statement with a nested loop, the break takes you out of the 
innermost loop in which the break is placed.

EXAMPLE 6-18

int total = 0;
for (int nValue = 0; nValue < 10; nValue++)
{
    if (nValue == 5)
    {
        break;
    }
    total += nValue;
    Write(nValue + "\t");
}
WriteLine("\nTotal is equal to {0}.", total);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Unconditional Transfer of Control | 369

6

The output for this code is

0  1  2  3  4

Total is equal to 10.

When the conditional expression associated with the if statement inside the loop, 
(nValue == 5), evaluates to true, the break statement is executed, which stops the 
loop body. The loop conditional expression in the for statement, (nValue < 10), is 
never evaluated again. The statement (WriteLine("\nTotal is equal to {0}.", 
total);) is executed.

For the preceding example, you would get the same result if you modified the conditional 
expression to (nValue < 5).

With the for statement, transfer is back to the top of the next iteration, which actually 
causes the update portion to be performed before the reevaluation of the conditional 
expression.

Another unconditional transfer of control option used with loops is the continue 
statement, discussed in the following section.

Continue Statement
The continue statement, like the break, is a form of jump statement. When a 
 continue is reached, a new iteration of the nearest enclosing while, do. . .while, 
for, or foreach statement is started. Physically, it does not matter where the execu-
tion is. It could be at the top or bottom of the loop body. When continue is reached 
and executed, the rest of that iteration of the loop body is not performed. continue 
immediately transfers control straight to the conditional expression for an evaluation.

The general form of the statement is
continue;

Example 6-19 adds and prints only odd values. When the conditional expression 
(nValue % 2 == 0) evaluates to true, the continue statement is executed, which 
causes the loop body to halt at that location. The remaining statements in the loop are 
skipped and control transfers back to update nValue. The variable total is not incre-
mented and the Write(nValue) is not executed for that iteration through the loop.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



370 | Chapter 6: Repeating Instructions

EXAMPLE 6-19

int total = 0;
for (int nValue = 0; nValue < 10; nValue++)
{
     if (nValue % 2 == 0)
     {
          continue;
     }
     total += nValue;
     Write(nValue + "\t");
}
WriteLine("\nTotal is equal to {0}.", total);

The output for this code is
1     3     5     7     9

Total is equal to 25.

Notice that the difference between the break and continue statements is that the 
continue statement does not stop the execution of the loop body, but rather, halts 
that iteration and transfers control to the next iteration of the loop.
The other jump statements in C# are goto, throw, and return. You will learn about 
the throw statement with exception handling in Chapter 12. You have used the 
return statement in your value-returning methods. The goto statement transfers 
control to a statement that is marked by a label. The goto statement has a bad reputa-
tion. It is associated with poorly designed spaghetti code that is difficult to debug and 
maintain. You should not use a goto jump statement in your programs.
The break and continue statements should also be used sparingly. It is appropriate 
and a requirement that you use a break statement with a switch statement. How-
ever, when you use break and continue statements with a loop, you are violating 
the single entry and single exit guideline for developing a loop. What this means is 
that there should be only one way to enter a loop and one way to exit. When you exit 
a loop from multiple locations, it becomes more difficult to debug. The loop might 
end because the condition evaluates to false or it might end prematurely because 
of the break. This adds complications when you are trying to walk through the logic.

Deciding Which Loop to Use
The decision regarding which type of loop to use is sometimes a personal choice; 
however, there are some considerations you might want to acknowledge and allow to 
overrule your personal biases. Remember that the body of the do. . .while is always 
executed at least once. Thus, you should avoid using this form if there is the possibil-
ity that the loop body should not be executed when certain types of data are input 
into your program. Conversely, if you know your loop will always be executed at least 
once, the do. . .while is a good option.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Programming Example: LoanApplication | 371

If a numeric variable is being changed by a consistent amount with each iteration 
through the loop, the compactness of the for statement might work best. The ini-
tialization, conditional expression, and update can all be located on the same line. 
Although the format allows for multiple entries for all three of these entries, a good rule 
of thumb is that the for statement initialization, condition, and update should be able 
to be placed on one line. Remember, readability is always an important consideration.

The while statement can be used to write any type of loop. It can implement 
 counter-controlled loops just as the for statement can. The while statement is also 
useful for applications requiring state- and sentinel-controlled loops. So it is always a 
good option. It offers the advantage of being a pretest type. With all of the loops, you 
want to ensure that you understand and design the condition that is used to end the 
loop as well as how the condition is updated or changed.

This example demonstrates the use of loops in the analysis, design, and implementa-
tion of a program. Both pretest and posttest forms of loops are included in the exam-
ple. The pretest form is used to calculate individual loan details. It is nested inside 
the posttest through method calls. Static and instance methods, properties, and 
selection statements are included. Figure 6-16 outlines the problem specification.

PROGRAMMING EXAMPLE: LoanApplication

FIGURE 6-16 Problem specification for the LoanApplication example

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



372 | Chapter 6: Repeating Instructions

ANALYZE THE 
PROBLEM

You should review the problem specification in Figure 6-16 and make sure that 
you understand the problem definition. Several values are put into the program to 
represent the loan amount, rate, and the time period of the loan. These values are 
entered as string variables and then parsed or converted into numeric fields so 
the calculations can be performed.

Two separate classes are to be developed. Creating a separate class for the Loan 
object enables the class to be used by other applications. The class includes an 
algorithm for producing an amortization schedule. It also includes a stand-alone 
method to determine the total interest paid over the life of the loan.

DATA Tables 6-3 and 6-4 list the data field members needed for the LoanApplication 
problem.

Data item description Type Identifier

Amount of loan double loanAmount

Interest rate double rate

Total interest paid double totalInterestPaid

Monthly payment amount double paymentAmount

Current balance of the loan double balance

Current amount paid toward principal double principal

Number of payments int numPayments

Interest for the current month double monthInterest

© Cengage Learning

TABLE 6-3 Instance field members for the Loan class

The client class that is using the Loan class will need additional data. As noted 
in the problem specification, the client or application class allows the user to 
enter values for the loan. Table 6-4 identifies some of the local variables needed by 
the application class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Programming Example: LoanApplication | 373

Data item description Type Identifier

Amount of loan double loanAmount

Interest rate double interestRate

Number of years to finance loan int years

More calculations (loop state-controlled variable) char anotherLoan

© Cengage Learning

TABLE 6-4 Local variables for the LoanApp class

The top three entries in Table 6-4 will be used to instantiate an object of the Loan 
class. After the values are entered and converted into numeric values, the loan 
constructor will be called to create a Loan object.

CONSTANTS No constants are used for this application.

FORMULAS Formulas are needed to calculate the following:

 1. numPayments = years * 12
 2. term = (1 + rate / 12.0)numPayments

 3. paymentAmount = loanAmount * rate / 12 * term/(term – 1.0)
 4. monthInterest = rate / 12 * balance
 5. principal = payment – monthInterest
 6. balance = balance – principal
 7. totalInterestPaid = totalInterestPaid + monthInterest

DESIGN A 
SOLUTION

The desired output is to display the monthly payment amount, an amortization 
schedule, and the total interest paid over the life of the loan. Figure 6-17 shows a 
prototype for the final output. The xxx’s are placed in the prototype to represent 
the location in which the calculated values should appear.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



374 | Chapter 6: Repeating Instructions

The object-oriented approach focuses on the object. The loan application has 
both data and behavior characteristics that can be identified. Class diagrams are 
used to help design and document these characteristics. Figure 6-18 shows the 
class diagrams for the Loan Application example.

FIGURE 6-17 Prototype for the LoanApplication example

©
 C

en
ga

ge
 L

ea
rn

in
g

FIGURE 6-18 Class diagrams

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Programming Example: LoanApplication | 375

The class diagrams do not show the properties or the local variables that might 
be needed by specific methods. Table 6-5 lists the data members that will have 
properties defined and indicates whether both get and/or set will be needed. The 
name of the property is also shown.

Data member identifier Property identifier Set Get

paymentAmount PaymentAmount √

loanAmount LoanAmount √ √

rate Rate √ √

numPayments (in months) Years √ √

totalInterestPaid TotalInterestPaid √

© Cengage Learning

TABLE 6-5 Properties for the Loan class

The property members PaymentAmount and TotalInterestPaid are set as 
read-only properties because they are calculated values involving more than just 
the individual data member.

Figures 6-19 and 6-20 show the Structured English, or pseudocode, used to design 
the step-by-step processes for the behaviors of the methods for the  LoanApplication 
example.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



376 | Chapter 6: Repeating Instructions

FIGURE 6-19 Behavior of Loan class methods

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Programming Example: LoanApplication | 377

After the algorithm is developed, the design should be checked for correctness. 
With previous applications, you have been able to use a standard calculator and 
compare results you produce with your program against values you produce with 
a calculator. Sometimes, you need additional resources to verify the correctness of 
your output. On the Internet, you can find amortization tables and you can also 
use financial calculators to test your results. Table 6-6 contains values that can be 
used to verify the correctness of the programming example. For readability here 
commas are added. They are not entered during testing.

FIGURE 6-20 Behavior of LoanApp class methods

Loan amount Interest rate Years Payment amount Total interest

50,000 0.08 10 606.64 22,796.56

22,000 0.05 5 415.17 2,910.03

150,000 0.055 30 851.68 156,606.06

12,000 0.06 3 365.06 1,142.28

10,000 0.05 2 438.71 529.13

© Cengage Learning

TABLE 6-6 LoanApp test values

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



378 | Chapter 6: Repeating Instructions

After you implement your design, you can compare these results with those 
obtained from your program output. This is sometimes called a desk run.

After you complete the design and verify the algorithm’s correctness, it is time to 
translate the design into source code. For this application, you are creating two 
separate files—one for each class. The final application listing for both files is as 
follows:

CODE THE 
SOLUTION

/* Loan.cs
 * Creates fields for the amount of loan, interest
 * rate, and number of years. Calculates payment amount
 * and produces an amortization schedule.
 */
using System;

namespace LoanApp
{
   public class Loan
   {
        private double loanAmount;
        private double rate;
        private int numPayments;
        private double balance;
        private double totalInterestPaid;
        private double paymentAmount;
        private double principal;
        private double monthInterest;

        // Default constructor
        public Loan( )
        {

        }

        // Constructor
        public Loan(double loan, double interestRate, int years)
        {
            loanAmount = loan;
            if (interestRate < 1)
               rate = interestRate;
            else     //In case directions aren't followed                 

// convert interest rate to decimal
               rate = interestRate / 100;
            numPayments = 12 * years;
            totalInterestPaid = 0;
            DeterminePaymentAmount( );
        }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Programming Example: LoanApplication | 379

        // Property accessing payment amount
        public double PaymentAmount
        {
            get
            {
                 return paymentAmount;
            }
        }

        // Property setting and returning loan amount
        public double LoanAmount
        {
            set
            {
                 loanAmount = value;
            }
            get
            {
                 return loanAmount;
            }
        }

        // Property setting and returning rate
        public double Rate
        {
            set
            {
                 rate = value;
            }
            get
            {
                 return rate;
            }
        }

        // Property to set the numPayments, given years
        // to finance. Returns the number of years using
        // number of payments
        public int Years
        {
            set
            {
                 numPayments = value * 12;
            }
            get
            {
                 return numPayments / 12;
            }
        }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



380 | Chapter 6: Repeating Instructions

        // Property for accessing total interest
        public double TotalInterestPaid
        {
            get
            {
                 return totalInterestPaid;
            }
        }

        // Determine payment amount based on number of
        // years, loan amount, and rate
        public void DeterminePaymentAmount( )
        {
            double term;
            term = Math.Pow((1 + rate / 12.0), numPayments);
            paymentAmount = (loanAmount * rate / 12.0 * term) / 
                                 (term − 1.0);
        }

        // Returns string containing amortization table
        public string ReturnAmortizationSchedule( )
        {
            string aSchedule = "Month\t\tInt.\t\tPrin.\t\tNew";
            aSchedule += "\nNo.\t\tPd.\t\tPd.\t\tBalance\n";
            aSchedule += "—————\t\t—————\t\t——————\t" +
                         "————————\n";
            balance = loanAmount;
            for (int month = 1; month <= numPayments;
                 month++)
            {
                 CalculateMonthCharges(month, numPayments);
                 aSchedule += month + "\t" +
                           monthInterest.ToString("N2") + "\t" +
                           principal.ToString("N2") + "\t" +
                           balance.ToString("C") + "\n";
            }
            return aSchedule;
        }

        // Calculates monthly interest and new balance.
        public void CalculateMonthCharges(int month, int 
                                          numPayments)
        {
            double payment = paymentAmount;
            monthInterest = rate / 12 * balance;
            if (month == numPayments)
            {
                 principal = balance;
                 payment = balance + monthInterest;
            }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Programming Example: LoanApplication | 381

            else
            {
                 principal = payment − monthInterest;
            }
            balance −= principal;
        }

        // Calculates interest paid over life of loan
        public void DetermineTotalInterestPaid( )
        {
            totalInterestPaid = 0;
            balance = loanAmount;
            for (int month = 1; month <= numPayments; month++)
            {
                 CalculateMonthCharges(month, numPayments);
                 totalInterestPaid += monthInterest;
            }
        }

        //Return information about the loan
        public override string ToString( )
        {
            return "\nLoan Amount: " +
                    loanAmount.ToString("C") +
                    "\nInterest Rate: " + rate +
                    "\nNumber of Years for Loan: " +
                     (numPayments / 12) +
                    "\nMonthly payment: " +
                    paymentAmount.ToString("C");
        }
   }
}

/* LoanApp.cs
 * Used for testing Loan class.
 * Prompts user for loan amount,
 * interest rate, and time period
 * for loan. Calls method to display
 * payment amount and amortization
 * schedule. Allows more than
 * one loan calculation.
 */
using System;
using static System.Console;

namespace LoanApp
{
   class LoanApp
   {
        static void Main( )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



382 | Chapter 6: Repeating Instructions

        {
            int years;
            double loanAmount;
            double interestRate;
            string inValue;
            char anotherLoan = 'N';
            do
            {
               GetInputValues(out loanAmount, out interestRate,
                              out years);
                 Loan ln = new Loan(loanAmount, interestRate, years);
               WriteLine( );
               Clear( );
               WriteLine(ln);
               WriteLine( );
               WriteLine(ln.ReturnAmortizationSchedule( ));
               ln.DetermineTotalInterestPaid();
                 WriteLine("Payment Amount: {0:C}",ln.PaymentAmount);
               WriteLine("Interest Paid over Life " +
                         "of Loan: {0:C}",
                         ln.TotalInterestPaid);
               Write("Do another Calculation? (Y or N)");
               inValue = ReadLine( );
               anotherLoan = Convert.ToChar(inValue);
            }
            while ((anotherLoan == 'Y')|| (anotherLoan == 'y'));
        }

        // Prompts user for loan data
        static void GetInputValues(out double loanAmount, out
                                double interestRate, out int years)
        {
            Clear( );
            loanAmount = GetLoanAmount( );
            interestRate = GetInterestRate( );
            years = GetYears( );
        }

        static double GetLoanAmount( )
        {
            string sValue;
            double loanAmount;
            Write("Please enter the loan amount: ");
            sValue = ReadLine( );
            while ((double.TryParse(sValue,
                         out loanAmount) == false)
                         || loanAmount < 1 || loanAmount > 500000)
            {
               WriteLine("Invalid data entered " +
                         "for loan amount");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Programming Example: LoanApplication | 383

               Write("\nPlease re-enter the loan amount " +
                     "(less than 500,000): ");
               sValue = ReadLine( );
            }
            return loanAmount;
        }

        static double GetInterestRate( )
        {
            string sValue;
            double interestRate;
            Write("Please enter interest rate (as a " +
                  "decimal value − i.e. .06): ");
            sValue = ReadLine( );
            while ((double.TryParse(sValue,
                         out interestRate)   == false)
                         || interestRate < 0
                         || interestRate > 1)
            {
                Write("\nInvalid data entered for interest rate" + 
                      " (decimal value − i.e. 0.06):");
                Write("\nPlease re-enter the interest rate: ");
                sValue = ReadLine( );
            }
            return interestRate;
        }
        static int GetYears( )
        {
            string sValue;
            int years;
            Write("Please enter the number of years " +
                  "for the loan: ");
            sValue = ReadLine( );
            while (int.TryParse(sValue, out years) == false)
                         || years < 1 || years > 30)
            {
                Write("\nInvalid data entered for years");
                Write("\nPlease re-enter the years (1-30): ");
                sValue = ReadLine( );
            }
            return years;
       }
   }
}

Using the input values from the last row of Table 6-6, the output is shown in  
Figure 6-21.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



384 | Chapter 6: Repeating Instructions

Coding Standards
To develop reliable and maintainable applications, you must follow coding standards 
and the best practices. There are several standards used in the industry today. Some 
of the standards differ from others: Some are based on personal preferences and some 
are based on the adage of this is how we have always done it. Differences also exist as 
they relate to language choices. Some of the standards have recommendations that 

FIGURE 6-21 LoanApplication output

The output is formatted using the fixed point N, which displays a comma with 
 floating-point values and currency C format specifiers. They are the arguments to  
the ToString( ) method.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Coding Standards | 385

6

are in conflict with each other. What is most important is that you select a standard 
approach and consistently follow it.

One of the most important considerations with looping statements relates to read-
ability. The best practices are described next as they relate to the consistent place-
ment of curly braces and the use of white space.

Guidelines for Placement of Curly Braces
Curly braces should be placed on a separate line and not in the same line as the loop 
conditional expression as shown in the following:
for (int i = 0; i < 10; i++)
{
     //body of the loop
}

Line up the opening and closing curly braces as shown above.

Curly braces are optional. They are required when the loop body has more than one 
statement. As with selection statements (like the if statement), many developers use 
curly braces with all loops—even single statement bodied loops. In this book, curly 
braces are added when there are two or more executable statements inside the body 
of the loop. For loops that have a single statement in the body of the loop, curly braces 
are omitted.

Spacing Conventions
Use a single space before and after comparison operators as shown in the following:
while (a < b)

Do not place an extra space before or after the parenthesis inside the expression as 
shown above.

Place each executable statement on a separate line inside the loop body.

Advanced Loop Statement Suggestions
As with selection statements, avoid writing compound loop conditional expressions. 
Instead of writing <= or >=, add or subtract 1 from the endpoint (i.e., while (a >= 
100) is the same as while (a > 99), if a is defined as an integer variable). Additional 
thought will normally help you to eliminate this type of compound statement.

When displaying error messages, in addition to telling what is wrong, the message 
should also tell what the user should do to solve the problem.

Use a for statement for counter-controlled loops. The counting variable can be 
declared and incremented as part of the loop structure.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



386 | Chapter 6: Repeating Instructions

Resources
Additional sites you might want to explore:

 ? Loops - C# Tutorial— 
http://csharp.net-tutorials.com/basics/loops/

 ? C# Station Tutorial on Control Statements, Loops— 
http://www.csharp-station.com/Tutorials/Lesson04.aspx

 ? C# and Loops— 
http://www.homeandlearn.co.uk/csharp/csharp_s3p5.html

 ? Dot Net Pearls - C# and Loops— 
http://www.dotnetperls.com/loop

 ? You Tube C# Loop Tutorial— 
http://www.youtube.com/watch?v=5xlc9qzOQmk

 ? Net - informations.com How to use C# for loops— 
http://csharp.net-informations.com/statements/csharp-for-loop.htm

 ? msdn for (C# Reference)— 
http://msdn.microsoft.com/en-us/library/ch45axte.aspx

 ? C# Video Tutorial— 
http://www.pvtuts.com/csharp/csharp-loops

QUICK REVIEW
 1. The three programming constructs found in most programming lan-

guages are simple sequence, selection, and iteration.
 2. Based on a predetermined condition, iteration enables you to identify 

and block together one or more statements to be repeated.
 3. The looping structures available in C# include while, do. . .while, for, 

and foreach statements. The do. . .while loop is a posttest. The oth-
ers are pretest loop structures. With pretest, the conditional expres-
sion is tested before any of the statements in the body of the loop are 
performed.

 4. When you know the number of times the statements must be executed, 
you can use a counter-controlled loop.

 5. An infinite loop does not have provisions for normal termination. Infi-
nite loops occur when the loop’s conditional expression never evaluates 
to false or there is some inherent characteristic or problem with the 
loop.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Quick Review | 387

 6. With counter-controlled loops, it is important to think through test 
cases and check endpoints to ensure that they have been used to avoid 
off-by-one errors.

 7. Sentinel-controlled loops are also referred to as indefinite loops. They 
are useful when the number of repetitions is not known before the 
loop’s execution. For interactive input, a sentinel value is selected and 
the user is told to input that value to stop. The sentinel value should not 
be processed.

 8. The MessageBox.Show(  ) method is used to display information to 
users in a format that resembles Windows applications.

 9. A state-controlled loop, also referred to a flag-controlled loop, uses a 
special variable—not the variable used to store the data that is being 
processed. With a state-controlled loop, the body of the loop is stopped 
when the special variable’s value is changed.

 10. The for statement is considered a specialized form of the while state-
ment. It packages together the initialization, test, and update—all on 
one line.

 11. The foreach statement is new and is used to iterate or move through 
a collection, such as an array. It does not require a loop control vari-
able to be incremented and tested to determine when all data has been 
processed.

 12. With the do.  .  .while posttest loop structure, the statements are exe-
cuted once before the conditional expression is tested.

 13. A loop can be included within the body of another loop. When this 
occurs, the innermost nested loop is completed totally before the out-
side loop is tested a second time.

 14. C# offers a number of jump statements that can alter the flow of con-
trol in a program. They include break, continue, goto, throw, and 
return statements.

 15. When a continue statement is reached, it starts a new iteration of the 
nearest enclosing while, do. . .while, for, or foreach loop statement.

 16. The break and continue statements should be used sparingly with 
loops.

 17. Regarding decisions about which type of loop to use—if you know 
your loop will always be executed at least once, then do.  .  .while is a 
good option. When a numeric variable is being changed by a consistent 
amount with each iteration through the loop, the for statement might 
be the best option. The while statement can be used to write any type 
of loop.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



388 | Chapter 6: Repeating Instructions

EXERCISES

 1. To write a sentinel-controlled loop to compute the average temperature 
during the month of July in California, the best option for a sentinel 
value would be:
a. 67
b. 1000
c. 100
d. “high temperature”
e. none of the above

 2. Loops are needed in programming languages:
a. to facilitate sequential processing of data
b. to enable a variable to be analyzed for additional processing
c. to allow statements to be repeated
d. to process files stored on hard drives
e. all of the above

 3. Which loop structure can only be used with a collection such as an 
array?
a. foreach

b. for

c. while

d. do. . .while
e. none of the above

 4. If a loop body must be executed at least once, which loop structure 
would be the best option?
a. foreach

b. for

c. while

d. do. . .while
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Exercises | 389

 5. If a loop body uses a numeric value that is incremented by three with 
each iteration through the loop until it reaches 1000, which loop struc-
ture would probably be the best option?
a. foreach

b. for

c. while

d. do. . .while
e. none of the above

 6. When used with a while statement, which jump statement causes exe-
cution to halt inside a loop body and immediately transfers control to 
the conditional expression?
a. break

b. goto

c. return

d. continue

e. none of the above

 7. Which of the following is a valid C# pretest conditional expression that 
enables a loop to be executed as long as the counter variable is less than 10?
a. do while (counter < 10)
b. while (counter < 10)
c. foreach (counter in 10)
d. none of the above
e. all of the above

 8. Which of the following for statements would be executed the same 
number of times as the following while statement?
int num = 10;
while(num > 0)
{
   WriteLine(num);
   num--;
}
a. for (num = 1; num < 10; num++)
b. for (num = 0; num < 10; num++)
c. for (num = 100; num == 10; num += 10)
d. for (num = 10; num < 0; num--);
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



390 | Chapter 6: Repeating Instructions

 9. What would be the output produced from the following statements?
int aValue = 1;
do
{
    aValue++;
    Write(aValue++);
}
while (aValue < 3);
a. 23
b. 234
c. 1234
d. 2
e. none of the above

 10. If aValue, i, and n are type int variables, what does the following 
 program fragment do?
aValue = 0; n = 10;
for (i = n; i > 0; i--)
     if (i % 2 == 0)
        aValue = aValue + i;
a. computes the sum of the integers from 1 through n
b. computes the sum of the integers from 1 through n −1
c. computes the sum of the even integers from 1 through n
d. computes the sum of the odd integers from 1 through n
e. none of the above

 11. To produce the output

2 4 6 8 10

  which should be the loop conditional expression to replace the question 
marks?
int n = 0;
do
{
   n = n + 2;
   Write("{0}\t", n);
} 
while (????);
a. n < 11
b. n < 10
c. n < 8
d. n >= 2
e. n > 8

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Exercises | 391

 12. What would be the output produced from the following statements?
int i = 0;
while (i < 0)
{
   Write("{0}\t", i);
   i++;
}
Write("{0}\t", i);
a. 0
b. an infinite loop
c. an error
d. 0 0
e. none of the above

 13. Which of the following represents a pretest loop?
a. while

b. do. . .while
c. for

d. a and b
e. a and c

 14. If you intend to place a block of statements within a loop body, you must 
use ___________ around the block.
a. parentheses
b. square brackets
c. quotation marks
d. curly braces
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



392 | Chapter 6: Repeating Instructions

Questions 15–17 refer to the following program segment:
int i = 0, g = 0, s = 0, t = 0, z = 0;
string sValue;
while (i < 5)
 {
       inValue = ReadLine( );
       t = Convert.ToInt32(inValue);
       s = s + t;
       if (t > −1)
             g = g + 1;
       else
             z = z + 1;
       i = i + 1;
   }
 }

 15. How many times is the loop body of the while statement executed?
a. once
b. never
c. four times
d. five times
e. until a number 5 or larger is entered

 16. The value stored in variable z at the end of the execution of the loop 
could best be described as:
a. the number of positive items entered
b. the sum of all positive items entered
c. the number of negative items entered
d. the sum of all negative items entered
e. the sentinel value

 17. The loop can best be categorized as a:
a. counter-controlled loop
b. sentinel-controlled loop
c. state-controlled loop
d. flag-controlled loop
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Exercises | 393

 18. How many lines of output will be printed by the following program 
fragment?
for (i = 0; i < 5; i++)
     for (j = 0; j < 4; j++)
          WriteLine("{0} {1}", i, j);
a. 20
b. 6
c. 9
d. 12
e. none of the above

 19. How many lines of output will be printed by the following program 
fragment?
for (i = 0; i < 5; i += 2)
     for (j = 0; j < 4; j = j + 2)
         WriteLine("{0}\n{1}", i, j);
a. 20
b. 6
c. 9
d. 12
e. none of the above

 20. What would be the result of the following conditional expression?
int i = 0;
while (i < 10) ;
i++;
Write(i);
a. 123456789

b. 012345678910

c. 0123456789

d. an infinite loop
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



394 | Chapter 6: Repeating Instructions

 21. Convert the following do.  .  .while loop into a for loop and a while 
loop. Did the logic change? If so, explain.
int counter = 100;
do
{
        WriteLine(counter);
        counter--;
}
while (counter > 0);

 22. Write a for loop to display every third number beginning with 10 and 
continuing through 100.

 23. Write a sentinel-controlled while loop that allows any number of tem-
peratures to be entered. The average temperature should be calculated 
and displayed.

 24. Create a loop body that generates random numbers between 25 and 75. 
Write a state-controlled loop that adds all these randomly generated num-
bers until a value larger than 60 is generated. When the loop stops, display 
the number of acceptable generated values and the sum of those values.

 25. Desk run or trace the following code segment, showing every value that 
goes into each variable.
for (i = 0; i < 3; i++)
     for (j = 4; j > 0; j--)
          WriteLine ("{0}\t{1}", i, j);

PROGRAMMING EXERCISES

 1. Create an application that contains a loop to be used for input valida-
tion. Valid entries are positive integers less than 100. Test your program 
with values both less than and greater than the acceptable range as well 
as non-numeric data. When the user is finished inputting data, display 
the number of valid and invalid entries entered. For invalid values, iden-
tify how many of those values were outside the range and the number of 
non-numeric invalid values entered.

 2. Write an application that will enable a vendor to see what earnings he 
can expect to make based on what percentage he marks up an item. 
Allow the user to input the wholesale item price. In a tabular form, show 
the retail price of the item marked up at 5%, 6%, 7%, 8%, 9%, and 10%.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Programming Exercises | 395

 3. Write a program that generates 1000 random numbers between 0 and 
100,000. Display the number of odd values generated as well as the 
 smallest and the largest of values. Output should be displayed in a 
 Windows message box.

 4. Write a program to allow multiple sets of scores to be averaged. Valid entries 
must be numeric and in the range of 0 through 100. Calculate the average 
of the scores entered. Allow any number of scores to be entered per data 
set but assume that there will be at least one score entered. Use a sentinel-
controlled loop variable to terminate the loop. After values are entered and 
the average is calculated, test the average to determine whether an A, B, C, 
D, or F should be recorded. The scoring rubric is as follows:

  A→90–100; B→80–89; C→70–79; D→60–69; F < 60.

 5. Create an application that can be used to calculate the total amount due 
for purchases. Allow any number of items to be entered. Determine the 
total due including sales tax and shipping. Sales tax of 7.75% is charged 
against the total purchases. Shipping charges can be determined based 
on the number of items purchased. Use the following chart to determine 
the shipping charge.

fewer than 3 items $3.50
3 to 6 items $5.00
7 to 10 items $7.00
11 to 15 items $9.00
more than 15 items $10.00

  Display an itemized summary containing the total purchase charge, 
number of items purchased, sales tax amount, shipping charge, and 
grand total.

 6. Write a program that allows the user to input any number of hexadecimal  
characters. Sum the values and display the sum as a hexadecimal value. 
Treat each single inputted character as a separate value. Within the 
loop, convert each character entered into its decimal equivalent. Dis-
play the original hex value and the corresponding decimal value. For 
example, if the user inputs F, 15 would be displayed as the decimal 
equivalent. Create a state-controlled loop structure. After all values 
are entered, display the sum of values entered in both hexadecimal and 
decimal notation.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



396 | Chapter 6: Repeating Instructions

 7. Write a program that produces a multiplication table with 25 rows of 
computations. Allow the user to input the first and last base values for 
the multiplication table. Display a column in the table beginning with 
the first base inputted value. The last column should be the ending base 
value entered. The first row should be for 1 times the beginning base,  
1 times the (beginning base value + 1), through 1 times the ending base 
value. The last row should be for 25 times the beginning base, 25 times 
the (beginning base value + 1), through 25 times the ending base value. 
Base values can range from 2 to 8. Display an error message if an invalid 
base is entered. Display an aesthetically formatted multiplication table. 
An example of output produced when 2 and 8 are entered appears in 
Figure 6-22.

FIGURE 6-22 Output when 2 and 8 are entered

 8. Write an application that can be used to determine if three line segments 
can form a triangle. Prompt the user for the length of three line segments 
as integers. If non-numeric characters are entered, re-prompt the user 
for new values. If the three lines could form a triangle, print the integers 
and a message indicating that they form a triangle. Use a state-controlled 
loop to allow users to enter as many different combinations as they want.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



6

Programming Exercises | 397

 9. Print isosceles triangles. For each triangle, allow the user to input two 
values: a character to be used for printing the triangle and the size of the 
peak for the triangle. Test the input for valid characters. The size of the 
triangle should not be larger than 10. If an invalid non-numeric charac-
ter is entered for size or if the value entered for size is larger than 10, use 
3 as the default value. If an invalid entry is entered for the character, use 
an asterisk ( * ) as the default character. Allow multiple triangles to be 
printed. For example, if the user inputs # for the character and 6 for the 
peak, you should produce the following display:

#
# #
# # #
# # # #
# # # # #
# # # # # #
# # # # #
# # # #
# # #
# #
#

 10. Write an application that enables a user to input the grade and  number 
of credit hours for any number of courses. Calculate the GPA on a 4.0 
scale using those values. Grade point average (GPA) is calculated by 
dividing the total amount of grade points earned, sometimes referred 
to as quality points, by the total number of credit hours attempted. For 
each hour, an A receives 4 grade or quality points, a B receives 3 points, 
a C receives 2 points, and a D receives 1 point. Thus, a three–credit hour 
course receiving an A would have 12 quality points associated with the 
course. Allow the user to input any number of courses and associated 
grades. Display the number of hours earned and the calculated GPA.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

Arrays
IN THIS CHAPTER, YOU WILL:

 ? Learn array basics.

 ? Declare arrays and perform compile-time initialization of array elements

 ? Access elements of an array

 ? Become familiar with methods of the Array class

 ? Write methods that use arrays as parameters

 ? Write classes that include arrays as members and instantiate user-defined array objects

 ? Work through a programming example that illustrates the chapter’s concepts

7CHAPTER

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



400 | Chapter 7: Arrays

In previous chapters, you were introduced to the basics of programming. You learned 
about the three programming constructs of simple sequence, selection, and itera-
tion. You learned to handle data and declare memory locations to store and access 
values using an identifier. In this chapter, you will discover how to work with col-
lections of data that are referenced by a single identifier name. You will learn about 
one type of collection, called an array, which is similar to a vector in mathematics or 
cells in a spreadsheet in that each entry can be referenced by the location of the item 
in the collection. You will create arrays that can hold multiple data values. Using an 
index to reference the location of the item, you will learn how to access single values 
and iterate through collections to process all the values. You will learn about special 
properties and methods of the .NET Array class and learn how to define arrays of 
user-defined objects. You will learn how to pass arrays to methods and how methods 
can have arrays as their return type.

Array Basics
It is not always efficient to have unique names for every memory location. Suppose, 
for example, you have 14 homework scores. A unique identifier could be associated 
with each one. The declaration would look something like the following:
int score1,
    score2,
            ...
    score14;

If you want to allow the user to input the values and compute the average, 14 separate 
prompts to input a score, 14 calls to the ReadLine( ) method, and 14 parse or convert 
method calls would need to be written. Another option you are probably considering 
would be to use a loop. You could write a loop body to input a value into a memory 
location and add that value to an accumulator. The loop body could read all 14 val-
ues. If you use the same memory location to store the second value, the second value 
replaces the first value. The third value replaces the second, and so on. This seems to 
be the most reasonable approach. Instead of having 14 distinct  ReadLine( ) state-
ments, you could place one method call inside a counter-controlled loop and have it 
execute 14 times.

If the only output needed is the average, a loop with a single variable is the most effi-
cient way to write your algorithm. However, what if you want to determine and dis-
play how far each score is from the average of all scores? Or, what if you want to drop 
the lowest score? Or, what if you need all the values for additional processing later in 
the program? For these situations, using a single value presents a problem. The aver-
age cannot be calculated until you accumulate all the values. If all values are read into 
a single memory location, the first score is no longer available as soon as the second 
score is read. There is no way to determine how far the first value is from the average, 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Array Declaration | 401

7

until you calculate the average. For this type of problem, it would be best to retain the 
values in memory in addition to accumulating them. This brings you back to the need 
for the 14 different memory locations. What if there were 50 scores, or 1000 scores? 
You certainly would not want to write declaration statements for score1, score2, 
score3, score4, through score1000.

This is where an array is useful. An array is a data structure that may contain any 
number of variables. In the C# language, the variables must be of the same type. A 
single identifier, or name, is given to the entire structure. The individual variables in 
the array are called the elements of the array and are accessed through an index. The 
index, also called the subscript of the array, references the location of the variable 
relative to the first element in the array. Elements in an array are sometimes referred 
to as indexed or subscripted variables.

In C#, all arrays are objects of the base type, Array class (System.Array). The 
Array class includes a number of built-in methods and properties that add func-
tionality for creating, manipulating, searching, and sorting arrays. You will learn 
about these members in the sections that follow.

Array Declaration
You create an array in much the same way you instantiate an object of a user-defined 
class—by using the new keyword at the time of declaration. You can also specify 
during declaration the number of individual elements for the array. The format for 
creating an array is as follows:

type [ ] identifier = new type[integral value];

All data values placed in an array must be of the same base type. The type can be one 
of the predefined types like int or string, or some other .NET class. The type can 
also be a class that you create in C#. The integral value is used to specify the number 
of elements. This is called the length or size of the array. This integral value can be a 
constant literal, a variable, or an expression that produces an integral value. Because 
the integral value is indicating the actual number of elements for which space will be 
allocated, the value must be positive. It must represent an integer, a whole number, or 
an expression that maps to a whole number. To create an array to hold the 14 home-
work scores discussed previously, you could write:
int [ ] score = new int[14];

Figure 7-1 shows what happens when you create an array to hold 14 elements of 
int type using score as an identifier. When you create the array, you declare the 
 identifier type and also allocate space for a specific number of elements.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



402 | Chapter 7: Arrays

The arrow in Figure 7-1 is used to indicate that the identifier, score, actually refer-
ences the first element in the array, score[0], by containing the address in which 
score[0] is located. Array elements are normally stored in contiguous, side-by-side, 
memory locations. The first index in all arrays is 0.

Java and all C-style languages use zero-based arrays—meaning the first element is  
indexed by 0.

In C#, when creating an array, the location of the square bracket is different from C++, 
which includes the square brackets after the identifier. Java allows you to place the square 
bracket before or after the identifier when you declare an array.

type [ ] identifier;

FIGURE 7-1 Creation of an array

©
 C

en
ga

ge
 L

ea
rn

in
g

Notice that the last element of all arrays is always referenced by an index with a 
value of the length of the array minus one. Length of score is 14; first element is 
score[0]; last element is score[13].

C# allows you to declare an array without instantiating it. The general form of the 
declaration is:

No value is placed inside the square bracket [ ]. As shown in Figure 7-2, this does not 
create the array. It simply defines the base type for the array and associates an identi-
fier with it. No values are referenced. When you look at Figure 7-2, remember that 
arrays are reference types. The identifier score declares an array that has no values 
to reference.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Array Declaration | 403

7

Adding the additional statement of score = new int[14]; to the preceding decla-
ration produces the same result you saw in Figure 7-1. The keyword new allocated 14 
memory locations for score to reference.

identifier = new type[integral value];

You can declare and allocate space for an array in two steps or combine the steps into 
one statement. When you are declaring an array that will be a field member of a class, it 
is normally declared with the class, but instantiated when an object of the class is 
created at run time.

FIGURE 7-2 Declaration of an array

©
 C

en
ga

ge
 L

ea
rn

in
g

A separate step is required before you can access the array. This step is to instantiate 
the array by indicating how many elements to allocate. This is sometimes referred to 
as dimensioning the array. The general form of the second step is:

With the exception of the first line, which declares an integer used for the length of two 
of the arrays, the remaining statements in Example 7-1 create different array references.

EXAMPLE 7-1

const int SIZE = 15;
string [ ] lastName = new string[25];
double [ ] cost = new double[1000];
double [ ] temperature = new double[SIZE];
int [ ] hmWkScore;
hmWkScore = new int[SIZE + 15];

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



404 | Chapter 7: Arrays

Twenty-five different last names could be stored under the single identifier  lastName. 
One thousand different prices of type double could be stored using cost. Because 
SIZE is declared to be a constant with a value of 15, 15 temperatures could be stored. 
As shown with the last declaration, any expression that produces an integral value 
can be used to create an array. Thirty different locations are allocated for hmWkScore.

Array identifiers are normally defined using a singular noun. This is because you normally 
access individual elements in the array as opposed to using the data structure as a 
grouped collection.

In C#, the length of an array cannot be changed. After it is instantiated with a length, 
dynamic resizing is not an option.

type [ ] identifier = new type[ ] {value1, value2, ...valueN};

Some languages, such as C++, do not allow the length of an array to be determined at 
run time. It is legal in C# to use a variable, such as arraySize, as the length indicator. 
You could prompt the user for the number of values that will be entered and use that 
entry for the declaration, as shown in Example 7-2.

EXAMPLE 7-2

Write("How many scores will you enter? ");
string sSize = ReadLine( );
int arraySize = Convert.ToInt32(sSize);
int [ ] score = new int[arraySize];

Array Initializers
Just as you use compile-time initialization with variables, you can initialize the ele-
ments of an array during declaration. The general form of the initialization follows:

Values are separated by commas and must be assignment compatible to the element 
type. Thus, if the type is specified as an int and you include values with a decimal 
point as part of the initialization, you receive an error indicating, “cannot implicitly 
convert type double to int.” It is legal to have an array defined as a type double and 
include values without decimals. This does not violate the assignment compatibility 
rule. You get implicit conversion from int to double.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Array Declaration | 405

7

A more standard way to declare and initialize the elements of an array follows. It is 
considered a shortcut to specifying the size and at the same time placing values in the 
array. This option is especially useful when the data will not change.

type [ ] identifier = {value1, value2, ...valueN};

The length of the array is determined by the number of values placed inside the curly 
braces. Example 7-3 creates and initializes three arrays of different types. Each state-
ment illustrates a different way to perform the initialization.

EXAMPLE 7-3

int [ ] anArray = {100, 200, 400, 600};
char [ ] grade = new char[ ] {'A', 'B', 'C', 'D', 'F'};
double [ ] depth = new double[2] {2.5, 3};

The first statement creates an array of four elements. The initial values are 100, 200, 
400, and 600. Notice that the keyword new is not included here, and the type is not 
repeated. The second statement shows that the type of the value used for initializa-
tion must be compatible with the declaration type. Because char is the specified 
declaration type, all initialization values are enclosed in single quotes. Five elements 
are created using the grade identifier. No length specifier is required. But notice that 
this differs from the declaration of anArray in that the new keyword is used and the 
type is specified with opening and closing square brackets. The last statement creates 
an array with a length of two. The value 3 is assignment compatible with the double 
type. Figure 7-3 shows the memory contents after the initialization.

FIGURE 7-3 Methods of creating and initializing arrays at compile time

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



406 | Chapter 7: Arrays

In Figure 7-3, the depth array is shown with a length indicator of 2, and two initial 
values are included in the declaration. Remember, the length indicator is not required 
when you do a compile-time initialization. However, if you include the length indica-
tor, it must match the number of values included. Otherwise, a syntax error is issued. 
The following example does not compile and generates an error:
double [ ] waterDepth = new double[200] {0, 3}; //Invalid

Two values were used for initialization; however, the declaration indicated 200 
 elements were to be allocated.

Array Access
To access an array element, you must specify which element is to be accessed by plac-
ing an index inside square brackets following the identifier. This is because the array 
is now referenced by a single name. To retrieve individual elements, an index or sub-
script is required. Arrays are zero-based structures; thus, the index of the first element 
is always 0. The index of the second element is 1 and is referenced using the identifier 
and a 1 enclosed in square brackets. The index of the last element in the array is always 
n – 1, where n represents the number of elements in the array. The index references 
the physical location of the element relative to the beginning element. To place a value 
in the first element of score, the following assignment statement could be made:
score [0] = 100;

Figure 7-1 shows the index values. The score array can hold 14 elements. Example 7-4 
illustrates how the array elements shown in Figure 7-1 could be summed.

Notice that the last element was referenced by score[13]. There is no score[14]. 
Fourteen elements are referenced by score. The first one is score[0]. The last valid 
index is always the length of the array minus one.

EXAMPLE 7-4 

total = score[0] + score[1] + score[2] + score[3] +
        score[4] + score[5] + score[6] + score[7] +
        score[8] + score[9] + score[10] + score[11] +
        score[12] + score[13];

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Array Access | 407

7

EXAMPLE 7-5

for (int i = 0; i < score.Length; i++)
{
     total += score[i];
}

This produces exactly the same result as Example 7-4.

C# always performs bounds checking on array indexes. Some languages let you store or 
access values outside the originally declared legal bounds of the array. This is not possible 
in C#.

Notice that the conditional expression that was used with the for statement used less than 
(<) instead of less than or equal to (<=). Because Length returns a number representing 
the size of the array, the last valid index should always be one less than Length. 
Therefore, as soon as the index is equal to Length, the loop should terminate.

What if there were 25 scores? Adding all 25 scores to total would take a lot of typing. 
Example 7-5 shows a better way to sum the values. A counter-controlled loop with a 
variable for the index is used.

One of the special properties in the Array class is Length. It returns an int repre-
senting the total number of elements in an array. For Example 7-5, Length returned 
14. The loop control variable, i, is evaluated before each iteration through the loop to 
determine whether it is less than 14 (score.Length).

If you create an array to hold 14 elements and include the following assignment 
statement:
score[14] = 100;       // Run-time error, no location 14

a message similar to that shown in Figure 7-4 is generated, which indicates that the 
index was outside the boundaries of the array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



408 | Chapter 7: Arrays

You receive this “unhandled exception” error message if you try to access the array 
using an index value larger than the array length minus one, a nonintegral index value, 
or a negative index value. This is a run-time error, not caught during compilation.

Example 7-6 creates an array to hold 10 elements. Values are input, the average is 
calculated, and then a table is produced showing the original value entered and how 
far that value is from the overall average.

FIGURE 7-4 Index out of range exception

EXAMPLE 7-6

/* AverageDiff.cs                                   Author: Doyle
 * Ten scores are entered. The average is calculated. 
 * A table is printed showing how far each value
 * is from the average.
 */
using System;
using static System.Console;

namespace AverageDiff
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Array Access | 409

7

{
     class AverageDiff
    {
        static void Main( )
        {
           int total = 0;
           double avg;
           double distance;
           string inValue;
           int [ ] score = new int[10];                   //Line 1
           // Values are entered.
           for (int i = 0; i < score.Length; i++)         //Line 2
           {
                  Write("Enter Score{0}: ", i + 1);        //Line 3
                 inValue = ReadLine( );
                  if (int.TryParse(inValue, out score[i]) == false)
                       WriteLine("Invalid data entered − " +
                                 "0 stored in array");     //Line 4 
           }
           // Values are summed.
              for (int i = 0; i < score.Length; i++)
           {
               total += score[i];                          //Line 5
           }
           avg = (double) total / score.Length;            //Line 6
           WriteLine( );
           WriteLine("Average: {0}", avg.ToString("F0"));
           // Output is array element and how far value 
           // is from the mean (absolute value).
           WriteLine( );
           WriteLine("Score\tDist. from Avg.");
           for (int i = 0; i < score.Length; i++)
           {
                 distance = Math.Abs((avg − score[i]));     //Line 7
                 WriteLine("{0}\t\t{1}", score[i],
                            distance.ToString("F0"));       //Line 8 
           }
           ReadKey( );
      }
   }
}

As you review examples, you’ll recall a using static System.Console; directive 
was added. Being able to reference a static class within a namespace with the 
using directive is new to Visual Studio 2015. This feature reduces the amount of typing 
needed when you invoke members of the Console class. If you are using a version 
prior to Visual Studio 2015 references to members of the Console class, such as 
Write( ), WriteLine( ), ReadKey( ) and Clear( ), require the method name be 
preceded by the Console class identifier and a dot, as in Console.Write( ).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



410 | Chapter 7: Arrays

In Example 7-6 on Line 1, the array is declared and space is allocated for 10 scores. Line 2  
uses the Length property of the System.Array class as the expression for the loop con-
trol variable (i < score.Length). This loop is used to accumulate scores. score.Length 
returns 10; thus, 10 iterations of the loop are performed. The property score.Length  
is also used as the divisor representing the number of scores in the calculation of avg on 
Line 6. You should notice that a cast occurs when the double is placed in front of total. 
This is done to avoid integer division. When the values are displayed, whole number val-
ues, without decimal positions, are shown. The ToString("F0") method was invoked 
with both the avg and the distance memory locations in Example 7-6.
The loop control variable, i, is displayed with 1 added to its value on Line 3. Here, it 
is used as part of the prompt to the user concerning which score to enter. Instead of 
first displaying “Enter Score0”, the display reads “Enter Score1”. The last prompt 
displays “Enter Score10”. Adding 1 to the index produces less confusing output for 
the user who does not realize that the first score is associated with location zero.
The statement labeled Line 4, also part of the loop body, assigns the converted integer 
to the array. Notice how the array element is used as an argument to the TryParse( ) 
method. Line 5 does another assignment statement when the array value is added to 
total. The distance from the average is found in line 7 by first subtracting the indi-
vidual score from the average, which might yield a positive or negative value. Taking 
the absolute value (Math.Abs) ensures that the distance is positive.
Line 8, inside another loop, displays the contents of each element. The loop control 
variable serves as the index to the array, indicating which element to access. Figure 7-5  
shows the output produced from one test run of Example 7-6.

FIGURE 7-5 Output from AverageDiff example
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Array Access | 411

7

Sentinel-Controlled Access
What if you do not know how many scores will be entered? What size array do you 
create? The size or length of the array cannot change after it is allocated. If you do not 
know how many values will be entered, you could ask the user to count the number of 
entries and use that value for the size when you allocate the array. Another approach 
is to create the array large enough to hold any number of entries. Then tell users to 
enter a predetermined sentinel value after they enter the last value. If you use this 
approach, you need to increment a counter as values are entered so that you know 
how many elements are stored in your array. The Length property would not be help-
ful for this type of application. It could not be used as a loop control value because 
Length returns whatever the array is dimensioned to hold. Example 7-7 illustrates 
filling an array when you do not know how many values will be entered. A sentinel 
value of −99 is used to terminate the loop.

As you review examples, you’ll recall Visual Studio inserts additional using statements 
into your project when you create a new project. Since no classes are needed from these 
libraries, they were omitted from program listings to conserve space. The parameters to 
the Main ( ) method are also removed.

EXAMPLE 7-7

/* UnknownSize.cs                                   Author: Doyle
 * Any number of scores, up to 100, can be entered. 
 */
using System;
using static System.Console;

namespace UnknownSize
{
     class UnknownSize
     {
         static void Main( )
         {
              int [ ] score = new int[100];
              string inValue;
              int scoreCnt = 0;
              Write("Enter Score{0}: ((−99 to exit)) ",
                    scoreCnt + 1);
              inValue = ReadLine( );
              while (inValue != "−99")
              {
                   if (int.TryParse(inValue,
                          out score[scoreCnt]) == false)
                       WriteLine("Invalid data −" +
                                 "0 stored in array");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



412 | Chapter 7: Arrays

                   ++scoreCnt;
                   Write("Enter Score{0}: ((−99 to exit)) ",
                          scoreCnt + 1);
                   inValue = ReadLine( );
              }
              WriteLine("The number of scores: " +
                        scoreCnt);
         }
     }
}

foreach (type identifier in expression) statement;

In Chapter 6, you learned about the importance of priming the read (placing a call to 
the ReadLine( ) method on the outside of the loop body) and then placing a second 
ReadLine( ) method call as the last statement in the loop body. This keeps you from 
processing the sentinel value.

Using Foreach with Arrays
The foreach loop can be used to iterate through an array. However, it can be used 
for read-only access to the elements. You were briefly introduced to the foreach 
loop structure in Chapter 6. Remember that the general format is as follows:

The foreach loop cannot be used to change the contents of any of the elements in an 
array. You can use it to sum the values. The statements shown in Example 7-8 could 
be added to the UnknownSize class introduced in Example 7-7. The new lines use 
the foreach statement to sum the values and calculate a score average.

EXAMPLE 7-8

int total = 0;
double avg;
foreach(int val in score)
{
        total += val;
}
WriteLine("Total: " + total);
avg = (double)total / scoreCnt;
WriteLine("Average: " + avg.ToString("F0"));

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Array Class | 413

7

The identifier, val, is the iteration variable. It represents a different array element 
with each loop iteration. Remember that the type used in the foreach expression 
should match the array type. Because the score array contains int elements, val 
is declared of that type. During the first iteration through the loop, val references 
score [0]. A compile-time error occurs if one of the statements in the foreach 
loop body attempts to change the iteration variable or pass the iteration variable as a 
ref or out parameter. Example 7-9 displays red, green, and blue on separate lines.

EXAMPLE 7-9

string [ ] color = {"red", "green", "blue"};
foreach(string val in color)
        WriteLine(val);

Array Class
Through access to the elements using indexed values, C# supports the easy handling 
of arrays that other languages provide. But you get more than just indexed access. 
All arrays, of any type, inherit characteristics from the Array class, which includes 
a number of predefined methods and properties. Table 7-1 lists some of these pre-
defined methods from the System.Array class. The third column gives examples 
of the use of each method. You will want to explore methods, especially those that 
are overloaded, using the online Help features in Visual Studio. Much of the informa-
tion in Table 7-1 came from that documentation. As you explore the Array class 
methods, you will find a number of other members not listed in Table 7-1. The Array 
class serves as the base array class for all languages that target the common lan-
guage runtime. Having its properties and methods available across languages pro-
vides power to each of the .NET languages, and this power is available with minimal 
programming. For example, an entire collection of data can be sorted with a call to 
one of the Array class member methods.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



414 | Chapter 7: Arrays

Method Description Examples

BinarySearch (System.Array 
                                 array, 
                                 object value)

Class method.
Overloaded. Searches 
a    one-dimensional 
sorted array for a value, 
using a binary search 
algorithm. Returns 
index location or 
negative value if not 
found.

double [ ] waterDepth = {2.4, 3.5, 6.8};

double x = 6.8;

int myIndex = Array.BinarySearch

                (waterDepth, x);

WriteLine(myIndex);

//Displays index where 6.8 stored
2

Clear (System.Array array,
                int firstIndex, 
                int length)

Class method. Sets 
elements in the array 
to zero, to false, or 
to a null reference 
depending on the 
element type. Start at 
firstIndex, go 
length positions.

double [ ] waterDepth = {2.4, 3.5, 6.8};
Array.Clear(waterDepth, 0, 2);
WriteLine(waterDepth[1]);

//Beginning at index 0, for length of 2.
//Sets waterDepth[0] and 
//waterDepth[1] to zero.

//Displays
0

Clone( ) Creates a copy of 
the array. Returns an 
object.

double [ ] waterDepth = {2.4, 3.5, 6.8};

double [ ] w = new double [3];

object o = waterDepth.Clone( ); 
w = (double [ ]) o;

//object o is cast as a double array.
//Both arrays point to same values.

Copy (System.Array 
     sourceArray, 
         int index1Source, 
          System.Array  
         targetArray, 
         int index1Target, 
         int lengthToCopy)

Class method. 
Overloaded. Copies a 
section of one array to 
another array.

double [ ] waterDepth = {2.4, 3.5, 6.8};
double [ ] w = new double [3];
Array.Copy(waterDepth, 0, w, 0, 3);

//Copies 3 elements 
//from waterDepth to w
//Begins copy at index 0 
//in waterDepth;
//Begins placement at index 0 in w.

CopyTo(System.Array  
       targetArray, 
                 int start)

Copies elements of 
a one-dimensional 
array to another 
one-dimensional 
array starting at the 
specified destination 
array index. 
(Destination must be 
large enough to hold 
elements.)

double [ ] waterDepth = {2.4, 3.5, 6.8};

double [ ] w = new double [5];
waterDepth.CopyTo(w, 2);
WriteLine(w[3]);

//Copy started at w[2]; 
//w[0] = 0, w[1] = 0, w[2] = 2.4,
//w[3] = 3.5, w[4] = 6.8

//Displays
3.5

TABLE 7-1 System.Array methods

(continues)
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7

Array Class | 415

Method Description Examples

GetValue(int index) Overloaded. Gets the 
value of the specified 
element in the current 
array.

double [ ] waterDepth = {2.4, 3.5, 6.8};

WriteLine(waterDepth.GetValue (2));

//Displays
6.8

IndexOf(System.Array  
        array,
                    object value)

Class method.
Overloaded. Returns 
the index of the first 
occurrence of a value 
in a one-dimensional 
array or in a portion 
of the array.

double [ ] waterDepth = {2.4, 3.5, 6.8};

int i = Array.IndexOf(waterDepth, 3.5);
WriteLine(i);

//Returns −1 when
//the value is not
//found in the array

//Displays
1

LastIndexOf(System.Array 
                              array,
            object value)

Class method. 
Overloaded. Returns 
the index of the last 
occurrence of a value 
in a one-dimensional 
array or in a portion 
of the array.

double [ ] waterDepth = {2.4, 3.5, 2.4};

int i = Array.LastIndexOf(waterDepth, 2.4);
WriteLine(i);

//Displays
2

Reverse(System.Array  
        array)

Class method. 
Overloaded. Reverses 
the order of the 
elements in a one-
dimensional array or 
in a portion of the 
array.

double [ ] waterDepth = {2.4, 3.5, 6.8};
Array.Reverse(waterDepth);

foreach (double wVal in waterDepth)
         Write(wVal + "\t");

//Displays
6.8 3.5 2.4

SetValue(object value, 
                      int 
                      indexLocation)

Overloaded. Sets the 
specified element in 
the current array to 
the specified value.

double [ ] waterDepth = {2.4, 3.5, 6.8};
waterDepth.SetValue(55, 0);

foreach (double wVal in waterDepth)
         Write(wVal + "\t");

//Displays
55 3.5 6.8

Sort(System.Array  array) Class method. 
Overloaded. Sorts  
the elements in  
one-dimensional 
array objects.

double [ ] waterDepth = {12.4, 3.5, 6.8};
Array.Sort(waterDepth);

foreach (double wVal in waterDepth)
         Write (wVal + "\t");

//Displays
3.5 6.8 12.4

© Cengage Learning

TABLE 7-1 System.Array methods (continued )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



416 | Chapter 7: Arrays

Many of the descriptions listed in the second column of Table 7-1 indicate “Class 
method.” You have used class methods from the Math class. To call a class 
method, you prefix the method name with the class name. As you review the exam-
ples in the third column, notice that these class method calls require Array to be 
listed before the method name.

Example 7-10 demonstrates the use of Sort( ), Reverse( ), and Copy( ) methods. 
Values are concatenated onto a string inside a foreach loop structure. On the out-
side of the loop, the string is displayed with one call to the MessageBox.Show( ) 
method.

EXAMPLE 7-10 

/* UsePredefinedMethods.cs                  Author: Doyle
 * Demonstrates use of methods from System.Array class. 
 */
using System;
using System.Windows.Forms;

namespace UsePredefinedMethods
{
     class UsePredefinedMethods
     {
          static void Main( )
          {
               double [ ] waterDepth = {45, 19, 2, 16.8, 190,
                                        0.8, 510, 6, 18};
               string outputMsg = "";
               string caption = "System.Array Methods Illustrated";
               double [ ] w = new double [20];

               // Displays contents of Array waterDepth
               outputMsg += "waterDepth Array\n\n";
               foreach(double wVal in waterDepth)
                       outputMsg += wVal + "\n";
               MessageBox.Show(outputMsg, caption);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Array Class | 417

7

                // Copies 5 values from waterDepth, 
                // beginning at index location 2.
                // Place values in Array W,
                // starting at index location 0
                Array.Copy(waterDepth, 2, w, 0, 5);

                // Sorts Array w in ascending order
                Array.Sort(w);

                // Displays Array w sorted
                outputMsg = "Array w Sorted\n\n";
                foreach(double wVal in w)
                {
                        if (wVal > 0)
                            outputMsg += wVal + "\n";
                }
                MessageBox.Show(outputMsg, caption);

                // Reverses the elements in Array w
                Array.Reverse(w);

                // Displays Array w in descending order
                outputMsg = "Array w Reversed\n\n";
                foreach(double wVal in w)
                {
                        if (wVal > 0)
                            outputMsg += wVal + "\n";
                }
                MessageBox.Show(outputMsg, caption);
       }
   }
}

As documented in Example 7-10, five values from waterDepth, beginning at indexed 
location 2, are placed in array w, starting at index location 0. The last two foreach 
statements both include an if statement. The array w is dimensioned to hold 20 
entries. Only five cells contain data. The if statement skips blank entries so they are 
not concatenated onto the outputMsg.

The output produced from Example 7-10 is shown in Figure 7-6.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



418 | Chapter 7: Arrays

One of the namespaces automatically imported into your application when you create 
a new project is System.Linq. You will read more about Language-Integrated Query 
(LINQ, pronounced “link”) in Chapter 14. Linq defines a set of query  operators that 
can be applied to collection classes like arrays. You often want to  determine the 
 average, sum, minimum or maximum value in an array. By including the using 
 System.Linq; directive, you have access to Average( ), Sum( ), Min( ), and 

FIGURE 7-6 Output from Examples 7-10 and 7-12

To use the MessageBox class, you need to add a reference to the System.
Windows.Forms class using the Solution Explorer window. Also remember to get rid 
of the console window in the background; set the Output type property for the project to 
Windows Application. Selecting the project in the Solution Explorer window and then 
pressing the Alt+Enter shortcut opens the project’s properties dialog box.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays as Method Parameters | 419

7

Max( ) methods. These methods can be used with an array. They are not members of 
the Array class; they are members of the Linq class and are called with the array 
object as in
double [ ] waterDepth = {45, 19, 2, 16.8, 190, 0.8, 510, 6, 18};
double averageWaterDepth = waterDepth.Average( );

When you are cleaning up your solution and removing extraneous using statements, you 
may want to consider keeping using System.Linq;

modifiers returnType identifier (type [ ] arrayIdentifier...)

When you work with Visual Studio, the code generator adds an array parameter to the 
Main( ) method heading (Main(string [ ] args)). This enables arguments to be 
sent into the program when the application launches. When this occurs, the array identifier 
args can be used in the program like any other array. Since no values are sent into 
Main( ), the (string [ ] args) parameter could be deleted.

Arrays as Method Parameters
You can write your own methods and send arrays as arguments much as you did with 
the calls to the predefined methods of the Array class. As you review the code in 
Example 7-10, notice that three separate segments of code are used for displaying 
output, and they all look similar. Except for the different headings above the array, the 
only difference is that the waterDepth array is displayed once. Two other times, the 
array w is displayed. Why not write one method and call it three times? The general 
format used for the heading of a method that includes an array as a parameter is:

An illustration of a method heading is shown in Example 7-11.

EXAMPLE 7-11

void DisplayArrayContents(double [ ] anArray)

The array identifier and type are included in the parameter heading. The length or 
size of the array is not included. Opening and closing square brackets are required to 
indicate that the parameter is an array.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



420 | Chapter 7: Arrays

Pass by Reference
Recall that arrays are reference variables. The array identifier memory location does 
not actually contain the values, but rather an address indicating the location of the 
elements in the array. When you pass an array to a method, by default, you pass a ref-
erence to the address of the array elements. The importance of this feature is the fact 
that if the method changes one or more of the elements, the changes are made to the 
actual data. Thus, any changes made to array elements in a called method change the 
same array elements created in the calling method.
The actual call to the method expecting an array as an argument simply includes 
the identifier. It does not include the size or the square brackets. A call to the 
 DisplayArrayContents( ) method shown in Example 7-11 would be as follows:
DisplayArrayContents(waterDepth);

Recall that waterDepth is a double [ ] array.

Example 7-12 illustrates how the output statements can be placed in a method 
and called three times with different arguments each time. The first call sends the 
 waterDepth array. The last two calls send the w array.

EXAMPLE 7-12

/* StaticMethods.cs                            Author: Doyle
 * Demonstrates use of methods from the 
 * System.Array class.
 */
using System;
using System.Windows.Forms;

namespace StaticMethods
{
     class StaticMethods
     {
          private const string CAPTION =
                   "System.Array Methods Illustrated";

          static void Main( )
          {
               double [ ] waterDepth = {45, 19, 2, 16.8, 190, 0.8,
                                        510, 6, 18};
               double [ ] w = new double[20];
               DisplayOutput(waterDepth, "waterDepth Array\n\n");

               // Copies values from waterDepth to w 
               Array.Copy(waterDepth, 2, w, 0, 5);

               // Sorts Array w in ascending order 
                  Array.Sort (w); 
                 DisplayOutput(w, "Array w Sorted\n\n");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays as Method Parameters | 421

7

               // Reverses the elements in Array w
               Array.Reverse(w);
               DisplayOutput(w, "Array w Reversed\n\n");
          }

          // Displays an array in a MessageBox 
          public static void DisplayOutput(double [ ] anArray, 
                                           string msg)
          {
               foreach(double wVal in anArray)
                       if (wVal > 0)
                           msg += wVal + "\n";
               MessageBox.Show(msg, CAPTION);
          }
     }
}

Notice how CAPTION is defined as a constant data member in the StaticMethods 
class. The declaration appears above the Main( ) method in Example 7-12. Doing 
this enabled each of the method members to have access to the string of characters 
without having to pass a value for the CAPTION to each method.

The parameter identifier anArray in the DisplayOutput( ) method is used as a 
placeholder for an array argument. The arrays are of different lengths, but this does 
not create a problem. Every element in the array is being processed using the foreach 
statement in the method. When array w is sent into the method, it is necessary to 
use the selection statement (if (wVal > 0)); otherwise, 20 lines are displayed. The 
foreach loop traverses through every element in the array. Array w is dimensioned 
to have a length of 20. Without the if statement, a number of 0 values are displayed 
when no other initialization values are given.

Zero is used as the default value by the constructor for integer arrays. That includes 
sbyte, byte, short, ushort, int, uint, long, and ulong; their default value is 
0. The default constructor values for decimal, float, and double are 0.0M, 0.0F, 
and 0.0D, respectively. False is the default for bool.

Remember, when you pass by reference, or call by reference, you pass the address of 
the identifier. A call or pass by value sends the actual data. When you pass a single array 
element such as an integer, you are passing by value. A copy of the current contents of 
that array element is made and sent to the method.

Figure 7-6 shows output from Example 7-12. It is exactly the same as the output pro-
duced from Example 7-10. The last example, Example 7-12, is more streamlined. 
Because array parameters are automatically treated as pass by reference, no addi-
tional keywords such as ref or out are required with the argument or parameter list.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



422 | Chapter 7: Arrays

Consider the following that allocates memory for five elements:
int [ ] temperature = new int[5];

The following method could be used to input values into the temperature array:
public static void InputValues(int [ ] temp)
{
     string inValue;
     for(int i = 0; i < temp.Length; i++)
     {
         Write("Enter Temperature {0}: ", i + 1);
         inValue = ReadLine( );
         temp[i] = int.Parse(inValue);
     }
}

A call to the method to input values follows:
InputValues(temperature);

Figure 7-7 shows the result of inputting 78, 82, 90, 87, and 85.

FIGURE 7-7 Array contents after the InputValues( ) method is called

©
 C

en
ga

ge
 L

ea
rn

in
g

When the InputValues( ) method is called, a reference to temperature is sent.

In Chapter 3, you learned that when an argument is sent using call by value, a copy 
of the argument’s contents is made. The copy of the values is stored in new memory 
locations accessible only within that method. Changes made to the values do not 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays as Method Parameters | 423

7

impact the variables in the calling module. On return from the called method, the 
original value of the argument is unchanged. It contains the same value it had before 
the execution of the method.

With call by reference, no copy is made of the contents. A copy is made of the ref-
erence (address) to the location in which the array is stored, and the copy is stored 
in a variable. As shown in Figure 7-7, the formal parameter, temp, references the 
same location in memory as temperature does. The values entered into the temp 
array in the InputValues( ) method are stored in the memory cells referenced by 
temperature.

Array Assignment
The assignment operator = may not work as you would think it should when used with 
reference types such as arrays. If an additional array is defined and an assignment is 
made, the assignment operator and the array reference the same elements. Individual 
elements are not copied to another memory location. Consider the following state-
ments that could be written after the temperature array is filled with values:
int [ ] t = new int[5];
t = temperature;
t[1] = 44;

Figure 7-8 illustrates the result of the assignment statements. Any reference to 
 temperature[1] accesses 44.

FIGURE 7-8 Assignment of an array to reference another array

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



424 | Chapter 7: Arrays

Example 7-13 includes the complete code listing from the program statements used 
in Figures 7-7 and 7-8, which illustrate the assignment and use of arrays as method 
parameters.

EXAMPLE 7-13

/* PassingArray.cs                             Author: Doyle
 * Demonstrates passing arrays to methods - references 
 */
using System;
using static System.Console;

namespace PassingArray
{
     class PassingArray
     {
          static void Main( )
          {
               int [ ] temperature = new int[5];
               int [ ] t = new int[5];
               InputValues(temperature);
               //Array t will reference the same array 
               //as the temperature array.
               t = temperature;
               t[1] = 44;
               WriteLine(temperature[1]);
               WriteLine("Value stored in temperature[1]: {0}",
                          temperature[1]);
               ReadKey( );
          }

          public static void InputValues(int [ ] temp)
          {
               string inValue;
               for(int i = 0; i < temp.Length; i++)
               {
                    Write("Enter Temperature {0}: ", i + 1);
                    inValue = ReadLine( );
                    if (int.TryParse(inValue,
                              out temp[i]) == false)
                        WriteLine("Invalid data entered − " +
                                  "0 stored in array element "); +
               }
          }
     }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays as Method Parameters | 425

7

Params Parameters
In Chapter 3, you were briefly introduced to the params parameter type. When a 
method uses the params modifier, the parameter is considered a parameter array. It 
is used to indicate that the number of arguments to the method may vary.

If you include the params argument in the method heading, the array identifier it is used 
with must be the last parameter listed in the method heading. The identifier cannot be 
defined as a ref or out parameter.

The keyword params appears only in the formal parameter list of the method head-
ing. By including it, the method may be called one time with a single value. Another 
call to the same method could send 10 or 100 values or an array of values. A variable 
number of arguments are accepted when params is included. It makes the method 
very flexible. Example 7-14 shows how a method defined with a parameter array can 
be called with both simple value arguments and with an array.

EXAMPLE 7-14

/* VaryingArguments.cs                      Author: Doyle
 * This example demonstrates the use 
 * of the params keyword. A varying 
 * number of arguments can be sent 
 * to a method.
 */
using System;
using static System.Console;

namespace VaryingArguments
{
     class VaryingArguments
     {
          public static void Main( )
          {
               DisplayItems(1, 2, 3, 5);
               int[ ] anArray = new int[5] {100, 200, 300, 400,
                                            500};
               DisplayItems(anArray);
               DisplayItems(1500, anArray[1] * anArray[2]);
               ReadKey( );
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



426 | Chapter 7: Arrays

     public static void DisplayItems(params int[ ] item)
     {
          for (int i = 0 ; i < item.Length ; i++)
          {
               Write(item[i] + "\t");
          }
          WriteLine( );
     }
   }
}

The first call to the DisplayItems( ) method includes four arguments (1, 2, 3, 5). 
They match the DisplayItems( ) heading of (params int [ ] item ). The second 
call sends an array as an argument during the method call. The last call sends two 
arguments; the first is 1500, a constant literal. The second argument for the last call is 
an expression that involves multiplying 200 times 300 (anArray[1] * anArray[2]). 
This result is an integer; thus, all are acceptable arguments when the params  keyword 
is included in the parameter list. The output produced is as follows:

1 2 3 5

100 200 300 400 500

1500 60000

Arrays in Classes
Arrays can be used as fields or instance variables in classes. Normally, the base type 
is declared with the other instance variables. But, space is allocated when an object 
of that class is instantiated. Consider the following list of data members of the 
Player class. In addition to the descriptive characteristics about a player, an array 
for pointsScored is defined. For instance, the player might score 10 points in the 
first game, 0 in the second, and so on.
public class Player
{
     private string lname;
     private string fname;
     private string id;
     private int[ ] pointsScored;
     private int numberOfGames;

After the Player class is defined, any number of games and associated points 
scored per game could be used to instantiate an object of the class. As you think 
about the characteristics of a player, you realize that you cannot say that all team play-
ers play 50 games or 5 games; thus, no space is allocated in the pointsScored array 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays in Classes | 427

7

for a certain number of games. Because this is an instance member, allocate space 
when you construct an object of the class. This enables the class to be more flex-
ible and usable by a larger number of applications.

Because one player might have played in 50 games and another player only 37, you 
need to know how many different games to record scores. The pointsScored[ ] 
array is used to hold the player’s scores for each game. In addition to the default 
constructor, a constructor is defined that receives multiple arguments including the 
number of games a player played. This is sent in as an argument from the application 
through the numGames variable. Thus, if numGames has a value of 10, the first 10 ele-
ments of the pointsScored[ ] array would hold game counts (one per game). The 
constructor contains parameters for all instance variables.

The heading for the constructor follows:
public Player (string ln, string fn, string iden, int [ ] s,
               int numGames)

You might think you could just use the value of s.Length to determine the number of 
games instead of sending in the number of games argument. Remember that Length 
returns the total number of dimensioned elements, even those that are unused. The 
Length value does not represent how many elements are nonzero.

Space is allocated for the pointsScored array using the numGames argument. The 
following Player member method is used:
public void FillPointsScoredArray(int [ ] s)
{
      pointsScored = new int [numberOfGames];
      for (int i = 0; i < pointsScored.Length; i++)
           pointsScored[i] = s[i];
}

Before the preceding method can be called, an object of the Player class has 
to be constructed. A value would already be associated with the field member 
 numberOfGames. The first statement in the body of the  FillPointsScoredArray( ) 
method instantiates the array object by allocating space for the number of ele-
ments using that instance field member. The last statement then copies the elements 
from the array s, which was sent into the method, to the instance array member, 
pointsScored.

The length of s could not be used as a loop control variable because it does not accu-
rately indicate how many actual values are sent into the method. Length is the num-
ber of dimensioned elements, which was 1000 in the application using the Player 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



428 | Chapter 7: Arrays

class. Remember, one of the goals of creating classes is to be able to reuse the class 
with different applications. The current Player class determines the average 
points scored by a player. Additional methods could be written to return the number 
of games played, the high and low scores, the number of games in which the player 
scored at least 10 points, and so on. A parallel array could be created to associate 
pointsScored with the opponent name.

Parallel arrays are two or more arrays that have a relationship. The relationship is 
established using the same subscript or index to refer to the elements. For example, 
opponent X’s name might be stored in a string array at index location C. Then, the 
number of points the player made against opponent X would be stored at that same 
indexed location C in another array. Parallel arrays are especially useful for storing 
related data when the related data is of different types.

With parallel arrays, anArrayOne[0] is related to anArrayTwo[0], 
anArrayOne[1] is related to anArrayTwo[1], anArrayOne[2] is related to 
anArrayTwo[2], and so on.

Consider the following declarations:
string [ ] firstName = new string[3] {"Bill", "Donna", "Peyton"};
string [ ] lastName = new string[3] {"Gates", "Lewis", "Manning"};

The two arrays are parallel arrays. firstName[0] goes with lastName[0]. These 
two memory locations could be concatenated with a separating space to form “Bill 
Gates”. firstName[1] goes with lastName[1], and firstName[2] goes with 
lastName[2].

Array of User-Defined Objects
Just as you can create arrays of predefined types, such as int, you can create arrays of 
user-defined classes. What if you had data on 12 different players? Using the Player 
class, an array of Player objects could be created as follows:
Write("How many players? ");
inValue = ReadLine( );
if (int.TryParse(inValue, out playerCnt) == false)
    WriteLine("Invalid data entered − " +
              "0 recorded for number of players.");

Player[ ] teamMember = new Player[playerCnt];

First, values are made available for an individual player for the following: last name 
(ln), first name (fn), identification number (iden), points scored (points), and the 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays in Classes | 429

7

number of games played (gameCnt). Then, the constructor for the Player class can 
be called using the following statement:
playerNumber = 1;
teamMember [playerNumber] = new Player(ln, fn, iden, points,
                                       gameCnt);

Of course, a loop could be designed to instantiate multiple Player objects. The vari-
able playerCnt could be used as the loop control terminating variable.

Arrays as Return Types
Arrays can be sent to methods as arguments, and methods can have arrays as their 
return types as well. The following heading to the GetScores( ) method returns an 
array containing the points scored list for one Player object. Notice the square 
bracket in the heading preceding the identifier for the method.
public static int [ ] GetScores(ref int gameCnt)

A call to this method would be as follows:
int [ ] points = new int [1000];
points = GetScores(ref gameCnt);

GetScores( ) is used by an application that instantiates an object of the Player 
type. The full code listing appears in Example 7-15. GetScores( ) is defined as a 
static method (class method) that returns a filled array. An assumption that no 
player would play more than 1000 games is made. A reference variable, scoreCnt, 
is included as an argument so that the actual number of games is available when an 
object of the Player class is constructed.

You will remember that a method can return a single type. A decision had to be made 
whether to return the array or to return the variable storing gameCnt. The choice 
was made to use the array as a return type to demonstrate how an array type can be 
returned. However, a more efficient solution is to send the array into the method as 
an argument and return gameCnt through the method name. The reason the last 
option is a better choice is based on the following. To return an array through the 
return type of the method, another array must be declared and space allocated locally 
for it in the method. This additional space for the size of the array is unnecessary if the 
array is sent as an argument because arrays are always passed by reference. Sending 
the array as an argument passes the address of the one declared in the calling method 
and eliminates the need to declare a local array.

Example 7-15 contains a listing of the Player application. It consists of two files. 
The first file describes characteristics of a Player. The second file is an application 
instantiating an array of Player objects. Recall that you can add a second class to 
your application in Visual Studio using the Add Class option from the Project menu. 
In addition to storing information about multiple Player objects, this file contains 
code to access the Player members. Player class is listed first.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



430 | Chapter 7: Arrays

EXAMPLE 7-15

/* Player.cs                           Author:    Doyle
 * Creates class with characteristics about one player.
 * Includes name and ID fields, plus points scored.
 * Any number of games can be used to instantiate an
 * object of this class. Average calculated based on the
 * number of points associated with one player.
 */
using System;

namespace PlayerApp
{
     public class Player
     {
          private string lname;
          private string fname;
          private string id;
          private int[ ] pointsScored;
          private int numberOfGames;

          // Default constructor
          public Player( )
          {
          }
          // Constructor accepts any size
          // pointsScored array.
          public Player (string ln, string fn, string iden,
                         int [ ] s, int numGames)
          {
               numberOfGames = numGames;
               FillPointsScoredArray(s);
               lname = ln;
               fname = fn;
               id = iden;
          }
          public string FName
          {
               get
               {
                    return fname;
               }
               set
               {
                    fname = value;
               }
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays in Classes | 431

7

          public string LName
          {
               get
               {
                    return lname;
               }
               set
               {
                    lname = value;
               }
          }
          public string ID
          {
               get
               {
                    return id;
               }
               set
               {
                    id = value;
               }
          }
          public int NumberOfGames
          {
               get
               {
                    return numberOfGames;
               }
               set
               {
                    numberOfGames = value;
               }
          }
          public int[ ] PointsScored
          {
               get
               {
                    return pointsScored;
               }
               set
               {
                    pointsScored = value;
               }
          }

          public void FillPointsScoredArray(int [ ] s)
          {
               pointsScored = new int [numberOfGames];
               for (int i = 0; i < pointsScored.Length; i++)
                   pointsScored[i] = s[i];
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



432 | Chapter 7: Arrays

          public double ComputeAverage( )
          {
               double total = 0;
               double avg;
               foreach(int s in pointsScored)
                       total += s;
               if (pointsScored.Length > 0)
                   avg = total / pointsScored.Length;
               else
                   avg = 0;
               return avg;
          }

          public override string ToString( )
          {
               return "Player Name: " + fname +
                      " " + lname + "\nPlayer ID: " +
                      id + "\nNumber of Games: " +
                      numberOfGames +
                      "\nAverage PointsScored per Game: " +
                      ComputeAverage( ).ToString("F2"); 
          }
     }
}

/* PlayerApp.cs Author: Doyle
 * Application that instantiates Player class.
 * Creates an array of player objects that
 * can be used to display individual
 * records or do stats on the entire team.
 */
using System;
using static System.Console;

namespace PlayerApp
{
     class PlayerApp
     {
         static void Main( )
         {
              string ln,
                     fn,
                     iden;
              string inValue;
              int playerCnt,
                  loopCnt = 0,
                  gameCnt;
              int [ ] points = new int [1000];

              Write("How many players? ");
              inValue = ReadLine( );

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays in Classes | 433

7

                  if (int.TryParse(inValue, out playerCnt) == false)
                      WriteLine("Invalid data entered − " +
                                "0 recorded for number " +
                                "of players.");
               Player[ ] teamMember = new Player[playerCnt];
               while (loopCnt < playerCnt)
               {
                    GetIdInfo(out ln, out fn, out iden);
                    gameCnt = 0;
                    points = GetScores(ref gameCnt);
                    teamMember [loopCnt] = new Player(ln, fn,
                                             iden, points, gameCnt);
                    loopCnt++;
               }
               DisplayStats(teamMember);
               ReadKey( );
          }

          public static int [ ] GetScores(ref int gameCnt)
          {
               int [ ] points = new int [1000];
               string inValue;

               Write("Game {0}: ((−99 to exit)) ", gameCnt + 1);
               inValue = ReadLine( );
               while(inValue != "−99")
               {
                      if (int.TryParse(inValue,
                              out points[gameCnt]) == false)
                          WriteLine("Invalid data entered" +
                                    " − 0 recorded for " +
                                    "points array element");
                      ++gameCnt;
                      Write("Game {0}: ((−99 to exit)) ",
                            gameCnt + 1);
                      inValue = ReadLine( );
               }
               return points;
          }

          public static void GetIdInfo(out string ln,
                          out string fn, out string iden)
          {
               WriteLine( );
               Write("Player First Name: ");
               fn = ReadLine( );
               Write("Player Last Name: ");
               ln = ReadLine( );
               Write("Player ID Number: ");
               iden = ReadLine( );
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



434 | Chapter 7: Arrays

          public static void DisplayStats (Player[ ]teamMember)
          {
               WriteLine( );
               WriteLine("{0,12} {1,25}","Player", "Avg Points");
               WriteLine("-----------------------------");
               foreach(Player pl in teamMember)
               {
                         WriteLine("{0,−25} {1,7}", (pl.FName + " " +
                                 pl.LName),
                                 pl.ComputeAverage( ).ToString(
                                                        "F0"));
               }
          }
     }
}

Remember that the properties with the sets and gets are added to enable client applications 
to access the private data members. By including them in your programs, you make 
your classes more usable.

FIGURE 7-9 PlayerApp output

©
 C

en
ga

ge
 L

ea
rn

in
g

The output from one test run of PlayerApp is shown in Figure 7-9.

Notice how Tyler Howard ended up with whole numbers (integers) represent-
ing his average points. If you do the arithmetic (( 21 + 17 + 9) / 3 = 15.666666667).  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Arrays in Classes | 435

7

As you examine Example 7-15, you should observe that the result is stored in a double.  
To avoid doing integer division in the ComputeAverage( ) method, total was 
defined as a double and then divided by an int (pointsScored.Length). The 
result is a double and it is then assigned to a double. The ToString( ) method 
was called in the DisplayStats( ) method of the PlayerApp application sending 
in “F0” as a format specifier. Another option to produce a floating-point result, both 
variables could have been defined as integers and then one of them could have been 
cast to a double, that is ((double) total / pointsScored.Length).

Figure 7-10 shows how the data from PlayerApp is represented in memory.

FIGURE 7-10 PlayerApp memory representation
©

 C
en

ga
ge

 L
ea

rn
in

g

As you review the figure, note the difference between value types such as avg and 
 numberOfGames. Array objects and string types contain a reference to the location 
of the stored values. Many advanced concepts relating to arrays were illustrated in the 
PlayerApp application. Array elements were defined as private data members and local 
variables. You saw how you could instantiate arrays of user-defined class array objects. 
Arrays were returned from methods and sent in as arguments to methods. Many of 
these same features will be revisited with the Programming Example that follows.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



436 | Chapter 7: Arrays

This example demonstrates the use of collections in the analysis, design, and imple-
mentation of a program. Array and string objects are included. An application is 
created to monitor manatees, which are still in danger of extinction and are being 
monitored on a daily basis in some areas. To design this application, a number of 
instance methods are used. Parallel arrays are created to store the date and num-
ber present at each sighting. The application is designed using two classes, and the 
problem specification is shown in Figure 7-11.

PROGRAMMING EXAMPLE: Manatee Application

FIGURE 7-11 Problem specification for Manatee example

Create an application that will be used to monitor the number of manatees
in a given waterway. A team of researchers flies from four to six times per
month over a regional waterway and log sightings of manatees. The
waterway is mapped into different viewing locations. The researchers
record the date, location, and a count of the number present at that
location.

Determine which day had the highest sightings at a given location. Print 
that date with the actual name of the month. Also include the count 
associated with the highest sighting. Plan your application so that the 
average number of sightings for a given location can be determined.

Design an object-oriented solution. Use two classes. For the manatee 
sighting class, characteristics such as location, date of viewing, and count 
of manatees should be included. Methods to determine the average, date 
with the highest number of sightings, and associated month name should 
be part of the class.

In the second class, instantiate an object of the manatee sighting class. 
Allow the user to input data about a given location. Test the members of 
the manatee sighting class.

©
 C

en
ga

ge
 L

ea
rn

in
g

ANALYZE THE 
PROBLEM

You should review the problem specification in Figure 7-11 and make sure you 
understand the problem definition. Several values will be entered into the pro-
gram to represent location, date, and counts of sighted manatees. These dates 
and counts will be entered into arrays and used to instantiate an object of the 
 ManateeSighting class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7

Programming Example: Manatee Application | 437

Table 7-2 lists the data field members needed for the manatee sighting problem.DATA

Data item description Type Identifier

Sighting location string location

Date of sighting string [ ] sightDate

Number of manatees sighted int [ ] manateeCount

© Cengage Learning

TABLE 7-2 Instance field members for the ManateeSighting class

A second class will be created to test the ManateeSighting class. To do this, 
additional data is needed by the class using the ManateeSighting class. As 
noted in the problem specification, the application class allows the user to enter 
values so that the ManateeSighting class can be instantiated. Local variables 
for location and arrays for date and count are declared in the application class. 
The two arrays will be dimensioned to a maximum number of 20 entries. The 
number of actual records will be used to construct the ManateeSighting object. 
For testing purposes, a single location is entered and sighting data recorded for 
that location. The user is able to enter additional location data. The application 
could be modified to create arrays of data about multiple locations.

DESIGN A 
SOLUTION

The desired output is to display the location, number of sightings during the most 
active month, and date (including the month name) in which the most manatees 
were sighted. Figure 7-12 shows a prototype of what the final output might look like.

FIGURE 7-12 Prototype for Manatee Application

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



438 | Chapter 7: Arrays

Class diagrams are used to help design and document both data and behavior 
characteristics. Figure 7-13 shows the class diagrams for the manatee application 
example.

The class diagrams do not show the properties or the local variables that might 
be needed by specific methods. Table 7-3 lists the data members that have proper-
ties defined indicating whether get and/or set will be needed. The name of the 
property is also shown in the table.

Data member identifier Property identifier Set Get

location Location √ √

sightDate SightDate √ √

manateeCount ManateeCount √ √

© Cengage Learning

TABLE 7-3 Properties for the ManateeSighting class

FIGURE 7-13 Class diagrams

+CalculateAvg( ) : double
+GetIndexOfMostSightings( ) : int
+GetMostSightings( ) : int
+GetDatewithMostSightings( ) : string
+GetMonthWithMostSightings( ) : string
+ComputeAverageForMonth( ) : double
+ToString( ) : string

ManateeSighting

-location : string
-sightDate : string[ ]
-manateeCount : int[ ]

ManateeApp

-m : ManateeSighting
-location : string
-sightingCnt : int
-dArray : string[ ]
-manateeCnt : int[ ]
+GetData( ) : int

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7

Programming Example: Manatee Application | 439

Calculated values such as the average sightings, date with largest sightings, and the 
name of the month with the largest sightings are instance methods of the class. 
The ComputeAverageForMonth ( ) method adds additional functionality to the 
Manatee class. It returns the average for a given month.

Figure 7-14 shows the Structured English, or pseudocode, used to design the step-
by-step processes for the behaviors of the methods of the ManateeApp example.

FIGURE 7-14 ManateeSighting class methods behavior

CalculateAvg( )
set totalCount = 0
loop while (more manateeCounts)
{

totalCount = totalCount + manateeCount
}
avg = (double)totalCount / manateeCount.Length

GetIndexOfMostSightings( )
maxCntIndex = 0
index = 1
loop while(more manateeCounts)
(

if (manateeCount[index] > manateeCount[maxCntIndex])
maxCntIndex = index

index++
}
return maxCntIndex

ReturnMonth(string someDate) : monthName
define monthNameArray
tempArray = someDate.Split(‘/’)
tempArray = tempArray.Trim(0)
intMonth = ConvertToInt(tempArray)
monthName = MonthNameArray[intMonth]
return monthName

ComputeAverageForMonth(string mon) : monAverage
total = 0
days = 0
index = 0
loop while(more sightings)
(

if (sightDate[index].StartsWith(mon))
{

total += manateeCount[index]
days++

}
}
if (days > 0)

monAverage = (double) total / days
else

monAverage = 0
return monAverage

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



440 | Chapter 7: Arrays

After the algorithm is developed, the design should be checked for correctness. 
You might develop a table now with test values using a standard calculator. Desk 
check the pseudocode to ensure you are getting the results expected. After your 
program is running, you can validate the correctness by comparing results you 
produce with your program against values you produced with the calculator dur-
ing your design walk-through.

CODE THE 
SOLUTION

After you complete the design and verify the algorithm’s correctness, translate the 
design into source code. For this application, you are creating two separate files—one 
for each class. The final application listing for both files is as follows:
/* ManateeSighting.cs Author: Doyle
 * This class defines manatee characteristics to include
 * location, count, and date of sightings. Methods to
 * determine the month with most sightings and
 * average number of sightings per location included.
 */
using System;

namespace ManateeApp
{
     public class ManateeSighting
     {
          private string location;
          private string [ ] sightDate;
          private int [ ] manateeCount;

          // Constructors
          public ManateeSighting( )
          {
          }
          public ManateeSighting(string loc)
          {
               location = loc;
          }
          public ManateeSighting(string loc, string[ ] date,
                                 int[ ] cnt)
          {
               sightDate = new string[date.Length]; 
               manateeCount = new int[cnt.Length];
               Array.Copy(date, 0, sightDate, 0, date.Length);
               Array.Copy(cnt, 0, manateeCount, 0,
                          manateeCount.LongLength);
               location = loc;
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7

Programming Example: Manatee Application | 441

          public ManateeSighting(string loc, string[ ] date,
                                 int [ ] cnt, int numOfFlights)
          {
               sightDate = new string[numOfFlights];
               manateeCount = new int[numOfFlights];
               Array.Copy(date,0,sightDate, 0, numOfFlights);
               Array.Copy(cnt,0,manateeCount, 0, numOfFlights);
               location = loc;
          }

          // Properties
          public string Location
          {
               get
               {
                    return location;
               }
               set
               {
                    location = value;
               }
          }
          public string[ ] SightDate
          {
               get
               {
                    return sightDate;
               }
               set
               {
                    sightDate = value;
               }
          }
          public int [ ] ManateeCount
          {
               get
               {
                    return manateeCount;
               }      
               set
               {
                    manateeCount = value;
               }
          }

          // Determines what the average number of
          // sightings is per location
          public double CalculateAvg( )
          {
               double avg;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



442 | Chapter 7: Arrays

               int cntOfValidEntries;
               int total = 0;
               foreach (int c in manateeCount)
                        total += c;
               cntOfValidEntries = TestForZeros( );
               avg = (double)total / cntOfValidEntries;
               return avg;
          }

          // To avoid skewing average, return number
          // of cells with nonzero values
          public int TestForZeros( )
          {
               int numberOfTrueSightings = 0;
               foreach (int cnt in manateeCount)
                        if (cnt != 0)
                            numberOfTrueSightings++;
               return numberOfTrueSightings;
          }

          // Returns an index where the largest
          // number of sightings is stored
          public int GetIndexOfMostSightings( )
          {
               int maxCntIndex = 0;
               for (int i = 1; i < manateeCount.Length; i++)
                    if (manateeCount[i] >
                              manateeCount[maxCntIndex])
                        maxCntIndex = i;
               return maxCntIndex;
          }

          // Returns a count of the most sighted
          public int GetMostSightings( )
          {
               return manateeCount[GetIndexOfMostSightings( )];
          }

          //Returns the date when most sightings occurred
          public string GetDateWithMostSightings( )
          {
               return sightDate[GetIndexOfMostSightings( )];
          }

         // Returns the name of the month when the
         // highest sightings occurred
         public string GetMonthWithMostSightings( )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7

Programming Example: Manatee Application | 443

         {
               return ReturnMonth( 
                      sightDate[GetIndexOfMostSightings( )]);
         }

         // Computes the average for a given month
         public double ComputeAverageForMonth(string mon)
            {
              int total = 0;
              int days = 0; 
              double monAverage;
              for (int i = 0; i < sightDate.Length; i++)
              {
                   if (sightDate[i].StartsWith(mon))
                   {
                       total += manateeCount[i];
                       days++;
                   }
              }
              if (days > 0)
                  monAverage = (double)total / days;
              else
                  monAverage = 0;
              return monAverage;
            }

         // Given a date in the format of mm/dd/yyyy
         // the name of the month is returned
         public string ReturnMonth(string someDate)
            {
              string[ ] monthName =
                   {"January", "February", "March",
                   "April", "May", "June", "July",
                   "August", "September", "October",
                   "November", "December"};
              string[ ] dateParts = someDate.Split('/');
              dateParts[0] = dateParts[0].TrimStart('0');
              return monthName[Convert.ToInt32(dateParts[0])− 1];
            }

         public override string ToString( )
         {
              return "\tLocation: " + location +
                     "\n\nAverage Number " +
                     "of Sightings:\t" +
                     CalculateAvg( ).ToString("F1") +
                     "\n\nMonth name for the" +

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



444 | Chapter 7: Arrays

                     "\nDate of Most Sightings:\t\t" +
                     GetMonthWithMostSightings( ) +
                     "\n\nDate of Most Sightings:\t\t" +
                     GetDateWithMostSightings( ) +
                     "\nCount for " +
                     GetDateWithMostSightings( ) + ":\t\t" +
                     GetMostSightings( );
        }
    }
}

/* ManateeApp.cs                   Author: Doyle
 * This is the client program that uses the
 * ManateeSighting class. Users are prompted
 * for location, date, and sightings. The
 * ManateeSighting class is tested using
 * this class by calling many of the
 * methods and properties.
 */
using System;
using static System.Console;

namespace ManateeApp
{
     public class ManateeApp
     {
          static void Main(string[] args)
          {
               string location;
               int sightingCnt;
               string [ ] dArray = new String[ 20];
               int [ ] manateeCnt = new int[20];
               char enterMoreData = 'Y';
               ManateeSighting m;
               do
               {
                    sightingCnt = GetData(out location, dArray,
                                          manateeCnt);
                    m = new ManateeSighting(location, dArray,
                                        manateeCnt, sightingCnt);
                    Clear( );
                    WriteLine(m);
                    Write("\n\n\n\nDo you want to enter more " +
                          "data − (Enter y or n)? ");
                    if (char.TryParse(ReadLine( ),

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7

Programming Example: Manatee Application | 445

                          out enterMoreData) == false)
                        WriteLine("Invalid data entered − No " +
                                  "recorded for your response ");
          }
          while (enterMoreData == 'Y' || enterMoreData == 'y');
          ReadKey( );
     }

     public static int GetData(out string location, string[ ]
                               dArray, int[ ] manateeCnt)
     {
          int i,
              loopCnt;
          Clear( );
          Write("Location: ");
          location = ReadLine( );
          Write("How many records for {0}? ", location);
          string inValue = ReadLine( );
          if (int.TryParse(inValue, out loopCnt) == false)
              WriteLine("Invalid data entered − " +
                        "0 recorded for number of records");
          for (i = 0; i < loopCnt; i++)
          {
               Write("\nDate (mm/dd/yyyy): ");
               dArray[i] = ReadLine( );
               if (dArray[i] == "")
               {
                    WriteLine("No date entered − " +
                              "Unknown recorded " +
                              "for sightings");
                    dArray[i] = "Unknown";
               }
               Write("Number of Sightings: ");
               inValue = ReadLine( );
               if (int.TryParse(inValue,
                        out manateeCnt[i]) == false)
                   WriteLine("Invalid data entered − 0 " +
                           "recorded for manatee sightings ");
          } 
          return i;
       }
    }
}

The output displayed during data entry, showing error messages generated when 
invalid data is entered, is shown in Figure 7-15.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



446 | Chapter 7: Arrays

The output from one iteration during the test run is shown in Figure 7-16.

FIGURE 7-15 ManateeApp application during data entry

FIGURE 7-16 ManateeApp application output

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7

Quick Review | 447

Coding Standards

Guidelines for Naming Arrays
Use singular nouns as identifiers for arrays. Since arrays are many data items grouped 
together and you normally reference the data item one data item at a time, it is best to 
use a singular noun to identify array elements.

Use the Camel case naming convention with arrays.

When you declare an array, place the square brackets ([ ]) after the data type, not after 
the identifier.

Advanced Array Suggestions
Explicitly initialize arrays either through compile-time initialization or by using a for 
statement or the Initialize( ) method of the Array class.

Use the foreach statement when you want read-only access of the data.

Use .NET predefined methods and properties whenever possible as opposed to writ-
ing new code.

Resources
Additional sites you might want to explore:

 ? C# Coding Conventions— 
http://msdn.microsoft.com/en-us/library/ff926074.aspx

 ? C# Corner - Arrays in C#— 
http://www.c-sharpcorner.com/uploadfile/puranindia/arrays-in-C-Sharp

 ? Code Project - Doing Arrays - C#— 
http://www.codeproject.com/Articles/161465/Doing-Arrays-C

 ? C# Dot Net Perls— 
http://www.dotnetperls.com/array

 ? C# Arrays YouTube Video— 
http://www.youtube.com/watch?v=Shl7TsNMGSE

QUICK REVIEW
 1. An array may contain any number of variables of the same type.
 2. One common identifier names the entire structure.
 3. The individual variables in the array are called the elements of the array.
 4. To access an array element, use an index enclosed in square brackets.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



448 | Chapter 7: Arrays

 5. The index (or subscript) references the location of the variable relative 
to the beginning location.

 6. The first index is always zero.
 7. With C#, the size or length of the array cannot change after it is allo-

cated, but you can use a variable to declare the size of an array.
 8. During the declaration, specify the number of individual elements for 

which space must be allocated and use an identifier representative of the 
contents (normally a singular name).

 9. When you use an array as a method parameter, the array identifier and 
type are specified; however, the length or size of the array is not included. 
Opening and closing square brackets are required.

 10. The call to that method includes the name of the array only.
 11. Array class has a number of predefined methods that perform sort, 

binary search, copy, and reverse. All arrays, of any type, inherit them.
 12. Include params with a parameter to indicate that the number of argu-

ments may vary.
 13. Within the foreach statement, an identifier represents the array ele-

ment for the iteration currently being performed.
 14. The type used in the foreach expression must match the array type.
 15. Arrays can be sent as arguments to methods, and in addition, a method 

can have an array as its return type.
 16. Array objects and string types are references instead of value types.

EXERCISES
 1. An array is a list of data items that:

a. all have the same type
b. all have different names
c. all are integers
d. all are originally set to null ('\0')
e. none of the above

 2. The value contained within the square brackets that is used to indicate 
the length of the array must be a(n):
a. class

b. double

c. string

d. integer
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7

Exercises | 449

 3. Which of the following array declarations would enable you to store the 
high temperature for each day of one full week?
a. int temp1, temp2, temp3, temp4, temp5, temp6, temp7;
b. int temp [7] = new int[7];
c. temp int [ ] = new temp[7];
d. int [ ] temp = new int[7];
e. int [ ] temp = new temp[8];

 4. Assume an array called num is declared to store four elements. Which 
of the following statements correctly assigns the value 100 to each of the 
elements?
a. for(x = 0; x < 3; ++x) num[x] = 100;

b. for(x = 0; x < 4; ++x) num[x] = 100;

c. for(x = 1; x < 4; ++x) num[x] = 100;

d. for(x = 1; x < 5; ++x) num[x] = 100;

e. none of the above

 5. Choose the statement that does not apply to the following declaration:
  double [ ] totalCostOfItems = {109.95, 169.95, 1.50, 
                                    89.95};

a. declares a one-dimensional array of floating-point 
values

b. specifies the size of the array as five
c. sets the array element totalCostOfItems[1] to 169.95
d. declares an area in memory where data of double type can be stored
e. all are correct

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



450 | Chapter 7: Arrays

 6. What value is returned by the method named result?
int result(int[ ] anArray, int num)
{
   int i,
       r;
   for (r = 0, i = 1; i < num; ++i)
        if (anArray[i] > anArray [r] )
            r = i;
   return (r);
}
a. the index of the largest of the first num elements of array anArray
b. the value of the largest of the first num elements of array anArray
c. the index of the smallest of the first num elements of array anArray
d. the value of the smallest of the first num elements of array anArray
e. the index of the last element greater than its predecessor within the 

first num elements of array anArray

 7. What is the effect of the following program segment?
int[ ] anArray = new int[50];
int i, j, temp;
string inValue;
for (i = 0; i < 50; ++i)
{
     Write("Enter Value");
     inValue = ReadLine( );
     anArray[i] = int.Parse(inValue);
}
temp = 0;
for (i = 1; i < 50; ++i)
     if (anArray[i] < anArray[0])
         ++temp; 
a. arranges the elements of array anArray in ascending order
b. counts the number of elements of array anArray less than its initial 

element
c. reverses the numbers stored in the array
d. puts the largest value in the last array position
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7

Exercises | 451

 8. Using the following declaration:
char [ ] n = {'a', 'b', 'c', 'd', 'e'};

What does n[1] refer to?
a. a

b. abcde

c. b

d. 'a'

e. none of the above

 9. Using the following declaration:
int [ ] x = {12, 13, 14, 15, 16, 17, 18, 19};

What does x[8] refer to?
a. 19

b. 18

c. '\0'

d. 0

e. none of the above

 10. Which of the following adds 42 to the element at the fifth physical spot?
int [ ] x = {12, 13, 14, 15, 16, 17, 18, 19};
a. x[5] += 42;

b. x[4] += 42;

c. x[5 + 42];

d. x = 42 + 5;

e. none of the above

 11. How many components are allocated by the following statement?
double [ ] values = new double[3]; 
a. 32

b. 3
c. 2
d. 4
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



452 | Chapter 7: Arrays

 12. What output is produced by the following code?
int i;
int [ ] anArray = new int [5];
for (i = 0; i < anArray.Length; i++)
     anArray[i] = 2 * i;
for (i = 0; i < anArray.Length; i++)
     Write(anArray[i] + " ");
a. 22222
b. 246810
c. 0246810
d. 02468
e. none of the above

 13. If you declare an array as int [ ] anArray = new int[5]; you can 
double the value stored in anArray [2] with the statement:
a. anArray[2] = anArray[5] * 2;

b. anArray = anArray * 2;

c. anArray[2] *= anArray[2] * 2;

d. anArray[2] *= 2;

e. none of the above

 14. With the following declaration:
int [ ] points = {550, 700, 900, 800, 100};

the statement points[3] = points[3] + 10; will
a. replace the 800 amount with 810
b. replace the 550 amount with 560
c. replace the 900 amount with 910
d. result in an error
e. none of the above

 15. With the following declaration:
int [ ] points = {300, 100, 200, 400, 600};

the statement points [4] = points[4 – 2]; will
a. replace the 400 amount with 2
b. replace the 300 and 600 with 2
c. replace the 600 with 200
d. result in an error
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7

Exercises | 453

 16. With the following declaration:
int [ ] points = {300, 100, 200, 400, 600};

the statement Write(points[2] + points[3]); will
a. display 200400
b. display 600
c. display "points[2] + points[3]"
d. result in an error
e. none of the above

 17. When you pass a single integer array element to a method, the method 
receives:
a. a copy of the array
b. the address of the array
c. a copy of the value in the element
d. the address of the element
e. none of the above

 18. When you pass the entire array to a method, the method receives:
a. a copy of the array
b. the address of the array
c. a copy of the first value in the array
d. the address of each of the elements in the array
e. none of the above

 19. A correct method call to a method that has the following heading would be:
int result(int [ ] anArray, int num) 
a. Write(result(anArray, 3));

b. result(anArray, 30);

c. Write(result(anArray[ ], 3));

d. result(anArray[ ], 30);

e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



454 | Chapter 7: Arrays

 20. A valid call to the following method using a params parameter is:
public static void DoSomething(params int[ ] item) 
a. DoSomething(4);

b. DoSomething(anArray);

c. DoSomething(4, 5, 6);

d. a and c are correct
e. all are correct

 21. Using the following declaration:
int [ ] anArray = {34, 55, 67, 89, 99};

what would be the result of each of the following output statements?
a. WriteLine(anArray.Length);

b. WriteLine(anArray[2]);

c. WriteLine(anArray[anArray.Length − 2]);

d. WriteLine(anArray[2 + 1] * anArray[0]);

e. WriteLine(anArray[1] + 100);

                int [ ] bArray = new int [10]; 

 22. Using the above declarations write a foreach loop to display the 
 contents of bArray.

 23. Using the above declarations write a for loop to increment each  element 
in bArray by 5.

 24. Using the above declarations, use a member of the Array class to locate 
the index in the bArray array where 14 is stored.

 25. Using the above declarations, use a member of the Array class to order 
the values in the bArray array in ascending order.

 26. Using the above declarations, use a member of the Array class to change 
the order of the elements in the bArray array. The contents of the first 
cell should hold what was in the last cell. The second cell should hold 
what was in the next to last cell.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7

Programming Exercises | 455

 27. Create array declarations for the following problem specifications.
a. An array to hold the names of five font strings. Initialize the array 

with your favorites.
b. An array to hold 12 state names. Initialize with the 12 states closest 

to your campus.
c. An array to hold the 10 most common single character middle 

initials.
d. An array to store a key for an exam consisting of 15 true/false 

questions.
e. Parallel arrays to hold up to 100 checking account check numbers, 

dates, and check amounts. 

 28. Explain the difference between the pass by reference and pass by value. 
When an array is sent to a method, which one is used?

PROGRAMMING EXERCISES
 1. Write an application that allows the user to input monthly rainfall 

amounts for one year storing the values in an array. Create a second 
array that holds the names of the month. Produce a report showing the 
month name along with the rainfall amount and its variance from the 
mean. Calculate and display the average rainfall for the year.

 2. Write a program that allows the user to enter any number of names, last 
name first. Using one of the predefined methods of the Array class, 
order the names in ascending order. Display the results.

 3. Create three arrays of type double. Do a compile-time initialization and 
place different values in two of the arrays. Write a program to store the 
product of the two arrays in the third array. Produce a display using the 
MessageBox class that shows the contents of all three arrays using a 
single line for an element from all three arrays. Design your solution so 
that the two original arrays have a different number of elements. Use 1 
as the multiplier when you produce the third array.

 4. Write an application that can be used to test input values to ensure they 
fall within an established range. Use an array to keep a count of the num-
ber of times each acceptable value was entered. Acceptable values are 
integers between 0 and 10. Your program should display the total num-
ber of valid values inputted as well as the number of invalid entries. Show 
not only the number of values outside the range, but also the number 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



456 | Chapter 7: Arrays

of non-numeric invalid values entered. For your final display, output a 
list of distinct valid entries and a count of how many times that entry 
occurred. Provide your listing in a tabular format, with values number 
aligned. Do not display the value unless it was entered.
Use the following test data:

7 2 4 2 q 87 4 6 4 4 7

 5. The Ion Realty Sales Corporation would like to have an application 
showing how each monthly sales contributes to their overall total sales. 
Write a program that accepts as input any number of monthly sales 
amounts. After all values have been entered, display a report showing 
each of the monthly sales amounts and the percentage contribution of 
the individual monthly sales figure to the overall total sales. Your report 
should show each original value entered and the percentage that value 
contributes to the total. You may prompt the user for the number of val-
ues to be inputted. Be sure your design is aesthetically pleasing with the 
percentage rounded to one position and all values number aligned.

 6. Write an application that provides statistics about temperatures for a 
given week. Your solution should be a two-class application that has a 
one-dimensional array as a data member. The array stores temperatures 
for any given week. Provide constructors for instantiating the class and 
methods to return the highest temperature, lowest temperature, aver-
age temperature, and the average temperature excluding the lowest tem-
perature. Provide a method that accepts as an argument a temperature 
and returns the number of days the temperatures were below that value. 
Override the ToString( ) method to return a listing of all the temper-
atures in three-column format and the temperature range for the given 
week. Write a second class to test your class.

 7. Write a two-class application that has as a data member an array that 
can store state area codes. The class should have a member method that 
enables users to test an area code to determine if the number is one of 
the area codes in the state exchange. The member method should use 
one of the predefined methods of the Array class and return true 
if the argument to the method is one of the state codes. Override the 
ToString( ) method to return the full list of area codes with each sur-
rounded by parentheses. To test the class, store a list of state codes in a 
one-dimensional array. Send that array as an argument to the class con-
structor. Test the instance methods. Your application should work with 
both an ordered list of area codes or an unordered list.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



7

Programming Exercises | 457

 8. Write a program that accepts any number of homework scores ranging 
in value from 0 through 10. Prompt the user for a new score if they enter 
a value outside of the specified range. Prompt the user for a new value if 
they enter an alphabetic character. Store the values in an array. Calculate 
the average excluding the lowest and highest scores. Display the average 
as well as the highest and lowest scores that were discarded.

 9. Write a program that allows any number of values between 0 and 10 to 
be entered. When the user stops entering values, display a frequency 
distribution bar chart. Use asterisks to show the number of times each 
value was entered. If a given number is not entered, no asterisks should 
appear on that line. Your application should display error messages if a 
value outside the acceptable range is entered or if a non-numeric char-
acter is entered.

 10. Write a program that will produce a report showing the current and max-
imum enrollments for a number of classes. Your applications should be 
designed with two classes. The first class should include data members 
for the name of the course, current enrollment, and maximum enroll-
ment. Include an instance method that returns the number of students 
that can still enroll in the course. The ToString( ) method should 
return the name of the course, current enrollment, and the number of 
open slots. In the implementation class, declare parallel arrays and do 
a compile-time initialization for the name of the course, current enroll-
ment, and maximum enrollment. Also declare an array of class objects in 
your implementation class. Test your application with the following data:

Class name
Current 
enrollment

Maximum 
enrollment

CS150 180 200

CS250 21 30

CS270 9 20

CS300 4 20

CS350 20 20

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

Advanced Collections
IN THIS CHAPTER, YOU WILL:

 ? Create two-dimensional arrays including rectangular and jagged types

 ? Use multidimensional arrays

 ? Use the ArrayList class to create dynamic lists

 ? Learn about the predefined methods of the string class

 ? Be introduced to the other collection classes

 ? Work through a programming example that illustrates the chapter’s concepts

8CHAPTER

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



460 | Chapter 8: Advanced Collections

In Chapter 7, you were introduced to one-dimensional arrays. These are the basic data 
structures used for many types of applications. In this chapter, you discover how to work 
with other types of collections of data. In Chapter 7, you created parallel arrays that 
can hold multiple data values. In this chapter, you will be introduced to members of the 
ArrayList class for creating collections that can grow and shrink. You learn about 
special properties and methods of this class. You also do additional programming using 
strings and learn about some of the predefined string methods available with the .NET 
Framework class library for accessing and modifying collections of character data items.

Two-Dimensional Arrays
Two-dimensional and other multidimensional arrays follow the same guidelines you 
learned about with one-dimensional arrays. One-dimensional arrays are useful for stor-
ing lists of data. Because the data is stored in contiguous memory locations, elements 
are referenced by an index representing the location relative to the beginning element 
of the array. Two-dimensional arrays, the most common multidimensional arrays, are 
used to store information that we normally represent in table form. Two kinds of two-
dimensional arrays can be created using C#. Rectangular is the first type, and this type 
is supported by most languages. The second type is called a jagged or ragged array. 
Two-dimensional arrays are referenced much like you reference a matrix or table.

Rectangular Array
A rectangular two-dimensional array is usually visualized as a table divided into 
rows and columns. Much like a spreadsheet in which the rows and columns inter-
sect, data is stored in individual cells. Figure 8-1 shows a table you might create to 
store calories consumed for a seven-day period. The table contains three columns 
and seven rows. Each cell holds one integer value.

FIGURE 8-1 Two-dimensional structure

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Two-Dimensional Arrays | 461

8

A structure can be created in memory to hold these values using a two-dimensional 
array. The format for creating such a data structure is

type [ , ] identifier = new type[integral value,  integral value];

You receive a syntax error if you try to use the C-style method for two-dimensional array 
declaration. The following is not permitted in C#: 
int anArray [ ] [ ];

As was a requirement for a one-dimensional array, all data values placed in a two-
dimensional array must be of the same base type. Two integral values are required for 
a two-dimensional array. These values specify the number of rows and columns for 
allocating storage to be referenced by the identifier name. To create an array in C# to 
hold the data from Figure 8-1, you write
int [ , ] calories = new int[7, 3];

This allocates storage for 21 elements. The first index represents the number of rows; 
the second represents the number of columns. Notice how a comma is used as a sepa-
rator between the row and the column for both the declaration base type and again to 
separate the number of rows and columns.

Just as with one-dimensional arrays, you can perform compile-time initialization of 
the elements. C# is a row major language, meaning that data is stored in contiguous 
memory locations by row. All elements from row 0 are placed in memory first fol-
lowed by all elements from row 1, and so on. Example 8-1 illustrates how you initial-
ize the calories array with the values shown in Figure 8-1.

EXAMPLE 8-1

int [ , ] calories = { {900, 750, 1020},
                       {300, 1000, 2700},
                       {500, 700, 2100},
                       {400, 900, 1780},
                       {600, 1200, 1100},
                       {575, 1150, 1900},
                       {600, 1020, 1700} };

Notice how each row is grouped using curly braces. A comma is used to separate rows. With-
out the curly braces, you receive a syntax error indicating you have an “incorrectly struc-
tured array initializer.” Figure 8-2 further illustrates the result of the preceding statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



462 | Chapter 8: Advanced Collections

The identifier calories contains a reference to calories[0, 0]. The Length 
property can be used with multidimensional arrays to get the total number of ele-
ments in all dimensions. The following statement displays 21:
WriteLine(calories.Length);  // Length returns number of cells

Another useful member of the Array class is the GetLength( ) method. It can be 
called to return the number of rows or columns. Arrays are also zero based for speci-
fying their dimensions. With a two-dimensional array, the first dimension (indexed 
by 0) represents the number of rows and the second dimension (indexed by 1) rep-
resents the number of columns. GetLength(0) returns the number of rows and 
 GetLength(1) returns the number of columns, as shown in Example 8-2.

Data is not really stored in memory in a table such as this. Values are stored side by side in 
contiguous memory locations using a row major format.

The property Rank returns the number of dimensions of the array.

FIGURE 8-2 Two-dimensional calories array

©
 C

en
ga

ge
 L

ea
rn

in
g

EXAMPLE 8-2

WriteLine(calories.GetLength(1));  // Displays 3 (columns)
WriteLine(calories.GetLength(0));  // Displays 7 (rows)
WriteLine(calories.Rank);          // Displays 2 (dimensions)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Two-Dimensional Arrays | 463

8

You can also get the upper bounds index using another Array class member. With 
the array dimensioned as
int [ , ] calories = new int[7, 3];

the last element (1700) is located at calories[6, 2]. Thus, the upper bound for 
the row is 6. The upper bound for the column is 2. The lower bound is 0 for both 
dimensions.
WriteLine(calories.GetUpperBound(0));  // Returns 6 (row index)

The methods GetUpperBound( ) and GetLowerBound( ) return the upper or 
lower bounds of the specified dimension. Thus, GetUpperBound(1) returns 2 because 
the array is dimensioned to have three columns, so the largest index that could be used for 
the column is 2—the upper bound index for the column.

You do not get the whole collection printed if you type Write(calories); instead, the 
ToString( ) method of the object class is called. ToString( ) is defined in the 
object class to return an object’s type. Thus, you would get System.Int32[ ]  
printed if you typed Write(calories).

The foreach loop structure can be used to iterate through a two-dimensional array. 
Using the same format as noted previously, an identifier of the base type is defined. 
To display each of the values from the two-dimensional array, a foreach loop could 
be used as shown in Example 8-3.

EXAMPLE 8-3

foreach (int cal in calories)
         Write(cal + " ");

The output produced from Example 8-3 is in row major format—meaning that every 
element in row 0 is printed before any element from row 1, as follows:

900 750 1020 300 1000 2700 500 700 2100 400 900 1780 600 1200  
1100 575 1150 1900 600 1020 1700

The foreach loop is used for read-only access. To change values, you need a differ-
ent loop with two indexes. Example 8-4 illustrates how you traverse through the array 
clearing the contents from each cell.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



464 | Chapter 8: Advanced Collections

EXAMPLE 8-4

for (int r = 0; r < calories.GetLength(0); r++)
     for (int c = 0; c < calories.GetLength(1); c++)
          calories[r, c] = 0;

The nested loop body is executed 21 times. During the last iteration through the loop 
body, r has a value of six, and c has a value of two.

It is possible to traverse through a two-dimensional array one row at a time or you 
can process the data by columns. Example 8-5 illustrates adding the values one row 
at a time. Notice how the nested loop works with this example. The variable r is used 
to hold the row number; c holds the column number. The outer loop starts r with 
a value of zero and holds that value constant while performing the innermost loop. 
The innermost loop starts c with a value of zero and then executes the body for the 
second loop, which is a single statement (sum += calories[r, c];). Still holding r 
constant at zero, it then increments c to 1 and tests to see if all columns for that row 
have been processed using the statement (c < calories.GetLength(1)). Recall 
the GetLength(1) method returns the number of columns—three for this example.

EXAMPLE 8-5

public static double[ ] CalculateAverageByDay(int[ , ] calories)
{
     int sum = 0;
     double[ ] dailyAverage = new double[7];
     for (int r = 0; r < calories.GetLength(0); r++)
     {
          for (int c = 0; c < calories.GetLength(1); c++)
               sum += calories[r, c];
          dailyAverage[r]=(double)sum / calories.GetLength(1);
          sum = 0;
     }
     return dailyAverage;
}

The method shown in Example 8-5 returns an array of type double. After all values are 
added for a given row, the average of those values is stored in the local array named 
dailyAverage. The statement dailyAverage[r] = (double)sum /  calories.
GetLength(1); invokes the GetLength(1) method to return the number of col-
umns. This is used as a divisor into sum. An explicit cast is performed on sum so 
that the result will be a floating-point value. In preparation for the next iteration 
through the array, sum is reinitialized to zero prior to incrementing r. Notice that the 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Two-Dimensional Arrays | 465

8

one-dimensional array, dailyAverage is a floating-point data type. This floating-
point array is returned at the end of the method.

In order to invoke the above-mentioned method, there must be a one-dimensional 
array of type double available for the returned array. Example 8-6 illustrates what 
would be needed in the calling segment.

EXAMPLE 8-6

double[ ] dailyAverage = new double[7];
dailyAverage = CalculateAverageByDay(calories);

In Example 8-6, CalculateAverageByDay( ) passes the two-dimensional array, 
calories, in as an argument when it is invoked. Again, notice that there are no square 
brackets. The call sends the address of the first element of the array. When the method 
finishes and returns back to Main( ), the address of the first element of the local array, 
dailyAverage, is sent back through the method call and is then assigned to the local 
one-dimensional array, dailyAverage, which is defined in the Main( ) method.
C# is a row major language, which means you specify the row index first when you 
reference elements in the array. In the previous example, the r variable was placed 
in the outermost loop. It is also possible to process data one column at a time. If you 
wanted to calculate the average number of calories consumed during all breakfasts, 
you add all rows for column zero. To calculate the average number of calories during 
lunch, add all rows for column one. The third physical row, referenced by index 2, 
holds the calories for dinner. The nested loop shown in Example 8-7 illustrates plac-
ing the column variable in the outermost loop.

EXAMPLE 8-7

public static double[ ]
     CalculateAverageByMeal(int[ , ] calories)
{
     int sum = 0;
     double[ ] mealAverage = new double[3];
     for (int c = 0; c < calories.GetLength(1); c++)
     {
          for (int r = 0; r < calories.GetLength(0); r++)
               sum += calories[r, c];
          mealAverage[c]=(double)sum / calories.GetLength(0);
          sum = 0;
     }
     return mealAverage;
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



466 | Chapter 8: Advanced Collections

Notice in Example 8-7 that when the calories array is referenced in the statement 
sum += calories[r, c], the row is still listed first. As with the previous example, the 
CalculateAverageByMeal( ) method returns a one-dimensional array. It is also 
possible for a method to return a two-dimensional array.
Sometimes, it is more readable to use identifiers for row and column indexes that are 
more representative of the data. Since the row stores calories for a given day, the identi-
fier da is used in Example 8-8, instead of r to store the row number. Each column holds 
the calories for a given meal; thus, the identifier ml is used to store the column number. 
As with the last two examples, Example 8-8 uses a nested loop to add every element in 
the array. The variable da stores the row numbers while ml stores the column number.

EXAMPLE 8-8

public static void DisplayAverageCaloriesPerMeal(int[ , ] calories)
{
     double sum = 0;
     for (int da = 0; da < calories.GetLength(0); da++)
          for (int ml = 0; ml < calories.GetLength(1); ml++)
               sum += calories[da, ml];
      WriteLine("\nCaloric Average Per Meal: {0:N0}",
                 (sum / calories.Length));
}

In this example, sum is divided by the value returned from the calories.Length 
property. The Length property was used to return the total number of elements in 
all dimensions. For Example 8-8, Length returns 21.

Example 8-9 displays the entire application. It does a compile-time initialization of the 
two-dimensional array. The application displays the average number of calories consumed 
per day, average number consumed per meal type, and the overall average per meal.

When you create your solutions in Visual Studio, the code generator adds additional using state-
ments. Unnecessary using statements were deleted from  Example 8-9 and other examples.

EXAMPLE 8-9

/* WeeklyCalorieCounter.cs Author: Doyle
 * Demonstrates usage of a two-dimensional array
 * to calculate the average number of calories
 * intake per day, per meal type, and per meal.
 */
using System;
using static System.Console;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Two-Dimensional Arrays | 467

8

namespace WeeklyCalorieCounter
{
     public class WeeklyCalorieCounter
     {
          public static void Main( )
          {
               int[ , ] calories = { {900, 750, 1020},
                                     {300, 1000, 2700},
                                     {500, 700, 2100},
                                     {400, 900, 1780},
                                     {600, 1200, 1100},
                                     {575, 1150, 1900},
                                     {600, 1020, 1700} };
               double[ ] dailyAverage = new double[7];
               double[ ] mealAverage = new double[3];
               dailyAverage = CalculateAverageByDay(calories);
               mealAverage = CalculateAverageByMeal(calories);
               DisplayDailyAverage(dailyAverage);
               DisplayMealAverage(mealAverage);
               DisplayAverageCaloriesPerMeal(calories);
               ReadKey( );
          }

                   public static double[ ] CalculateAverageByDay(int[ , ] calories)
          {
               int sum = 0;
               double[ ] dailyAverage = new double[7];
               for (int r = 0; r < calories.GetLength(0); r++)
               {
                    for (int c = 0; c < calories.GetLength(1); c++)
                         sum += calories[r, c];
                    dailyAverage[r] = (double)sum /
                                        calories.GetLength(1);
                    sum = 0;
               }
               return dailyAverage;
          }

                     public static double[ ] CalculateAverageByMeal(int[ , ] calories)
          {
               int sum = 0;
               double[ ] mealAverage = new double[3];
               for (int c = 0; c < calories.GetLength(1); c++)
               {
                    for (int r = 0; r < calories.GetLength(0); r++)
                         sum += calories[r, c];
                    mealAverage[c] = (double)sum /
                                        calories.GetLength(0);
                    sum = 0;
               }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



468 | Chapter 8: Advanced Collections

               return mealAverage;
          }

             public static void DisplayDailyAverage(double[ ] dailyAverage)
          {
               int dayNumber = 1;
               WriteLine("Calorie Counter");
               WriteLine("Daily Averages");
               foreach (double avgCalorie in dailyAverage)
               {
                    WriteLine("Day {0}: {1,6:N0}", dayNumber,
                              avgCalorie);
                    dayNumber++;
               }
          }

          public static void
               DisplayMealAverage(double[ ] mealAverage)
          {
               string[ ] mealTime = {"Breakfast", "Lunch",
                                     "Dinner"};

               WriteLine("\n\nCalorie Counter");
               WriteLine("Meal Averages");
               for (int c = 0; c < mealAverage.Length; c++)
               {
                    WriteLine("{0,–10}: {1,6}", mealTime[c],
                              mealAverage[c].ToString("N0"));
               }
          }

          public static void
               DisplayAverageCaloriesPerMeal(int[ , ] calories)
          {
               double sum = 0;
               for (int da = 0; da < calories.GetLength(0); da++)
                    for (int ml = 0; ml < calories.GetLength(1);
                                   ml++) 
                         sum += calories[da, ml];
               WriteLine("\nCaloric Average Per Meal: " +
                         "{0:N0}", sum / calories.Length);
          }
     }
}

Example 8-9 includes three separate Display methods. The  DisplayDailyAverage( ) 
method illustrates using the foreach loop. Since no index is included with this loop 
structure, a separate variable, dayNumber was defined and incremented inside the 
loop body in order to print the day number. The output produced from this example 
is shown in Figure 8-3.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Two-Dimensional Arrays | 469

8
FIGURE 8-3 Output from WeeklyCalorieCounter

As you review Figure 8-3, notice that the numbers are aligned properly. Review the 
format specifier shown in Example 8-10.

EXAMPLE 8-10

WriteLine("{0,-10}: {1,6}", mealTime[c],
            mealAverage[c].ToString("N0"));

A comma separates the placeholder index from the width specifier. The 0 references 
the first argument, mealTime[c]. The second argument, the number 10, specifies the 
size or the number of positions to use to display the value stored in mealTime[c]. The 
negative value in front of the 10 indicates that the value stored in mealTime[c] should 
be left justified. Right justification is the default. The one-dimensional array  mealTime 
stores the type of meal (i.e., Breakfast, Lunch, Dinner). A colon follows the meal 
type and then the actual value is displayed in a width of 6 ({1,6}) character positions. 
Since the value 6 is positive, the numbers are right justified and aligned properly.

In Example 8-10, the ToString( ) method is called to convert the double value 
stored in mealAverage[c] into a string value. The format specifier N is used to 
convert it into a number with a comma separator. The zero following the N indicates 
that there should be no digits to the right of the decimal.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



470 | Chapter 8: Advanced Collections

C# initializes array elements to the null value when you create them with the new 
 keyword. One way to test to see if a value has been stored is to test for null. The 
 following returns true when no values have been referenced by the array. 
 string [ ] name = new string[10]; 
if (name[0] == null)

Jagged Array
When the number of columns in the rows must differ, a jagged, or ragged array, can 
be created. Jagged arrays differ from rectangular arrays in that rectangular arrays 
always have a rectangular shape, like a table. Jagged arrays are called “arrays of arrays.” 
One row might have five columns; another row 50 columns. To create a jagged array, 
you can create a one-dimensional array of type Array and initialize each of the one-
dimensional arrays separately. Example 8-11 illustrates the creation of a jagged array.

EXAMPLE 8-11

int[ ] [ ] anArray = new int[4] [ ];
anArray[0] = new int[ ] {100, 200};
anArray[1] = new int[ ] {11, 22, 37};
anArray[2] = new int[ ] {16, 72, 83, 99, 106, 42, 87};
anArray[3] = new int[ ] {1, 2, 3, 4};

The GetLength( ), GetUpperBound( ), and GetLowerBound( ) methods can be 
used with jagged arrays. Jagged arrays are used exactly like rectangular arrays, except 
that rows may have a different number of elements. anArray.GetLength(0) returns 
4 while anArray[0].GetLength(0) returns 2. In order to retrieve the number of 
columns for a given row, you must specify which row you are referencing with jagged 
arrays. Similarly anArray.GetUpperBound(0) returns 3, the largest valid index that 
can be used for the row. In order to retrieve the upper bound for a given column, you 
have to indicate which row you are referencing. anArray[2].GetUpperBound(0) 
returns 6. Notice this is the largest valid column index, since there are seven elements.

Multidimensional Arrays
You are really only limited by your imagination as far as the number of dimensions for 
which you can allocate arrays in C#. The major requirement is the fact that all data 
values placed in an array must be of the same base type. A two-dimensional array is 
actually a multidimensional array; however, it is such a common type of structure that 
it often is put in its own category.

To declare a three-dimensional array, three integral values are used. They specify 
the number of planes, rows, and columns to set aside for the array. As with single-
dimensional arrays, three-dimensional arrays are referenced by the identifier name.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Multidimensional Arrays | 471

8

The format for creating a three-dimensional array is

type [ , , ] identifier = new
                type [integral value, integral value,  
                          integral value];

What if you wanted to create the calories table to hold four weeks of statistics? A 
three-dimensional array could be defined to hold the data. The first dimension could 
represent the number of weeks, the second the number of days, and the third the 
number of meals. To create the array in C# to hold that extra data, you write
int [ , , ] calories = new int [4, 7, 3];

Figure 8-4 shows what the array would look like.

FIGURE 8-4 Three-dimensional array

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



472 | Chapter 8: Advanced Collections

This allocates storage for 84 elements (4 * 7 * 3). You will notice that the upper bounds 
on the indexes are 3, 6, and 2; the lower bound is 0 for all three.

An additional column could be added to the array to hold the total calories for each 
day by dimensioning the array as shown in Example 8-12. The code in Example 8-12 
adds the first three columns and places the sum in the new fourth column.

EXAMPLE 8-12

int [ , , ] calories = new int [4, 7, 4];

// Loop to place the row total in the last column, indexed by 3 
for (int wk = 0; wk < calories.GetLength(0); wk++)
{
     for (int da = 0; da < calories.GetLength(1); da++)
     {
          for (int ml = 0; ml < calories.GetLength(2) − 1; ml++)
          {
               calories[wk, da, 3] += calories[wk, da, ml];
          }
     }
}

Reexamine the first line in Example 8-12 and note that the dimension representing the 
 number of columns, the last integer, was changed from 3 to 4. This enables the total 
 calories for each row to be stored in the last column.

The last cell for each row holds the total per day. Now each row has the calorie count 
for breakfast, lunch, dinner, and the total calorie count for the day.

The nested loop adds columns indexed with 0 through 2 of each row and stores the result 
in the column indexed by 3. The conditional expression used to terminate the inner-
most loop uses (calories.GetLength(2) − 1) for the evaluation.  GetLength(2) 
returns the length of the third dimension. This returns 4 because there are now 
four columns in the row. But notice that 1 is subtracted from that value, because the 
last column should not be added. It is holding the total. Therefore, the loop is exe-
cuted for ml = 0, ml = 1, and ml = 2. When ml is equal to 3, ml is no longer less than  
3 (ml < calories.GetLength(2) − 1), and the inner loop is complete for that iteration.

calories.GetLength(0) returns the dimension for the number of planes or weeks. 
It returns 4. GetLength(1) returns the dimension for the number of rows per plane 
or days per week. It returns 7. As was noted, GetLength(2) returns the dimension 
for the number of columns per row or meals per day. It returns 4. The program listing 
for the calorie counter application is included as Example 8-13.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Multidimensional Arrays | 473

8

EXAMPLE 8-13

/* CalorieCounter.cs Author: Doyle
 * Demonstrates multidimensional array
 * through a calorie counter program.
 * Initializes array with values.
 * Accumulates calories per day and
 * displays report by day.
 */
using System;
using static System.Console;

namespace CalorieCounter
{
     class CalorieCounter
     {
          static void Main( )
          {
              int [ , ,] calories = { {  {900, 750, 1020, 0},
                                         {300, 1000, 2700, 0},
                                         {500, 700, 2100, 0},
                                         {400, 900, 1780, 0},
                                         {600, 1200, 1100, 0},
                                         {575, 1150, 1900, 0},
                                         {600, 1020, 1700, 0} },
                                      {  {890, 1900, 785, 0},
                                         {450, 1000, 2005, 0},
                                         {400, 1200, 2100, 0},
                                         {400, 900, 1780, 0},
                                         {600, 1200, 1500, 0},
                                         {500, 750, 1900, 0},
                                         {600, 890, 1200, 0} },
                                      {  {850, 750, 1350, 0},
                                         {300, 1000, 2330, 0},
                                         {350, 800, 2100, 0},
                                         {400, 900, 1080, 0},
                                         {600, 1250, 1100, 0},
                                         {575, 1000, 2140, 0},
                                         {600, 870, 1600, 0} },
                                      {  {500, 1500, 1020, 0},
                                         {400, 1100, 2700, 0},
                                         {170, 700, 2100, 0},
                                         {400, 1240, 1780, 0},
                                         {600, 1100, 1100, 0},
                                         {575, 1150, 1750, 0},
                                             {575, 1500, 2100, 0} } };

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



474 | Chapter 8: Advanced Collections

              AccumulateCalories(calories);
              DisplayTotals(calories);
              ReadKey( );
         }

         public static void AccumulateCalories(int [ , , ] calories)
         {
              for (int wk = 0; wk < calories.GetLength(0); wk++)
                      for (int da = 0; da < calories.GetLength(1); da++)
                        for (int ml = 0; ml <
                                  calories.GetLength(2) − 1; ml++)
                              calories[wk, da, 3] +=
                                   calories[wk, da, ml];
         }

         public static void DisplayTotals(int [ , ,] calories)
         {
              string [ ] dayName = {"Sun", "Mon", "Tue",
                                    "Wed", "Thr", "Fri", "Sat"};
              WriteLine("Week#\tDay\tTotal Calories");
              for (int wk = 0; wk < calories.GetLength(0); wk++)
                   for (int da = 0; da < calories.GetLength(1); 
                                  da++)
                        WriteLine(" {0}\t{1}\t {2:N0}",
                                   wk + 1, dayName[da],
                                   calories[wk, da, 3]);
         }
     }
}

The display from this listing includes the name of the day instead of the day number. 
A selection statement could have been used to test the day number and print the 
value. A much more efficient solution is to use the index from the calories array for 
the day number as the index to another one-dimensional string array holding the 
day names. This is illustrated in Example 8-13. Figure 8-5 shows the output.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ArrayList Class | 475

8

This section began by stating that you are only limited by your imagination in terms of 
the number of dimensions you can include in a C# application. Of course, at some point, 
space becomes an issue. You can now envision creating a calories structure for each 
month, and you might be interested in comparing calorie intake by month. This could be 
a fourth dimension in your array. The same rules of creation, access, and use with meth-
ods that apply to a two-dimensional array apply to fourth- and fifth-dimensional arrays.

ArrayList Class
One of the limitations of the traditional array is the fact that you cannot change the size 
or length of an array after it is created. To give you more flexibility, .NET includes another 
class, the ArrayList class, which facilitates creating a listlike structure that can dynami-
cally increase or decrease in length. Like traditional arrays, indexes of ArrayList objects 
are zero based. The class includes a large number of predefined methods; Table 8-1 
lists some of them. Explore the C# documentation to learn about the parameters of these 
methods and about the other methods and properties of the ArrayList class.

FIGURE 8-5 Sample run from the CalorieCounter application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



476 | Chapter 8: Advanced Collections

Methods or properties Description

Add( ) Adds a value onto the end

BinarySearch( ) Overloaded; uses a binary search algorithm to locate a value

Capacity Property; gets or sets the number of elements that the ArrayList can 
contain

Clear( ) Removes all elements

Clone( ) Creates a copy

Contains( ) Determines whether an element is in the ArrayList

Count Property; gets or sets the number of elements that the ArrayList actually 
contains

GetRange( ) Returns an ArrayList that is a subset of another ArrayList

IndexOf( ) Overloaded; returns the index of the first occurrence of a value

Insert( ) Inserts an element at a specified index

InsertRange( ) Inserts the elements of an ArrayList into another ArrayList at the 
specified index

Item Property; gets or sets the element at the specified index

LastIndexOf( ) Overloaded; returns the index of the last occurrence of a value

Remove( ) Removes the first occurrence of a specified object

RemoveAt( ) Removes the element at the specified index

RemoveRange( ) Removes a range of elements

Repeat( ) Returns an ArrayList whose elements are copies of the specified value

Reverse( ) Overloaded; reverses the order of the elements

Sort( ) Overloaded; sorts the elements or a portion of them

ToArray( ) Overloaded; copies the elements to a new array

TrimToSize( ) Sets the capacity to the actual number of elements

© Cengage Learning

TABLE 8-1 ArrayList members

In order to instantiate objects of the ArrayList class, add an additional using 
statement.

using System.Collections;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ArrayList Class | 477

8

Example 8-14 includes a program that creates an object of the ArrayList class. 
String values were added as elements. Any predefined or user-defined type can be 
used as an ArrayList object.

C# also includes a List<> class. This is a generic class that is very similar to the 
ArrayList class. The List<> class is also a dynamic structure in that it can grow 
and shrink in size. The primary difference between the two classes is the List<> 
class requires that objects are the same type when you place them in the structure. 
The ArrayList allows you to mix types. The List<> offers the advantage of not hav-
ing to unbox or cast when you retrieve the values from the structure. For data value 
types like int, bool, and double, the List<> generic class offers faster access than 
the ArrayList class. You learn more about generic collection classes in Chapter 11.

For this application, three using statements are required. They are the ones shown in 
Example 8-14.

using System;
using static System.Console;
using System.Collections;

Recall you need Visual Studio 2015 or later in order to add a reference to a class that  
exposes static methods like Console. Doing so enables you to  then reference its static  
methods like WriteLine( ) without fully qualifying with the class identifier and a dot.

The ArrayList class is similar to the Vector class found in other languages in that 
you push and pop elements on and off using the Add( ) and Remove( ) methods.

EXAMPLE 8-14

/* ArrayListExample.cs Author: Doyle
 * Instantiates the ArrayList class.
 * Adds and removes values. Demonstrates
 * displaying items using an index.
 */
using System;
using static System.Console;
using System.Collections;

namespace ArrayListExample
{
    class ArrayListExample
    {

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



478 | Chapter 8: Advanced Collections

       static void Main( )
       {
            ArrayList anArray = new ArrayList( );

            anArray.Add("Today is the first day of the " +
                        "rest of your life!");
             anArray.Add(2);
             anArray.Add("Live it to the fullest!");
             anArray.Add(34.89);
            anArray.Add("ok");
            anArray.Add("You may not get a second chance.");

            WriteLine("Count of elements in array: {0}",
                      anArray.Count);
            anArray.RemoveAt(4);
            WriteLine("New Count (after removing ok): {0}",
                      anArray.Count);
            WriteLine( );
            DisplayContents(anArray);
            ReadKey( );
       }

       public static void DisplayContents(ArrayList ar)
       {
            for(int i = 0; i < ar.Count; i++)
            { 
                WriteLine(ar[i]);
                //Arithmetic can be performed with numeric elements
                if (i == 1)
                   WriteLine((int)ar[i] *  100);
            }
            WriteLine( );
       }
}

The example demonstrates how items are added and removed from the structure. 
Notice that data of different types can be stored in an ArrayList, one of the advan-
tages of using this type of structure. Also note that arithmetic can be performed on 
elements that are numeric without boxing/unboxing or casting as is illustrated in 
the DisplayContents( ) method with the if statement. Since 2 is stored in the 
ArrayList at index position 1, multiplication is performed. This means you must 
take extra care dealing with elements in an ArrayList to make sure you have the 
correct data type since no type checking occurs when the items are placed in the 
ArrayList. The output from one sample run is shown in Figure 8-6.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



String Class | 479

8
String Class
You have been using the string data type since the beginning of this book. The 
string data type is included in this chapter because strings are used to store a col-
lection of Unicode characters.

FIGURE 8-6 Sample run from the ArrayList example

By now, you should be fully aware that you must include parentheses ( ) with methods. No 
parentheses are used with property members in C#.

Unicode assigns a unique numeric value for characters. It is the universal character encod-
ing scheme used by the .NET languages. Unicode makes it easier to develop applications 
that can be used around the world because it includes most international characters.

You can instantiate an object using string or String. This works because string 
is an alias for the System.String class in the .NET Framework. The keyword in 
C#, which turns blue in Visual Studio, is string. It is used throughout the book to 
represent the type.

You have already learned that the string is a reference type. Normally with reference 
types, equality operators, == and !=, compare the object’s references, instead of their 
values. However, the equality operators function differently with string than with 
other reference objects. The equality operators are defined to compare the contents 
or values referenced by the string type instead of comparing their addresses. The 
equality operator is defined to do a lexicographical comparison, which means that it 
compares each character, one character at a time using its unicode representation. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



480 | Chapter 8: Advanced Collections

This is much the same way that the dictionary stores words. The relational operators 
(>, <, >=, <=) are not defined for strings. There are several methods, including the 
Compare( ), which is illustrated in Table 8-2, which are closely aligned to > and < 
operations. For the comparison, the Unicode character representation is used.

Unlike some languages that require you to store collections of characters as char arrays, 
the C# string type allows individual characters to be accessed using an index with [ ],  
but you can also process variables of string type as a group of characters. As with 
array objects, when you access an individual element in a string, the first character 
is indexed by zero. However, you have the best of both worlds with strings in C#. You 
can access the individual characters using an index, but string variables are objects 
of the string class. Thus, in addition to [ ] and the + used for concatenation, you 
have many predefined methods and properties that make string objects functional 
and flexible.

Objects of the string class store an immutable series of characters. They are 
considered immutable because once you give a string a value; it cannot be modi-
fied. Methods that seem to be modifying a string are actually returning a new 
string containing the modification, so you end up with two different strings. .NET 
includes another class, StringBuilder, which represents a mutable string of 
characters. Objects of this class can have data appended onto the same object. The 
 StringBuilder class offers many of the same members as the string class 
does. For applications that concatenate or add characters to the string, you will want 
to consider instantiating objects of the StringBuilder class.

String Methods
The string class has a lot of built in functionality. Table 8-2 gives some of the 
members of the string class, using the declarations shown in Example 8-15.

EXAMPLE 8-15

string sValue = "C# Programming";
object sObj;
string s = "C#";

The third column in Table 8-2 illustrates the result produced using some of the meth-
ods and properties of the string class. The declarations for sValue, sObj, and 
s from Example 8-15 were used.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



String Class | 481

8

Methods and 
properties Description Example

Clone( ) Returns a reference 
to this instance of 
string.

sObj = sValue.Clone( ); 
WriteLine(sObj);

//Displays 
C# Programming

Compare( ) Overloaded. Class 
method. Compares 
two strings.

if (string.Compare(sValue, s) > 0)
    WriteLine("sValue is lexico" +
              "graphically greater.");

//Displays 
sValue is lexicographically 
greater.

Concat( ) Overloaded. Class 
method. Concatenates 
one or more string(s).

string ns = string.Concat(sValue, s);
WriteLine(ns);

//Displays 
C# ProgrammingC#

Copy( ) Class method. Creates 
a new copy of a 
string with the 
same values as the 
source string.

s = string.Copy(sValue); 
WriteLine(s);

//Displays 
C# Programming

EndsWith( ) Determines whether 
the end of this 
instance matches the 
specified string.

bool result = sValue.EndsWith("#"); 
WriteLine(result);

//Displays
False

Equals( ) Overloaded.
Determines whether 
two strings have the 
same value.

bool result = sValue.Equals(s); 
WriteLine(result);

//Displays
False

Format( ) Overloaded. Class 
method. Replaces each 
format specification 
in a string with 
the textual equivalent 
of the corresponding 
object’s value.

double nu = 123.45678; 
string nn =  
       string.Format 
       ("{0, 10:F2}", nu);
WriteLine(nn);

//Displays
123.46

TABLE 8-2 Some Members of the string class

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



482 | Chapter 8: Advanced Collections

Methods and 
properties Description Example

IndexOf( ) Overloaded. Returns 
the index of the 
first occurrence of a 
string, or one 
or more characters, 
within this instance.

WriteLine(sValue.IndexOf("#"));

//Displays
1

Insert( ) Inserts a specified 
instance of a 
string at a 
specified index 
position.

s = sValue.Insert(3, ".NET "); 
WriteLine(s);

//Displays
C# .NET Programming

LastIndexOf( ) Overloaded. Returns 
the index of the 
last occurrence of a 
specified character or 
string.

WriteLine(sValue.LastIndexOf("P"));

//Displays
3

Length – 
Property

Gets the number of 
characters.

WriteLine(sValue.Length);

//Displays
14

PadLeft( ) Overloaded. Right-
aligns the characters 
in the string, 
padding on the left 
with spaces or a 
specified character.

s = sValue.PadLeft(20, '#');
WriteLine(s);

//Displays
######C# Programming

WriteLine("".PadLeft(10, '-');

//Displays 
----------

PadRight( ) Overloaded. Left-
aligns the characters 
in the string, 
padding on the right 
with spaces or a 
specified character.

s = sValue.PadRight(20, '#');
WriteLine(s);

//Displays
C# Programming######

TABLE 8-2 Some Members of the string class (continued )

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



String Class | 483

8

Methods and 
properties Description Example

Remove( ) Deletes a specified 
number of characters 
beginning at a 
specified position.

s = sValue.Remove(3, 8);
WriteLine(s);

//Displays
C# ing

Replace( ) Overloaded. Replaces 
all occurrences 
of a character or 
string with 
another character or 
string.

s = sValue.Replace("gram", "GRAM");
WriteLine(s);

//Displays
C# ProGRAMming

Split( ) Overloaded. Identifies 
the substrings in the 
string that are 
delimited by one 
or more characters 
specified in an array, 
then places the 
substrings into a 
string array.

string [ ] sn = sValue.Split(' ');
foreach (string i in sn)
     WriteLine(i);

//Displays
C# 
Programming

StartsWith( ) Determines whether 
the beginning of 
the string 
matches the specified 
string.

WriteLine
     (sValue.StartsWith("C#"));

//Displays
True

Substring( ) Overloaded. Retrieves 
a substring from the 
string.

WriteLine(sValue.Substring(3, 7));

//Displays
Program

ToCharArray( ) Copies the characters 
in the string to a 
character array.

char[ ] cArray =
     sValue.ToCharArray(0, 2);
WriteLine(cArray);

//Displays 
C#

ToLower( ) Overloaded. Returns a 
copy of the string 
in lowercase.

WriteLine(sValue.ToLower( ));

//Displays
c# programming

TABLE 8-2 Some Members of the string class (continued )

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



484 | Chapter 8: Advanced Collections

Most string member arguments that take a string object accept a string literal. 
C# has two types of string literals. You have used one of them, the quoted literal. 
Quoted string literals appear between double quotation marks (" ") and are the most 
common type found in languages. The other type, @-quoted string literals, starts 
with the at symbol (@) and is also enclosed in double quotation marks. The @-quoted 
string literals are referred to as the verbatim string literal because the characters 
between the double quotes are interpreted verbatim. There are two differences between 
the quoted and @-quoted string literal. With the @-quoted literal, escape sequence 
characters, such as '\t' and '\n', are not recognized as special characters. The sec-
ond difference is that the @-quoted literal enables you to use a keyword for an identifier. 

String Interpolation
One of the new C# 6.0 features is string interpolation. This new feature enables you 
to put variables directly in a string literal as opposed to using number placeholders to 

Methods and 
properties Description Example

ToString( ) Overloaded. 
Converts the value 
of the instance into a 
string.

int x = 234;
s = x.ToString( );
WriteLine(s);

//Displays
234

ToUpper( ) Overloaded. Returns a 
copy of the string 
in uppercase.

WriteLine(sValue.ToUpper( ));

//Displays
C# PROGRAMMING

Trim( ) 
TrimEnd( ) 
TrimStart( )

Overloaded. Removes 
all occurrences of a set 
of specified characters 
from the beginning 
and end.

s   =   sValue.Trim('g','i','n','m','C');
WriteLine(s);

//Displays 
# Progra

© Cengage Learning

TABLE 8-2 Some Members of the string class (continued )

Notice that the methods identified as class methods in the second column, such as 
 Compare( ), Concat( ), and Copy ( ), prefix the name of the method in the call 
with the string data type (e.g., s = string.Copy(sValue);). Instance methods, like 
Clone( ), EndsWith( ), and Equals( ) are invoked using the string identifier, 
and dot before the name of the method.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



String Class | 485

8

indicate where the string should be inserted. As shown in Example 8-16, precede the 
string literal with a dollar symbol ($) to indicate string interpolation should occur. 

EXAMPLE 8-16

string ReturnInterperpolatedString( )
{
        string first = "Joann";
        string first = "Smith";
        double amt = 23.45675;

        return $"{first} {last}\nAmt: {amt : F2}";
} 

Previously you would have written, 
return string.Format("{0} {1}\nAmt: {2 :F2}", first, last, amt);

As shown above, you would have had to use numeric placeholders to show where the 
values should be inserted. You also previously needed to invoke the string.Format( )  
method to get amt formatted. Notice amt is formatted as fixed with two positions 
to the right of the decimal.  The value returned from the snippet of code shown in 
Example 8-16 and the line of code below the example both return 

Joann Smith

Amt:  23.46

Clearly the new way, shown in Example 8-16, is much more readable. By placing the 
$ before the string literal, it does string interpolation. 

Use the verbatim string literal, also referred to as the @-quoted literal, when you need 
to include special characters such as the backslash character. The statement here displays 
the ‘\t’ as part of the output:

WriteLine(@”hello \t world”);
//Displays
hello \t world

Without the @-quoted literal, a tab is inserted:

WriteLine(“hello \t world”);
//Displays
hello      world

Tables 8-1 and 8-2 included a number of extremely useful methods and properties of the 
ArrayList and String classes. Other members exist. Do not reinvent the wheel and 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



486 | Chapter 8: Advanced Collections

write code for functions that already exist. These members have been tried and tested. 
The key to using the members is to experiment and play with them. The C# online doc-
umentation with Visual Studio includes many examples that you will want to explore.

Other Collection Classes
Collection classes are classes that enable you to store and retrieve various groups 
of objects. As you just experienced with arrays, when you have data that is closely 
related, it is more efficient to group the data together under a common name. This 
enables you to write code to process all elements in the collection instead of writ-
ing code to handle each individual object. There are a number of other collection 
classes, in addition to ones already introduced, that can be used in C#. You saw that an 
ArrayList offered the advantage of being able to dynamically increase in size as new 
objects were added. The .NET framework also includes classes for storing bit values. 
There are predefined classes for creating stacks, queues, and hash tables. As with the 
ArrayList class, in order to instantiate objects of these other collection classes, 
you need to include a using System.Collections; to the list of namespaces. In the 
section that follows, some of these collection classes are explored.

BitArray
The BitArray class stores a collection of bit values. These bit values are represented 
as Booleans, where true indicates that the bit is on and false indicates that the bit is 
off. There are several ways to create and initialize BitArrays. Example 8-17 illustrates 
some of the ways.

EXAMPLE 8-17

// Creates and initializes several BitArrays
BitArray firstBitArr = new BitArray(10);
BitArray secondBitArr = new BitArray(10, true);
bool[ ] boolArray = new bool[5] {true, false, true, true, false};
BitArray thirdBitArr = new BitArray(boolArray);

There are a number of constructors available with this collection. As shown in the first 
line in Example 8-17, you can send an integer representing the number of elements. 
These elements are initially all set to false. The second object in Example 8-17  
has all values set to true when the secondBitArr is created. Another construc-
tor option is to use an array of Booleans to set the values. The thirdBitArr has 
a mixture of true and false values. This is also illustrated in Example 8-17. The 
BitArray class has both Count and Length properties. Both retrieve the num-
ber of elements in the array. Length can also be used to set the number of elements 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Other Collection Classes | 487

8

thus enabling BitArrays to grow or shrink in size dynamically. An Item property is 
available for setting the actual value.  BitArray has member methods of Set( ) and 
SetAll( ), which can be used to change the value of elements. Example 8-18 illus-
trates accessing elements from the array.

EXAMPLE 8-18

// Sets all the elements to true
firstBitArr.SetAll(true);

// Sets the first element to false
firstBitArr[0] = false;

// Sets the last index to false.
secondBitArr.Set(secondBitArr.Count − 1, false);

// Gets the value of the last element
WriteLine(thirdBitArr.Get(thirdBitArray.Count − 1 ));

BitArrays are most commonly used to represent a simple group of Boolean flags and 
are especially useful for working with large data sets. They compactly store individual 
bits or Boolean values. As shown in Example 8-18, there are several ways to access the 
elements in the array. There are a number of bitwise operations including OR, AND, 
XOR, and NOT that can be performed on elements in the array. Surveys or question-
naires that accept responses such as yes/no or true/false are good candidates for using 
a BitArray collection. Data can be stored as Booleans and then a loop could be used 
to process the results.

Hashtable
Hashing is a technique used for a lot of applications in computer science. One use of 
hashing is to provide security when data is transmitted across networks. A message is 
encrypted following some type of algorithm, sent across a network, and then on the 
other end the same algorithm is used to decrypt or convert the message back into a 
readable form. This concept is often used in the field of cryptography (i.e., informa-
tion security) with passwords. Passwords are hashed after the user enters them and 
then sent to a server and compared against the stored hash values there. This pre-
vents the password from being intercepted in plain text.

Another application of hashing is used with large collections of data. Here instead 
of encrypting the full record or a password, the key or unique entry associated with 
the record is hashed or converted into an index and then the record is stored at that 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



488 | Chapter 8: Advanced Collections

index location. Faster retrieval of individual elements or records is afforded using 
this principle. Instead of having to sequentially compare one record after another to 
determine if that is the record you want to process, the computer can now use the 
same algorithm that was used to store the record and go directly to the indexed loca-
tion. The algorithm used to store the data is called a hash function. The hash function 
produces a hash code.

.NET includes a specialized collection class called a Hashtable that represents a 
collection of key/value pairs that are organized based on the hash code of the key. 
The hash code is just a number generated using a key with the objective of providing 
efficient insertion and find operations. There is no requirement that the data be in 
any specific order. One of the overriding goals is to design an algorithm that provides 
as few collisions as possible. Collisions occur when the algorithm that’s used to create 
the hash code maps more than one record to the same index position. A good hash 
function tries to avoid collisions and tends to spread keys evenly in the array. Devising 
an effective algorithm is said to be an art and sometimes involves some trial and error 
before an effective algorithm is designed.

The mod operator (%) is often used with hashing algorithms. Often, the key is not in 
numeric form and requires that a conversion occurs so that arithmetic can be per-
formed. The eventual goal is to map the record to an index location in an array. For 
example, a hash function algorithm might take the Unicode representation for each 
character in the string and add each of those values. Once a sum is calculated, then 
the mod operator might be used. That summation could be divided by the first prime 
number larger than the number of data elements. The result of the mod operation 
might be the index where the record is stored.

You do not have to create your own algorithm when you use the .NET Hashtable 
class. A hash function is used to return a numeric hash code based on a key. The key, 
of course, is the value of some property of the object being stored. When an object 
is added to a Hashtable, it is stored in the bucket that is associated with the hash 
code produced by the class. When a value is being searched for in the Hashtable, 
the hash code is generated for that value, and the bucket associated with that hash 
code is searched.

With the .NET Hashtable class, a bucket is a virtual subgroup of elements 
within the Hashtable. This bucket concept is what allows or enables multiple 
keys to hash to the same index. Each bucket is associated with a hash code, gen-
erated using a hash function, and based on the key of the element. A hash func-
tion must always return the same hash code for the same key. The bucket makes 
searching and retrieving easier and faster. Example 8-19 illustrates creating a hash 
table and adding elements. Notice that each element in the hash table is a key and 
value pair.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Other Collection Classes | 489

8

EXAMPLE 8-19

// Creates a new hash table
Hashtable executableProgram = new Hashtable( );

// Add some elements to the hash table. There are no
// duplicate keys, but some of the values are duplicates.
executableProgram.Add("pdf", "acrord32.exe");
executableProgram.Add("tif", "snagit32.exe");
executableProgram Add("jpg", "snagit32.exe");
executableProgram.Add("sln", "devenv.exe");
executableProgram.Add("rtf", "wordpad.exe");

The Add( ) method takes two arguments. The first is the key and the second is the 
value. In the example above, file types of pdf, tif, sln, and rtf are added as keys. 
Here, the program acrord32.exe is used as the executable program for pdf files.

If you want to write your own hash algorithm, you can use the Hashtable class and 
just override the GetHashCode( ) method to provide a new algorithm for the hash 
function. The method GetHashCode( ) returns the hash code generated for the key.

If you override the GetHashCode( ) method, you must also override the 
Equals( ) method to guarantee that two objects considered equal have the same 
hash code. Both Equals( ) and GetHashCode( ) methods are inherited from the 
object class. You have seen them displayed many times from the intellisense popup.

The example of adding together the Unicode representation for each character in the 
string and then mod’ing (%) that result by a large prime number is just one possible 
algorithm. It might not work well given the data set, but you can get more creative. 
You could take this accumulated value, square it, subtract an arbitrary number like 
73 from it, and then mod that result by a large prime number. The goal is to create an 
algorithm that maps each data set to a different bucket.

The Hashtable class has a number of properties and methods including Count, 
Item, Keys, and Values. Count gets the number of key/value pairs contained in 
the Hashtable. Item gets or sets the value associated with the specified key. Keys 
retrieves all the keys in the collection, and Values retrieves all the values from the 
key/value collection. In addition to the Add( ) method, there are also Clear( ), 
 Contains( ), and Remove( ) methods. You are encouraged to explore and play with 
this collection class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



490 | Chapter 8: Advanced Collections

Queue
We have all experienced the functionality of a queue. You may have made a phone 
call and heard a voice on the other end indicating that you had been placed in a queue 
with an expected wait time of 10 minutes because six people were ahead of you. The 
calls are answered in the order that they are received. When you go to pay for an item 
in a department store, you enter a queue. The first one in line gets serviced before the 
third person that walked up to the counter. Data can be stored and processed in this 
fashion. One approach to implementing this abstract data type is through using an 
array and just incrementing a counter as values are added. When you go to process or 
manipulate the data, simply start at index zero and retrieve the data. Another option 
is through creating a linked list of elements.

Linked lists are types of data structures that consist of a sequence of data records such that 
in each record there is an additional field that contains a reference (i.e., a link) to the next 
record in the sequence. A benefit that a linked list offers over arrays relates to the order of 
the data. With a linked list, records do not have to be physically stored beside each other 
to retain their order. For that reason, linked lists allow insertion and removal of records 
at any point in the list, with a constant number of operations. Insertion of elements into 
the middle of an ordered list of items in an array requires moving records with key values 
larger than the one inserted. This is not the case with a linked list. All that is required is an 
adjustment of the links to point to the newly inserted element. But linked lists by them-
selves do not allow random access to the data or any form of efficient indexing.

.NET includes a predefined collection class called Queue with a number of methods 
and properties. The Queue class represents a first-in-first-out (FIFO) collection of 
objects. Queues are useful for storing objects in the order that they were received for 
sequential processing. That way the first objects added are the first ones to be pro-
cessed. In C#, a queue is implemented as a circular array. Objects stored in a queue 
are inserted at one end and removed from the other.

The capacity of a queue is the number of elements that the queue can hold. As ele-
ments are added to a queue, the capacity is automatically increased as required 
through reallocation. The capacity can be decreased by calling its TrimToSize( ) 
method. Example 8-20 illustrates instantiating an object of the Queue class and 
adding elements to the data structure.

EXAMPLE 8-20

// Creates and initializes a Queue
Queue firstInFirstOut = new Queue( );
firstInFirstOut.Enqueue("Jill Won");
firstInFirstOut.Enqueue("Donna Abbott");
firstInFirstOut.Enqueue("Jeremy Door");

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Other Collection Classes | 491

8

The Enqueue( ) method adds an object to the end of the queue. Dequeue( ) 
removes and returns the object at the beginning of the queue. So a call to 
 firstInFirstOut.Dequeue( ) would return "Jill Won." The method Peek( ) 
returns the object at the beginning of the queue without removing it. There are also 
Clear( ) and  Contains( ) methods as well as a Count property that works simi-
larly to the data structures discussed previously. You are encouraged to explore and 
play with the Queue collection class.

Stack
Do you recall how you place your food tray in the cafeteria on top of your friend’s tray 
if they are in front of you returning a tray? The person behind you places, or stacks, 
their tray on top of yours. Then the next person stacks theirs on top of the last one. 
If you now go to get a tray, you do not take one off the bottom. Instead you take the 
one off the top of the stack. That would be the last one put there. That is the concept 
behind stacks. The last one placed there becomes the first one processed or used. As 
with the queue abstract data type, a stack data type can be implemented using an 
array or a linked list data structure.

Another option is to use the .NET Stack class. The Stack class is similar to the 
Queue class except that it represents a simple last-in-first-out (LIFO) collection of 
objects. The capacity of a stack is the number of elements the stack can hold. As ele-
ments are added to a stack, the capacity is automatically increased. Example 8-21 
illustrates instantiating an object of the Stack class and adding elements to that 
data structure.

EXAMPLE 8-21

// Creates and initializes a Stack
Stack lastInFirstOut = new Stack( );
lastInFirstOut.Push("Jill Won");
lastInFirstOut.Push("Donna Abbott");
lastInFirstOut.Push("Jeremy Door");

The Push( ) method adds an object on to the top of the stack. Pop( ) removes and 
returns the top or last object placed on of the stack. So a call to lastInFirstOut.Pop( )  
would return "Jeremy Door." The method Peek( ) works exactly like it did 
with the Queue class in that it returns the object at the top of the stack with-
out removing it. There are also Clear( ) and Contains( ) methods as well as a 
Count property that works similarly to the data structures discussed previously.  
Example 8-22 shows the complete program invoking the Push( ) and Pop( ) methods.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



492 | Chapter 8: Advanced Collections

EXAMPLE 8-22

/* StackExample.cs
 * Creates a stack, pushes elements onto it,
 * pops one off, and then displays the contents.
 */
using System;
using static System.Console;
using System.Collections;

namespace StackExample
{
    public class StackExample
    {
         public static void Main( )
            {
              Stack lastInFirstOut = new Stack( );

              lastInFirstOut.Push("Jill Won");
              lastInFirstOut.Push("Donna Abbott");
              lastInFirstOut.Push("Jeremy Door");
              lastInFirstOut.Push("Olivia Rivers");
              lastInFirstOut.Pop( );
              DisplayInfo(lastInFirstOut);
              ReadKey( );
         }

         public static void DisplayInfo(Stack lastInFirstOut)
         {
              WriteLine("Stack − Last In First Out ");
              WriteLine("\nNumber of Elements: {0}",
                        lastInFirstOut.Count);
              Write("Values:");
              foreach (Object obj in lastInFirstOut)
                       Write("    {0}", obj);
              WriteLine( );
         }
     }
}

The output from Example 8-22 is shown in Figure 8-7.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8

You might want to explore the Dictionary class, another example of a Collection 
class. Dictionary is part of the System.Collections.Generic namespace, 
which is imported automatically with later versions of Visual Studio. The Dictionary 
class is a generic class that provides a mapping from a set of keys to a set of values. 
When you create a dictionary collection, you place a key and an associated value in the 
collection using its constructor, its Add( ) method, or its Item property. You can then 
reference and retrieve these values from the collection using its Keys and Values prop-
erties. The Dictionary class has much of the same functionality as the Hashtable 
class. The Dictionary class has better performance than a Hashtable for value 
types such as integers. Elements of Hashtable are of type Object and require boxing 
and unboxing for storage and retrieval of value types. You are encouraged to explore 
the MSDN documentation to examine these classes and their members and to see 
examples of their use. You will also read more about generic classes in Chapter 11.

FIGURE 8-7 Output from the StackExample

This example demonstrates the use of collections in the analysis, design, and 
implementation of a program. A two-dimensional array and an array of string 
objects are included. An application is created to produce a sales goal table for a 
temp agency. To design this application, a two-dimensional array is declared to 
hold the sales figures and a string array for the salesmen names. The problem 
specification is shown in Figure 8-8.

PROGRAMMING EXAMPLE: TempAgency Application

Programming Example: TempAgency Application | 493

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



494 | Chapter 8: Advanced Collections

ANALYZE THE 
PROBLEM

You should review the problem specification in Figure 8-8 and make sure you under-
stand the problem definition. Values will be entered into the program to represent 
each saleman’s name and his projected sales goal. The name is stored in a string 
array. The initial sales goal is stored in a two-dimensional array that is also used to 
hold the target sales for the following four months. Each row stores sales for a differ-
ent salesperson. The columns store the initial sales and subsequent monthly goals.

FIGURE 8-8 Problem specification for TempAgency example

©
 C

en
ga

ge
 L

ea
rn

in
g

Data item description Type Identifier

Names of new salespersons string [ ] salesman

Sales with projected goals double [ , ] sales

© Cengage Learning

TABLE 8-3 Instance field members for the TempAgency class

Table 8-3 lists the data field members needed for the temp agency problem.DATA

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8

Programming Example: TempAgency Application | 495

DESIGN A 
SOLUTION

The desired output is to display the salesperson’s name formatted last name first 
along with the initial sales goal and projected sales figures for the following four 
months. Figure 8-9 shows a prototype of what the final output might look like.

FIGURE 8-9 Prototype for TempAgency Application

©
 C

en
ga

ge
 L

ea
rn

in
g

Class diagrams are used to help design and document both data and behavior charac-
teristics. Figure 8-10 shows the class diagrams for the TempAgency example. Notice 
that the method GetSalesData( ) shown in Figure 8-10 adds the in/out specifier 
to both the salesman and the sales arguments. These are both array arguments. 
Parameters shown in class diagrams can be in, out, in/out, or not unspecified. Value 
parameters, by default, use the in specifier. With the in specifier, an initial value is 
sent into the method; however, if the method changes the variable, the changed value 
is not available back in the calling method. When an array is sent as an argument to 
a method, the address of the first element is passed. If the method changes any of the 
element’s values, the changed value is available when control returns back to the call-
ing method. Thus, arrays are sent by default as in/out. The third specifier, out, is used 
with variables to indicate that a value will be sent out when the method ends. No ini-
tial value is stored in the variable when it is sent to the method using the out specifier.

FIGURE 8-10 Class diagram

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



496 | Chapter 8: Advanced Collections

Figure 8-11 shows the Structured English, or pseudocode, used to design the step-
by-step processes for the behaviors of the methods of the TempAgency example.

FIGURE 8-11 TempAgency class methods behavior

©
 C

en
ga

ge
 L

ea
rn

in
g

After the algorithm is developed, the design should be checked for correctness. 
You might develop a table now with test values using a standard calculator. Desk 
check the pseudocode to ensure that you are getting the results expected. After 
your program is run, you can validate the correctness by comparing the results 
you produce with your program against values you produced with the calculator 
 during your design walk-through.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8

Programming Example: TempAgency Application | 497

CODE THE 
SOLUTION

After you complete the design and verify the algorithm’s correctness, translate the 
design into source code. The final application listing follows:
/* TempAgency.cs
 * This application is used by a temporary work agency to
 * set projections for sales for new hires. The program enables the
 * user to input salesmen's names and expected sales goals.
 * The sales figure is placed in a two-dimensional array
 * and expected sales figures for four months are added.
 * These projections are based on increasing sales at
 * least 5% each month over the four-month period.
 * for testing purposes, four salesmen data are entered.
 */
using System;
using System.Console;

namespace TempAgency
{
     public class TempAgency
     {
          public static void Main( )
          {
               double[ , ] sales = new double[4,5];
               string[ ] salesman = new string[4];
               DisplayInstructions( );
               GetSalesData(salesman, sales);
               ProduceSalesProjectionTable(sales); 
               DisplaySalesProjections(salesman, sales);
               ReadKey( );
          }

          public static void DisplayInstructions( )
          {
               WriteLine("You will be asked to enter data for " +
                         "four salesmen. \nFor their name, " +
                         "enter their first " +
                         "name followed \nby a space and then " +
                         "their last name." +
                         "\n\nNext you will enter the " +
                         "expected sales for the 1st month." +
                         "\n\n\nFor testing purposes enter " +
                         "data for four (4) salesmen.\n\n");
               WriteLine( );
          }

          public static void GetSalesData(string [ ] salesman,
                                          double[ , ] sales)
          {

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



498 | Chapter 8: Advanced Collections

               for (int row = 0; row < salesman.Length; row++)
               {
                    string fullname;
                    string[ ] name = new string[3];
                    Write("Name of the New Salesman (first " +
                          " name, space, last name): ");
                    salesman[row] = ReadLine( );
                    fullname = salesman[row];
                    name = fullname.Split(' ');
                    Write("Please enter {0}'s Initial Sales " +
                          "Goal: ", name[0]);
                    sales[row, 0] = double.Parse (ReadLine( ));
                    Clear( );
               }
          }

          public static void ProduceSalesProjectionTable
                                  (double[ , ] sales)
          {
               double salesIncrease;
               DisplayHeading(sales);
               for (int row = 0; row < sales.GetLength(0); row++)
               {
                    salesIncrease = 0.05;
                    for (int col = 1; col < sales.GetLength(1);
                                    col++)
                    {
                         sales[row, col] = sales[row, col−1] *
                                salesIncrease + sales[row, col−1];
                         salesIncrease += 0.05;
                   }
               }
          }

          public static void DisplayHeading(double[ , ] sales)
          {
               double inc = 0.05;
               Write("{0,−20} {1,−10}", "Salesman", "Initial");
               for (int col = 0; col < sales.GetLength(1) − 1;  
                               col++)
               {
                    Write("{0,−6}{1,−1} ", "Month", col + 1);
               }
               WriteLine( );
               Write("{0,−20} {1,−7}", " Name", " Sales ");
               for (int col = 0; col < sales.GetLength(1) − 1;  
                               col++)
               {
                    Write("{0, 8} ", inc.ToString("P0"));
                    inc += 0.05;
               }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8

Programming Example: TempAgency Application | 499

               WriteLine( );
          }

          public static void DisplaySalesProjections
                    (string[ ] salesman, double[ , ] sales)
          {
               string [ ] name = new string [3];
               WriteLine( );
               for (int row = 0; row < sales.GetLength(0); row++)
               {
                    name = salesman[row].Split(' ');
                    Write("{0, −20}", (name[1] + "," + name[0]));
                    for (int col = 0; col < sales.GetLength(1);
                                  col++)
                    {
                          Write("{0,11:N2}", sales[row, col] );
                    }
                    WriteLine( );
               }
          }
     }
}

The output from one test run is shown in Figure 8-12.

FIGURE 8-12 TempAgency application output

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



500 | Chapter 8: Advanced Collections

Coding Standards
Each project you develop should follow agreed-upon coding standards. They make 
your code more readable and help reduce the number of errors.

Guidelines for Naming Collections
Use a singular noun as an identifier for collection objects.

Use the Camel case naming convention when instantiating objects of collections.

Advanced Array Suggestions
If a method returns a collection and there are no values to return, return an empty 
collection instead of null. As opposed to writing new code, use .NET predefined 
methods and properties whenever possible when working with collections.

Resources
Additional sites you might want to explore:

 ? YouTube Video on Coding Multidimensional Arrays in C#— 
http://www.youtube.com/watch?v=XiH1RiGDqdI

 ? An Extensive Examination of Data Structures— 
http://msdn.microsoft.com/en-us/library/aa289148(VS.71).aspx

 ? MSDN C# Data Structures series— 
http://www.andrewconnell.com/blog/MSDN-C-Data-Structure-series

 ? C# String Tutorial— 
http://csharp.net-informations.com/string/csharp_string_tutorial.htm

 ? Multidimensional Arrays— 
http://www.functionx.com/csharp/Lesson23.htm

QUICK REVIEW
 1. Two-dimensional and multidimensional arrays may contain any num-

ber of variables of the same type. One common identifier names the 
entire structure.

 2. Two-dimensional and multidimensional arrays should be named using 
singular nouns.

 3. To access a two-dimensional or multidimensional array element, use the 
number of indexes included in the declaration. Indexes are separated by 
commas and enclosed in square brackets.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8

Quick Review | 501

 4. When you use a two-dimensional or multidimensional array as a 
method parameter, the array identifier and type are specified; however, 
the length or size of the array is not included. Opening, closing square 
brackets, and commas are required. The call to that method includes the 
name of the array only.

 5. Two-dimensional and multidimensional arrays can be sent as arguments 
to methods, and in addition, a method can have a two-dimensional or 
 multidimensional array as its return type. The square bracket that is included 
before the name of the method is empty with the exception of one or more 
commas. The comma separators identify the number of dimensions.

 6. Two-dimensional and other multidimensional arrays follow the same 
guidelines as one-dimensional arrays.

 7. A two-dimensional array is usually visualized as a table divided into 
rows and columns. The first index represents the number of rows.

 8. When the number of columns in rows may need to differ, a jagged, or 
ragged, array can be used. It is called an “array of arrays.”

 9. ArrayList class creates a listlike structure that can dynamically 
increase or decrease in length. Like traditional arrays, indexes of 
ArrayList objects are zero based. A number of predefined methods 
are included.

 10. To create a multidimensional array, specify the type and the num-
ber of dimensions per rank. These values are separated by commas. 
A three-dimensional array would be defined with type [ , , ]  
 identifier = new type [length_of_planes, length_of_rows,  
length_of_columns].

 11. The string class stores an immutable series of characters. After you 
give a string a value, it cannot be modified.

 12. The string type is an alias for the System.String class in the .NET
  Framework. You can access the individual characters using an index, 

with the first index being zero.
 13. String variables are objects of the string class; thus, a number of 

predefined methods including the following can be used: Trim( ), 
ToUpper( ), ToLower( ), Substring( ), Split( ), Replace( ), 
Insert( ), and Copy( ).

 14. The Hashtable class represents a collection of key/value pairs that are 
organized based on the hash code of the key. Override the  GetHashCode( ) 
method to provide a new algorithm for the hash function.

 15. BitArrays are very useful for working with large data sets. They are most 
commonly used to represent a simple group of Boolean flags.

 16. The Queue class represents a first-in-first-out (FIFO) collection of 
objects. The Enqueue( ) method adds an object to the end of the queue. 
Dequeue( ) removes and returns the object at the beginning of the queue.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



502 | Chapter 8: Advanced Collections

 17. The Stack class represents a simple last-in-first-out (LIFO) collection 
of objects. The Push( ) method adds an object to the top of the stack. 
Pop( ) removes and returns the object at the top of the stack.

EXERCISES
 1. When two values are contained within the square brackets, the last 

number represents the number of:
a. classes
b. rows
c. planes
d. columns
e. none of the above

 2. Which of the following array declarations would enable you to store the 
high and low temperatures for each day of one full week?
a. int temp1Lo, temp2Lo, temp3Lo, temp4Lo, temp5Lo, 

 temp6Lo, temp7Lo, temp1Hi, temp2Hi, temp3Hi,  temp4Hi, 
temp5Hi, temp6Hi, temp7Hi;

b. int temp [7, 2] = new int [7, 2];
c. temp int [ , ] = new temp [7, 2];
d. int [ , ] temp = new temp [7, 2];
e. int [ , ] temp = new temp [8, 3];

 3. Assume a two-dimensional array called num is declared to hold four 
rows and seven columns. Which of the following statements correctly 
assigns the value 100 to the third physical column of each row?
a. for (x = 0; x < 3; ++x) num [x, 2] = 100
b. for (x = 0; x < 4; ++x) num [x, 2] = 100;
c. for (x = 1; x < 4; ++x) num [x, 2] = 100;
d. for (x = 1; x < 5; ++x) num [x, 2] = 100;
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8

Exercises | 503

 4. Choose the statement that does not apply to the following declaration:
double [ , ] totalCostOfItems =
                  {{109.95, 169.95, 1.50, 89.95},

                   {27.9, 18.6, 26.8, 98.5}};

a. declares a two-dimensional array of floating-point values
b. establishes the maximum number of rows as 4
c. sets the array element totalCostOfItems[0,1] to 169.95
d. declares an area in memory where data of double type can be stored
e. all are correct

 5. What value is returned by the method named result?
int result(int [ , ] anArray)
{
  int j = 0,
      i = 0;
  for (int r = 0; r < anArray.GetLength(0); r++)
       for (int c = 0; c < anArray.GetLength(1); c++)
           if (anArray[r, c] < anArray[i, j])
           {
                i = r;
                j = c;
           }
  return i;
}
a. the row index of the largest element of array anArray
b. the value of the largest element of array anArray
c. the row index of the smallest element of array anArray
d. the column index of the smallest element of array anArray
e. the index of the last element greater than its predecessor

 6. What is the largest dimension an array can be declared to store values?
a. 10
b. 100
c. 3
d. 5
e. there is no limit

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



504 | Chapter 8: Advanced Collections

 7. Using the following declaration:
char [ , ] n = {{'a', 'b', 'c', 'd', 'e'},
                {'f', 'g', 'h', 'i', 'j'}};
what does n[1, 1] refer to?
a. a

b. f

c. b

d. g

e. none of the above

 8. A two-dimensional array is a list of data items that ________________
a. all have the same type.
b. all have different names.
c. all are integers.
d. all are originally set to null ('\0').
e. none of the above

 9. Using the following declaration:
int [ , ] x = {{12, 13, 14, 15 }, {16, 17, 18, 19 }};

what does x[2, 4] refer to?
a. 19

b. 18

c. '\0'

d. 0

e. none of the above

 10. Which of the following adds 95 to the array element that is currently 
storing 14?
int [ , , ] x = {{12, 13 }, {14, 15 }, {16, 17 }, {18, 19 }};
a. x[2] += 95;

b. x[1, 0] += 95;

c. x[1, 0 += 95];

d. x = 14 + 95;

e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8

Exercises | 505

 11. How many components are allocated by the following statement?
double [ , ] values = new double[3, 2];
a. 32
b. 3
c. 5
d. 6
e. none of the above

 12. Given the declaration for values in question #11 above, how would you 
store 0 in the last physical location?
a. values = 0;

b. values[6] = 0;

c. values[3, 2] = 0;

d. values[2, 1] = 0;

e. none of the above

 13. If you declare an array as int [ , ] anArray = new int [5, 3]; 
you can double the value stored in anArray[2, 1] with the statement:
a. anArray[2, 1] = anArray[5, 1] * 2;

b. anArray = anArray * 2;

c. anArray[2, 1] *= anArray[2, 1] * 2;

d. anArray[2, 1] *= 2;

e. none of the above

 14. With the following declaration:
int [ , ] points = {{300, 100, 200, 400, 600},
                    {550, 700, 900, 800, 100}};

the statement points[1, 3] = points[1, 3] + 10; will
a. replace the 300 amount with 310 and 900 with 910
b. replace the 500 amount with 510
c. replace the 900 amount with 910
d. replace the 800 amount with 810
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



506 | Chapter 8: Advanced Collections

 15. With the following declaration:
int [ , ] points =
           {{300, 100, 200, 400, 600},

            {550, 700, 900, 200, 100}};

the statement points[0, 4] = points[0, 4-2]; will
a. replace the 400 amount with 2
b. replace the 300 and 600 with 2
c. replace the 600 with 200
d. result in an error
e. none of the above

 16. With the following declaration:
int [ , ] points = {{300, 100, 200, 400, 600},
                    {550, 700, 900, 200, 100}};

the statement Write(points[1, 2] + points[0, 3]); will
a. display 900400
b. display 1300
c. display "points[1, 2] + points[0, 3]"
d. result in an error
e. none of the above

 17. When you pass an element from an ArrayList to a method, the method 
receives:
a. a copy of the ArrayList
b. the address of the ArrayList
c. a copy of the value in the element of the ArrayList
d. the address of the element in the ArrayList
e. none of the above

 18. When you pass the entire ArrayList to a method, the method receives:
a. a copy of the ArrayList
b. the address of the ArrayList
c. a copy of the first value in the ArrayList
d. the address of each of the elements in the ArrayList
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8

Exercises | 507

 19. To convert all the uppercase letters in a string to their lowercase coun-
terpart, you can use the _______________method of the string class.
a. IsLower( )

b. ConvertLower( )

c. Lower( )

d. ToLower( )

e. none of the above

 20. Which method in the ArrayList class can be used to place a value 
onto the end of the ArrayList?
a. AddLast( )

b. AddLastIndex( )

c. Add( )

d. Insert( )

e. none of the above

 21. Which member in the ArrayList class can be used to get or set the 
number of elements that an ArrayList can contain?
a. Length

b. Size

c. Dimension

d. Rank

e. Capacity

 22. Which class includes methods to create a dynamic one-dimensional 
structure?
a. Array

b. string

c. array

d. ArrayList

e. all of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



508 | Chapter 8: Advanced Collections

 23. A correct method call to a method that has the following heading would be:
int result(int[ , ] anArray, int num)
a. Write(result(anArray, 3));

b. result(anArray, 30);

c. Write(result(anArray[ ], 3));

d. result(anArray[ ], 30);

e. none of the above

 24. With two-dimensional arrays a limitation on the foreach statement is 
that it can:
a. only be used for read-only access
b. only be used with integral type arrays
c. not be used with multidimensional arrays
d. only be used with arrays smaller than 1000 elements
e. not be used with dynamic arrays

 25. In order to retrieve a value stored in an object of the Queue class, you 
would use which method?
a. Pop( );

b. Push( );

c. Dequeue( );

d. Enqueue( );

e. none of the above

 26. Use the following string to answer questions a through e.
string sValue =
       "Today is the first day of the rest of your life."
a. Create a new string that has all lowercase characters except the 

word day. The word day should be set to all uppercase.
b. Create a new string array that contains the eleven elements. Each 

word from the sValue string should be in a separate array cell.
c. Remove the period from the last array element created in Step b. 

Display the contents of the new array verifying its removal.
d. Surround the sValue string with three asterisks on each end.
e. Replace the word first with the word best in the sValue string.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8

Programming Exercises | 509

 27. Using the following declaration:
int [ , ] anArray = {{34, 55, 67, 89, 99}, {22, 68, 11, 19, 45}};
what would be the result of each of the following output statements?
a. WriteLine(anArray.Length);

b. WriteLine(anArray[1, 2]);

c. WriteLine(anArray[0, anArray.GetLength(0) − 2]);

d. WriteLine(anArray[0, 2 + 1] * anArray[0, 0]);

e. WriteLine(anArray.Rank);

 28. Using the following declarations, write solutions for Steps a through e.
int [ , ] cArray = new int [2, 3];
string [ , , ] dArray = new string [5, 2, 6];
a. Write a foreach loop to display the contents of cArray.
b. Write a for loop to increment each element in cArray by 5.
c. Write a foreach loop to display the contents of dArray.
d. Can you use a foreach loop to initialize all elements of dArray 

with zero? If so, show your code. If not, explain why.
e. Write a for loop to initialize all elements in dArray to zero.

 29. Create array declarations for the following problem specifications.
a. An array to hold the name of the largest 3 cities for 5 states. Initialize 

with the 5 states closest to your campus.
b. A single array to hold the names of 10 people. You should be able 

to reference each person’s first name without having to use string 
manipulation methods to split the data apart.

c. A single array to store keys for five exams each consisting of 15 true/
false questions.

 30. Explain the difference between the .NET Hashtable and Dictionary 
classes.

PROGRAMMING EXERCISES
 1. Write an application that creates and returns a one-dimensional array 

containing all the elements in the two-dimensional array. Store the val-
ues in a row major format. For testing purposes, you may do a compile-
time initialization of a 12 x 5 two-dimensional array. Display both the 
two-dimensional and the one-dimensional array. Be sure that the values 
in the array are number aligned.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



510 | Chapter 8: Advanced Collections

 2. Write an application that will let you keep a check on how well six sales-
men are performing selling three different products. You should use a 
two-dimensional array to solve the problem. Allow the user to input any 
number of sales amounts. Do a compile-time initialization of the sales-
person’s names and product list. Produce a report by salesman, showing 
the total sales per product.

 3. Revise your solution for problem 2 so that you display the total sales per 
salesman. As with your solution for exercise #2, include  the first and last 
names for the salesmen in an array. When you display your final output, 
print the salesman’s last name only, sales for each product, and the final 
sales for the salesman. After you display the tables of sales, display the 
largest sales figure indicating which salesman sold it and which product 
was sold. For an added challenge, write your solution so that any num-
ber of salesmen and any number of products can be displayed.

 4. Write a two-class application that creates a customer code to be placed 
on a mailing label for a magazine. Allow the user to input their full name 
with the first name entered first. Prompt them to separate their first and 
last name with a space. Ask for their birthdate in the format of mm/dd/
yyyy. Ask for the month (number) they purchased a subscription and 
ask for their zip code. Your mailing label should contain the last name, 
followed by their year of birth, the number of characters in the full name, 
the first three characters of the month they purchased the subscription, 
and the last two digits of their zip. The code for Bob Clocksom born 
01/22/1993, who purchased his subscription during the 10th month of 
the year and lists 32226 as his zip code would be Clocksom9312Oct26.

 5. Write a program that allows the user to enter any number of names. 
Your prompt can inform the user to input their first name followed by 
a space and last name. Order the names in ascending order and display 
the results with the last name listed first, followed by a comma and then 
the first name. If a middle initial is entered, it should follow the first 
name. Your solution should also take into consideration that some users 
may only enter their last name (one name).

 6. Write an application that creates a two-dimensional array. Allow the user 
to input the size of the array (number of rows and number of  columns). 
Fill the array with random numbers between 0 and 100. Search the array 
for the largest value. Display the array values, numbers aligned, and the 
indexes where the largest value is stored.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



8

Programming Exercises | 511

 7. Write a program that creates a two-dimensional array with 10 rows and 
2 columns. The first column should be filled with 10 random numbers 
between 0 and 100. The second column should contain the squared 
value of the element found in column 1. Using the Show( ) method of 
the MessageBox class, display a table.

 8. reAay ouyay aay hizway ithway igPay atin?Lay? (Translated: “Are you a 
whiz with Pig Latin?”) Write a program that converts an English phrase 
into a pseudo-Pig Latin phrase (that is Pig Latin that doesn’t follow all 
the Pig Latin syntax rules). Use predefined methods of the Array and 
string classes to do the work. For simplicity in your conversion, place 
the first letter as the last character in the word and prefix the characters 
“ay” onto the end. For example, the word “example” would become “xam-
pleeay,” and “method” would become “ethodmay.” Allow the user to input 
the English phrase. After converting it, display the new Pig Latin phrase.

 9. Write an application that displays revenue generated for exercise classes 
at the Tappan Gym. The gym offers two types of exercise classes, zumba 
and spinning, six days per week, four times per day. Zumba is offered at 1, 
3, 5, and 7 p.m.; spinning is offered at 2, 4, 6, and 8 p.m. When attendees 
sign up, they agree to pay $4.00 per class for zumba and $5.00 for spinning. 
Produce a table displaying the number of attendees per time slot. Display a 
row and column of totals showing the total number of attendees by day and 
also time period. Also include a column showing the revenue generated 
each day and the overall revenue per type of exercise. Do a compile-time 
initialization of your data structures using data from the following table.

Zumba

1:00 3:00 5:00 7:00

Monday 12 10 17 22

Tuesday 11 13 17 22

Wednesday 12 10 22 22

Thursday 9 14 17 22

Friday 12 10 21 12

Saturday 12 10 5 10

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



512 | Chapter 8: Advanced Collections

Spinning

2:00 4:00 6:00 8:00

Monday 7 11 15 8

Tuesday 9 9 9 9

Wednesday 3 12 13 7

Thursday 2 9 9 10

Friday 8 4 9 4

Saturday 4 5 9 3

 10. Write an application that enables you to randomly record water depths 
for five different locations at 0700 (7 a.m.), 1200 (noon), 1700 (5 p.m.), 
and 2100 (9 p.m.). The locations are Surf City, Solomons, Hilton Head, 
Miami, and Savannah. For ease of input, you may want to code the loca-
tions (i.e., Surf City = 1, Solomons = 2, etc.) and code the time (i.e., 
0700 = 1, 1200 = 2, etc.). If the same location and time are entered more 
than one time, store the last value entered into the array. After the data 
is entered, display the average depth at each location and the average 
depth by time period.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

Introduction to Windows 
Programming

IN THIS CHAPTER, YOU WILL:

 ? Differentiate between the functions of Windows applications and console applications

 ? Learn about graphical user interfaces

 ? Become aware of some elements of good design

 ? Use C# and Visual Studio to create Windows-based applications

 ? Create Windows forms and be able to change form properties

 ? Add control objects such as buttons, labels, and text boxes to a form

 ? Work through a programming example that illustrates the chapter’s concepts

9CHAPTER

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



514 | Chapter 9: Introduction to Windows Programming

If you have read and completed the exercises in the previous chapters, you now have a 
solid programming foundation and can build fairly sophisticated console-based appli-
cations. These types of applications are excellent for learning the basic elements of 
programming and are appropriate for many types of small, utility applications today. 
However, you probably consider them boring. In your daily life, you have become 
accustomed to using modern programs that look and act like Windows applications. 
In this chapter, you learn to create those types of applications.

Building Windows-based applications was a complicated endeavor in the past; this is 
no longer the case. Included in the .NET Framework class library is an entire subsys-
tem of classes that enables you to create highly interactive, attractive, graphical user 
interface (GUI) applications. Using Visual Studio, it is easy to perform drag- and-drop  
constructions. In the following two chapters, you will be introduced to many classes in 
the System.Windows.Forms namespace, including control classes such as Label, 
Button, and TextBox that can be placed on a Windows Form container class. 
A different way of programming based on interactively responding to events such 
as mouse clicks will be introduced. In Chapter 10, you will extend this knowledge 
by creating applications that are more event-driven and are used for capturing and 
responding to user input. By the time you complete Chapter 10, you will be building 
fun, interactive Windows-based applications.

Contrasting Windows and Console Applications
When a Windows application executes, it functions differently from the console-
based applications you have been writing. With a console-based application, each line 
in the Main( ) method is executed sequentially. Then the program halts. Method 
calls might branch to different locations in your program; however, control always 
returns back to the Main( ) method. When the closing curly brace is encountered in 
Main( ), execution halts with console-based applications. With your console appli-
cations, the program initiates interaction with the operating system by calling the 
operating system to get data using the ReadLine( ) method. It calls on the operat-
ing system to output data through method calls such as WriteLine( ) or Write( ).

For both Windows and console applications, execution begins with the first state-
ment in the Main( ) method. However, with a Windows application, instead of the 
program executing sequential statements from top to bottom, the application, once 
launched, sits in what is called a process loop waiting for an event to execute. An event 
is a notification from the operating system that an action, such as the user clicking 
the mouse or pressing a key, has occurred. Instead of calling on the operating system 
with a request, as console applications do, Windows applications receive messages 
from the operating system that an event has occurred. With Windows applications, 
you write methods called event handlers to indicate what should be done when an 
event such as a mouse click on a button or the press of a key occurs.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Contrasting Windows and Console Applications | 515

9

You might design a window that includes several locations on your screen where 
a user could input different values. You might have many different buttons on that 
same screen, with one labeled Compute. With Windows applications, you register 
events about which you want your program to receive notification. For example, you 
might want your program to be notified when the user clicks the Compute button. 
For this situation, you would write in your program a method called an event handler, 
indicating what should be done when that Compute button is clicked. If this is the 
only event-handler method you include, your program, once launched, would be in a 
process loop—or wait state—until that Compute button was clicked.

The body of the event-handler method for the Compute button might include state-
ments to perform a calculation and then display the formatted results on the Win-
dows form. When the user clicks the Compute button, an event is fired. The operating 
system sends a message to your program indicating that the event you registered has 
occurred. The associated method to handle the event is then executed automatically.

Think about your own experience using any Windows-based program. Take, for 
example, your word-processing program. After being launched, the program appears 
to be sitting idle allowing you to type forever. However, it is in a process loop after it is 
launched. When you select an option from one of the menus, an event is fired. Select 
an option such as Find or Search and a dialog box prompts you to enter the word for 
the search. Another event is fired when you press the Enter key indicating you have 
finished typing the search word. This event-handler method performs the search in 
your document. Until you clicked on the menu bar, the program was just waiting for a 
notification from the operating system that an event of interest had occurred.

Unlike console-based applications that exit after all statements have been sequentially 
executed, Windows-based applications, after they are launched, sit idly waiting for 
notification of a registered event. The program remains in the operating system envi-
ronment in a process loop. This means your program could be minimized, resized, or 
closed like other Windows applications. Someone could surf the Web for hours while 
your program was still running or write an English paper using another application. 
Your program’s code would be ready and still waiting for an event to be fired when the 
user made the program’s window active again.

Another important difference is sequential order. Unlike the sequential nature you 
expect with console-based applications, in which one statement executes followed 
by the next, no sequential order exists with methods that handle events for Windows 
applications. If you have many options on your screen, or many buttons, you do not 
know which one the user will click first or whether any of them will be clicked. Again, 
think about your experiences using a Windows-based word processor. Each time you 
use the program, you select different options or use different menu selections.

With Windows applications, many different types of events can be fired. As a devel-
oper, you select actions your program should respond to and write event handlers for 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



516 | Chapter 9: Introduction to Windows Programming

those events. If you have five buttons on the screen, button1 might not be the one 
clicked first every time. These event-handler methods can be executed in a different 
order every time your application runs.

Windows applications not only function differently but also look different. Windows 
applications tend to have a consistent user interface—one that is considered more 
user-friendly than what you find with console-based applications. In many cases, the 
user interface of a Windows application is considered as important as the applica-
tion’s power behind the scenes.

Graphical User Interfaces
Have you ever tried to use a computer program and said to yourself “Okay, what do I 
do next?” or been unable to exit a program or perform some function that you knew 
the program was supposed to be able to do? The culprit was probably the interface. 
The interface is the front end of a program. It is the visual image you see when you 
run a program. The interface is what allows users to interact with your program. 
Although a program may be powerful and offer rich functionality, those functions 
may remain unused unless they present the user with easy methods of interaction. 
Often users of programs actually identify the interface as the program itself, when in 
reality, the interface is just one facet of the program.

The interfaces you designed thus far have not been graphical. Your program inter-
action was primarily limited to accepting input through the ReadLine( ) method 
and displaying output in the form of a single font at the DOS console window. In this 
chapter, the interface changes. Instead of interacting with the black console screen, 
you will design Windows-based, GUI applications. These types of applications are 
displayed on a Windows form, as shown in Figure 9-1.

Figure 9-1 Windows-based form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Graphical User Interfaces | 517

9

A GUI can include menus, buttons, pictures, and text in many different colors and 
sizes. Think of the form in Figure 9-1 as a container waiting to hold additional controls, 
such as buttons or labels. Controls are objects that can display and respond to user 
interaction. In Figure 9-1, the form has a title bar, complete with an icon on the left, 
a textual caption in the title bar, and the typical Windows Minimize, Maximize, and 
Close buttons. The C# code used to create this blank form is shown in Example 9-1.

EXAMPLE 9-1

// Windows0.cs                               Author:   Doyle 
// Demonstrates creating a blank container form
using System.Windows.Forms;                            // Line 1 
namespace Windows0
{
     public class Windows0 : Form                      // Line 2 
     {
          public Windows0( )                           // Line 3 
          {
               Text = "Simple Windows Application";    // Line 4 
          }

          public static void Main( )
          {
               Windows0 winForm = new Windows0( );     // Line 5
               Application.Run(winForm);               // Line 6
          }
     }
}

The code in Example 9-1 could be written using an editor such as Notepad and exe-
cuted from the command line. This is not recommended for developing Windows-
based applications. The Visual Studio integrated development environment (IDE) 
automatically generates all the code needed for a blank Windows form for you. If 
you do not use the IDE, you lose out on the built-in, drag-and-drop construction 
capabilities, and the ease of modifying controls during design. The program listing 
in Example 9-1 is much smaller than what is generated from Visual Studio. Later in 
the chapter, you have a chance to compare Example 9-1 with the code Visual Stu-
dio actually generates. Before doing that and before exploring the rich Visual Studio 
environment, it is useful to evaluate what is actually required to create a Windows 
application in C#.

Examine the statements in Example  9-1. Notice that the using directive labeled 
Line  1 imports types or classes from the System.Windows.Forms namespace. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



518 | Chapter 9: Introduction to Windows Programming

This is where most of the classes for developing Windows-based applications are 
organized. By including this directive, you avoid having to fully qualify references to 
classes organized under the System.Windows.Forms namespace.

The Windows applications you will be creating will always refer to the  
System. Windows.Forms namespace. Visual Studio automatically adds this 
 reference when you select the C# Windows Forms Application template, and it makes 
available for you the data types or classes needed to create a Windows Application Project.

Because the namespace System.Windows.Forms was included in the using 
 directive, the fully qualified name of System.Windows.Forms.Form can be written  
as Form. You will find, however, that Visual Studio often inserts the fully qualified name 
when you look at the code generated by the IDE.

The class heading definition labeled Line 2 looks a little different from what you 
have seen previously. It includes not only the class name but also a colon followed 
by another class name. The second class is called the base class; the first is 
called the derived class. Look closely at this statement again.
public class Form1 : Form                       // Line 2

The colon is used in the definition to indicate that the new class being defined, 
Form1, is derived from a base class named System.Windows.Forms.Form. The 
default name given for a Windows application class in Visual Studio is Form1. You 
do not have to change the class name, but you might want to so that the name better 
represents the application.

When a class is derived from another class, the new class inherits the function-
ality of the base class. Form is a predefined .NET class that includes a number of 
methods and properties used to create a basic Windows screen. Form1 inherits the 
characteristics of the Form class. You will learn more about inheritance in Chapter 11 
when you study advanced object-oriented concepts. For now, think about inheritance 
as it relates to your family tree. Just as you can inherit traits from your father, such 
as hair color or height, Form1 inherits methods and properties from the  predefined 
System.Windows.Forms.Form class. As you reexamine the form created for 
 Figure 9-1 using Example 9-1, notice that it includes fully functional Close, Minimize, 
and Maximize buttons in the upper-right corner of the form. No new code had to be 
written to add these features. Form1 inherited this functionality from the Form class. 
Remember that one of the beauties of object-oriented programming is not having to 
reinvent the wheel. Inheriting characteristics from base classes adds functionality to 
your program without the burden of your having to do additional coding.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Graphical User Interfaces | 519

9

Looking again at Example 9-1, Line 3 begins the section of code defining the con-
structor for the Form1 class. Remember that a constructor has the same name as 
the class name—Form1. Constructors are called automatically when an object of 
the class is created. This constructor has one statement in its body, which is
Text = "Simple Windows Application";            // Line 4

Text is a property that can be used to set or get the caption of the title bar for the 
window. Observe that the string
"Simple Windows Application"

appears on the title bar in Figure 9-1.

Unlike your family tree, in which you inherit traits from two distinctively different 
 individuals, your mother and your father, in C# and all .NET languages you are limited to 
single  inheritance. Thus, you cannot just add a second or third colon (e.g., on Line 2 in 
 Example 9-1) and follow that with additional class names. You are limited to deriving from 
one base class. You will learn more about this in Chapter 11.

You created your own property attributes using set and get when you defined your 
own classes. Windows forms and controls offer a wide variety of changeable properties 
 including Text, Color, Font, Size, and Location. Much of the power of Visual 
Studio lies in having these properties readily available and easy to change or add through 
IntelliSense.

As with console-based applications, execution for Windows-based programs begins 
in the Main( ) method. In Example 9-1, Line 5, the first statement in the Main( ) 
method body instantiates or creates an object of the Form1 class. The object’s 
identifier is winForm. That statement is listed again as follows:
Form1 winForm = new Form1( );                   // Line 5

The last statement in the body of Main( ), on Line 6, calls the Run( ) method. 
Run( ) is a class method of the Application class. The call is as follows:
Application.Run(winForm);                       // Line 6

The Application class is also defined as part of the System.Windows.Forms 
namespace. The object that is instantiated from the Form1 class is sent as the 
argument to its Run( ) method. It is this method call that causes the object, 
 winForm, to be displayed as a window on your screen. This statement displays the 
form and places the application in a process loop so that it receives messages from the 
operating system when events of interest to the application are fired.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



520 | Chapter 9: Introduction to Windows Programming

The amount of development time for Windows applications is greatly reduced when 
you use Visual Studio and C#. Because it is easy to add controls, sometimes beginning 
programmers get bogged down or carried away designing GUIs. Thus, before jump-
ing into examining the different controls that can be added to the form, the following 
section presents some design issues that you should think about before dropping any 
control onto a form using Visual Studio.

Elements of Good Design
As you start developing Windows applications, your goal should be to develop 
applications that are usable, permit users to spot items in the windows quickly, and 
enable users to interact with your program. Appearance matters! An attractively 
laid out screen with good visual organization gives users control. This is of utmost 
importance.

A large field of research in the field of computing is focused on human–computer 
interaction (HCI). HCI concentrates on the design and implementation of interac-
tive computing systems for human use. Explaining HCI fully is beyond the scope 
of this book, but it is a good topic for you to explore further, because it involves 
issues that you should consider and incorporate into your interfaces from the begin-
ning. A few of the more important HCI considerations are presented in the following 
sections.

Consistency
This is listed first because it is extremely important. Do you know how to close a 
Windows-based program? Sure you do. One way is to click the button labeled “X” in 
the upper-right corner of an active Windows application. The “X” performs the same 
functionality for all applications and is consistently located in that same place. Do you 
know which menu option to use to save your work? Again, you probably answered 
“Yes.” Save is almost always located on the File menu for all Windows-based appli-
cations. Consistent placement of items is important. Consistent sizing of items is 
important. Consistent appearance of items that are performing the same functionality 

Unlike instance methods, class methods, or static methods, are not called with 
an object. Class methods are not owned by any specific object. To call static 
 methods, the method name is prefixed by the class name. Application is a class 
that has static methods (class methods) to start and stop applications. The Run( ) 
method starts an application; the Exit( ) method stops an application and closes all of 
its windows.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Elements of Good Design | 521

9

is also important. These are good design features to mimic. Buttons that are provid-
ing the same functionality should be consistently located in the same general area, be 
sized consistently, and be designed to look consistent.

Unless you are trying to call attention to an item, keep the item the same as other 
items. To bring attention to an item, use contrast, make it look different, or place 
it in a different location; otherwise, you should be consistent with your design  
of GUIs.

Alignment
Use alignment for grouping items. When you place controls on a form, place similar 
items together. They can be lined up to call attention to the fact that they belong 
together. Place similar items together and align them in the same column or same 
row. Use indentation to show subordination of items.

Use blank spaces to aid in grouping. Adding blank space between controls can make 
the difference between an attractively laid out GUI and one that is cluttered and dif-
ficult to use. Align controls with their identifying labels.

Avoid Clutter
The Windows Form class is considered a container on which controls such as but-
tons, text, labels, text boxes, and pictures can be placed. As you are about to learn, it 
is easy to fill the window with controls. Pay attention to the amount of information 
being placed on the form. Do not crowd a form with too many controls. Buttons to 
be clicked should be large enough for easy use. Make sure that text is readable. Use 
intuitive labels that are descriptive of the control they are identifying. Fonts should be 
large enough to be legible.

Color
Think about your color combinations. Background colors and foreground text colors 
should contrast with each other. Avoid using bright colors (such as reds), especially 
for backgrounds; this can result in user eye fatigue. You can use color as an attention 
getter, but do not abuse it. Color can play a significant role in your design. A great deal 
of research has focused on how colors impact the GUI, and you will probably want to 
explore this topic further.

Target Audience
You should begin thinking about the design of an interface in terms of who will be 
using it. Will the user be a child or an adult? Will they be a novice or an expert? 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



522 | Chapter 9: Introduction to Windows Programming

Your target audience should be taken into consideration. Another consideration for 
the design of an application is where it will be displayed. C# is being used to design 
mobile applications for handheld devices. A GUI should be different if it is going to 
be displayed on a WAP (Wireless Access Protocol)-enabled device such as a tablet or 
a smart phone. You would want to place fewer controls and minimal graphics on such 
an application. The design of your interface for rich Windows applications that can 
be run on workstations equipped with large hard drives that hold graphical images 
should also differ from the design for Web applications that run on thin client systems 
over a browser. (A thin client is designed to be small because it works with a server 
designed to perform most of the data processing.) The amount of download overhead 
should be taken into consideration for a Web application. Thin client systems often 
do not have much computing power and can be limited in their storage capacity. You 
will explore Web applications in Chapter 15.

In addition to templates for creating console and Windows applications, Visual  Studio 
includes built-in design templates for creating applications for the Web and Smart devices 
like Windows Phones. In Chapter 15, you will develop Web applications.

With every application that you design, you should always think about the design 
considerations discussed in this section. A number of useful websites are focused 
on HCI. At the time of writing this text, www.hcibib.org was one of the more exhaus-
tive sites. It includes a number of software developer resources, such as an online 
bibliography, published HCI guidelines, plus links to a number of professional 
affiliations focusing on HCI and personal pages of designers sharing their design 
suggestions.

Using C# and Visual Studio to Create  
Windows-Based Applications
Although you could certainly manually create very sophisticated Windows applica-
tions in C# using an editor such as Notepad, this is not recommended. Visual Studio 
automatically generates much of the general service plumbing code that you would 
have to add to locate your controls on the screen. This makes writing Windows 
applications using Visual Studio much simpler. To create a Windows application in 
Visual Studio, click New, then Project from the File menu. Then select Visual C#, 
Windows Forms Application from the Visual Studio Installed Templates pane, as 
shown in Figure 9-2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using C# and Visual Studio to Create Windows-Based Applications  | 523

9

You can browse to the location where you want to store your work and type a name 
for the project. FirstWindows was typed as the name for the project. Whatever 
value is typed into the Name textbox is automatically placed in the textbox for the  
the Solution name.

Figure 9-2 Visual Studio New Windows application

By default a check mark is placed beside Create directory for solution, as illustrated in 
 Figure 9-2. This creates a separate folder for the project.

An alternative for creating Windows applications is to use the Windows  Presentation 
Foundation (or WPF) template. Notice in Figure 9-2, WPF Application; is the third 
option in the middle pane. WPF is an especially great platform to use if your  application 
involves various media types. For example, if you want to incorporate video, 3D 
 content, or animated transitions between a sequence of images, WPF provides a 
 sophisticated layout system that handles the arrangement. You will develop a WPF 
 project in Chapter 10.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



524 | Chapter 9: Introduction to Windows Programming

After you click OK, Visual Studio automatically generates the code to create a blank 
Windows Form object. The IDE opens the Form Designer showing the form, as 
illustrated in Figure 9-3, which is ready to receive control objects.

Figure 9-3 Initial design screen

If you do not see the constructed form, but instead see the program statements, your 
system may be set to show the Code Editor window first. To see the GUI form, select 
the Designer option from the View menu (or press Shift+F7). F7 reveals the Code 
Editor window.

Based on how you have Visual Studio configured, your screen might not look exactly like 
Figure 9-3. As a minimum, you will probably want to have the Toolbox and  Properties 
windows accessible when you design your applications. Some developers prefer a larger 
screen to see their source code or find it distracting to have such a full screen of windows 
visible. You have many options for docking and hiding the windows shown in Figure 9-3. 
This figure  has the Toolbox, Solution Explorer, Properties, and Form Designer 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Using C# and Visual Studio to Create Windows-Based Applications  | 525

9

windows visible. If you click the pushpin icon on the title bar of a specific window, the 
Auto Hide feature minimizes that window but leaves a tab for it along the end of the 
IDE. Figure 9-4 calls attention to the pushpin icon. The Toolbox window is displayed 
in a dockable state snapped in place. The Solution Explorer and Properties windows 
are tab docked in Auto Hide state. To put the window in Auto Hide state, click on its 
pushpin icon, and the pushpin is shown laying on its side. The Error List and  Output 
windows, which are used when the application runs, are docked near the status bar.

Figure 9-4 Dockable windows

When a window is in Auto Hide state, if you click the mouse on the tab, the window is 
 redisplayed. At other times, only the tab is visible. To take a window out of Auto Hide,  redisplay 
the window and click the pushpin icon so that it is standing up, as shown in Figure 9-4.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



526 | Chapter 9: Introduction to Windows Programming

Windows Forms
Windows Forms enable you to use a more modern object-oriented approach to devel-
oping Windows applications. The .NET model is based on an extensive collection 
of Control classes available, including a Form class, which is used as a container 
to hold other controls. The top-level window for an application is called a “form” in 
C#. If that top-level window opens another window, it is also considered a “form.” 
The large collection of properties and methods that make up a rich programmable 
interface to forms is available to classes inheriting from Form. The code written for 
Example 9-1 to change the title bar caption is
Text = "Simple Windows Application";            // Line 4

Using Visual Studio, all you have to do is find the appropriate property (Text) in the 
Properties window and type the value for the caption. You do not have to worry 
about whether the property’s name begins with an uppercase character or is spelled 
correctly. You can select it from an alphabetized list. In Figure 9-3, notice that the 
Text property is selected. Changing that property is as easy as clicking in the box and 
typing a new title bar caption. As soon as you finish typing and click outside of the 
box, the Form Designer form is updated with this new caption in place of the default 
value, Form1. The section that follows explores some of the other properties you can 
change for the Form container class.

If the Designer window is not visible, select Designer from the View menu or press 
Shift+F7 to show the form.

If your Properties window is not visible, select Properties Window from the View menu 
or press Alt+Enter.

Remember that to display the program statements, you can select Code from the View 
menu or press F7. If one or more window is accidentally closed during development or is 
not visible, it can be redisplayed by using the View option on the menu and then clicking 
beside the desired element.

Windows Forms Properties
Figure  9-5 displays a list of some of the properties that can be set for the Form1 
object. The Properties window is used to view and change the design time proper-
ties and events of an object.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Windows Forms | 527

9

In Figure 9-5, some of the properties have an Expand button to the left of the property 
name, indicating that the property can be expanded (only one is currently expanded). 
Groups of properties are collapsed together for easier navigation through the prop-
erty list. If you click the plus, the group expands. For example, clicking the plus sym-
bol to the left of the Location property reveals space where values can be typed for x 
and y. These values represent the x-coordinate and y-coordinate, respectively, for the 
location of the upper-left corner of the form.

In Figure 9-5, there are five buttons or icons immediately above the list of properties. 
The second button, the Alphabetical button, is selected. Properties appear listed in 
alphabetical order for this illustration. Many developers prefer to see the properties 
listed by category. As Figure 9-5 illustrates, the button to the left of the Alphabetical 

Figure 9-5 Properties window

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



528 | Chapter 9: Introduction to Windows Programming

button rearranges the Properties window by category. The lightning bolt, labeled 
Events, is used to display the list of events that can be programmed for a selected 
object. The third button from the left in Figure 9-5 is the Properties button. This 
is selected, instead of the Events button, indicating that the list of properties is being 
displayed. Take a look at Figure 9-6, which contains a partial list of events that can be 
associated with a Form1 object.

Figure 9-6 Form events 

To illustrate how Visual Studio automatically generates code when property values 
are changed, Table 9-1 lists changes made to the respective properties of Form1. 
These changes are applied to the project that was started in Figure 9-2. Changing the 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Windows Forms | 529

9

property is as simple as moving the cursor to the edit box to the right of the property 
identifier and typing or selecting a value. Many properties have a drop-down list of 
values available for selection. All changes to the property values can be made in the 
Properties window at design time. You do not have to enter any source code state-
ments. Properties values set for Form1 are given in Table 9-1.

Property name Actions performed on the FirstWindows properties

AutoScroll Selected true

BackColor Selected a PeachPuff color from a drop-down color selection window on the  
Web tab

Font Selected Arial from a list of fonts; changed the size to 12 point;  
selected bold style

ForeColor Selected a blue color from a drop-down color selection window on the Custom tab

Location Changed the x-coordinate and y-coordinate from 0,0 to 30,30

MaximizeBox Selected false

Size Changed the width and height to 400,400

StartPosition Using a drop-down menu option, changed the value from 
WindowsDefaultLocation to CenterScreen

Text Typed "First Windows Application"

© Cengage Learning

TABLe 9-1 Form1 property changes

You can, however, set the properties using program statements. As you review the code 
generated by Visual Studio, note how each property that you set by selecting or typing a 
value in the Properties window generates one or more lines of code.

As you can see from examining the property names in Table 9-1, the developers of 
Visual Studio did a good job selecting intuitive names for most of the properties. The 
names represent what the property would do to the form. Example 9-2 contains the 
source code listing generated by Visual Studio after the properties are set.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



530 | Chapter 9: Introduction to Windows Programming

Three files are illustrated. The IDE separates the source code into three files when 
you create a simple Windows application. Initially these files are named Form1.cs,  
Form1.Designer.cs, and Program.cs. The first two files, Form1.cs and  
Form1.Designer.cs, both include partial class definitions for the Form1 
class. It is recommended that you never edit the Form1.Designer.cs file. You will 
normally only be editing the Form1.cs file.

The Program.cs file contains the Main( ) method, where execution always begins. One 
of the three lines of code found in the Main( ) method is a call to  Application.Run( ),  
which makes the form visible and ready to receive input from the user. The code 
shown in Example 9-2 is completely generated by Visual Studio. The full content of 
the files are included here. The only changes made to Example  9-2 were made to 
the comments. The XML comments inserted by Visual Studio were deleted and new 
inline comments added. Much of the auto-generated code and extraneous lines are 
deleted from the other Windows Forms examples illustrated later in this chapter and 
in Chapter 10.

Selecting Code on the View menu reveals the source code associated with the Form1.
cs file. Double-clicking the form, while you are in design mode, takes you to the Code 
Editor, but with the undesired side effect that a Form1_load( ) event-handler method 
heading and an empty body are added to your code. You will read more about events in 
Chapter 10. Each control has a default event. Double-clicking on the control adds its default 
 event-handler method to your code. The form’s default event is the Load event.

You will learn more about partial classes in Chapter 11. Partial classes allow you to 
split the definition of a class into two or more files.

EXAMPLE 9-2

// File#1 - FirstWindows.Form1.cs

using System;
using System.Collections.Generic;
using System.ComponentModel; 
using System.Data;
using System.Drawing; 
using System.Linq;
using System.Text;
using System.Threading.Tasks; 
using System.Windows.Forms;
namespace FirstWindows

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Windows Forms | 531

9

{
     public partial class Form1 : Form 
     {
          public Form1( )
          {
               InitializeComponent( );
          }
     }
}    // End of FirstWindows.Form1.cs file

// File#2 - FirstWindows.Form1.Designer.cs 
namespace FirstWindows
{
     partial class Form1
     {
          // Required designer variable.
            private System.ComponentModel.IContainer components = null; 
          // Clean up any resources being used.
           protected override void Dispose(bool disposing)
          {
               if(disposing && (components != null))
               {
                    components.Dispose( );
               }
               base.Dispose(disposing);
          }
          #region Windows Form Designer generated code
          // Required method for Designer support - do not modify 
          // the contents of this method with the code editor.
          private void InitializeComponent( )
          {
              this.SuspendLayout( );
              // Form1
              this.AutoScaleDimensions = new
                       System.Drawing.SizeF(10F,19F);
              this.AutoScaleMode =
                   System.Windows.Forms.AutoScaleMode.Font; 
              this.AutoScroll = true;
              this.BackColor = System.Drawing.Color.PeachPuff;
              this.ClientSize = new System.Drawing.Size(384, 356); 
              this.Font = new System.Drawing.Font("Arial", 12F,
                    System.Drawing.FontStyle.Bold,
                    System.Drawing.GraphicsUnit.Point,
                    ((System.Byte)(0)));
              this.ForeColor = System.Drawing.Color.Blue;
              this.Location = new System.Drawing.Point(30, 30); 
              this.Margin = new
                   System.Windows.Forms.Padding(5,4,5,4);
              this.MaximizeBox = false;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



532 | Chapter 9: Introduction to Windows Programming

              this.Name = "Form1";
              this.StartPosition =
                   System.Windows.Forms.FormStartPosition.CenterScreen; 
              this.Text = "First Windows Application";
              this.ResumeLayout(false);
         }
         #endregion
     }
}           // End of FirstWindows.Form1.Designer.cs file

// File#3 - FirstWindows.Program.cs 
using System;
using System.Collections.Generic; 
using System.Linq;
using System.Threading.Tasks; 
using System.Windows.Forms;
namespace FirstWindows
{ 
     static class Program 
     {
          /// The main entry point for the application. 
          static void Main( )
          {
               Application.EnableVisualStyles( );
               Application.SetCompatibleTextRenderingDefault(false); 
               Application.Run(new Form1( ));
          }
     }
}                  // End of FirstWindows.Program.cs file

You run Windows applications like console applications by selecting Start  Debugging 
or Start Without Debugging from the Debug menu in Visual Studio. You can also use 
the shortcuts, F5 and Ctrl+F5, or click the Start icon on the Standard toolbar to run 
your applications. When you run the program in Example 9-2, a peach-colored window 
titled "First Windows Application" is displayed in the center of your screen. The 
Maximize button on the title bar is grayed out. The StartPosition property overrode 
the Location property values set. As you examine the drop-down menu options for 
StartPosition, notice that Manual is one of the values that can be selected. Selecting 
Manual enables the Location property to change where the form is displayed.

You can look ahead at Figure 9-8 to see what the form looks like with its title caption 
added, the Windows Maximize button grayed out, and the color set to peach. Figure 9-8 
includes just one additional MessageBox dialog box layered on top of the form. It is added 
in the examples that follow.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Windows Forms | 533

9

inspecting the Code generated by Visual Studio
An examination of the Solution Explorer window, which is illustrated in Figure 9-7, 
reveals three source code files ending with a .cs extension that are part of the applica-
tion. Console applications just create one source code file.

As you review Figure 9-7, notice that one of the three files is actually shown under the 
Form1.cs structure. This is the Form1.Designer.cs file. It is in this file that you 
will find the Windows Forms Designer generated code associated with the properties 
that were set for the application.

Figure 9-7 Solution Explorer window

According to the C# language reference specifications, the term “preprocessor” is used 
just for consistency. C# does not have the separate preprocessing step you find with C++ 
and other languages that identify statements that begin with # as preprocessor directives.

In Example 9-2, you saw two lines that begin with the pound (#) symbol. These lines 
were in the Form1.Designer.cs file, labeled File#2 in the comment. The first one 
says #region Windows Forms Designer generated code. About 25 lines below 
that line, you find #endregion. This term, #region, is one of the preprocessor direc-
tives that can be included in C#. A preprocessor directive indicates something that 
should be done before processing. Preprocessor directives are often associated with 
conditionally skipping sections of source files or reporting certain types of errors.

The #region preprocessor directive in C# is used to explicitly mark sections of source 
code that you can expand or collapse. If you were viewing the code in the Visual 
Studio Code Editor, observe that to the left of the directive a minus (−) or plus (+)  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



534 | Chapter 9: Introduction to Windows Programming

symbol appears. Clicking the (−) symbol causes the entire block of code between the 
# symbols to be collapsed and be replaced by a comment labeled "Windows Form 
Designer generated code". Clicking (+) expands the listing. The Ctrl+M+M 
shortcut can also be used to expand or collapse the region.

When you are writing code using the Visual Studio IDE, typing the keyword this followed 
by a period brings up IntelliSense. A listing of the members of the class is displayed for 
selection. You will find this extremely useful. It keeps you from having to remember the 
correct spelling of identifiers associated with your class members.

You can create your own regions using the #region preprocessor directive. All you 
have to do is add a label naming your region following #region. To end the block, use 
#endregion, as is done with the #region Windows Form Designer  generated 
code... #endregion. This can aid the readability and maintainability of the code.

Comparing the Code of example 9-1 With example 9-2
Comparing the source code statements generated from Visual Studio for Example 9-2 
against the program created manually for Example 9-1 reveals a number of differ-
ences. Visual Studio uses a method named InitializeComponent( ) to build 
the form at run time. All the properties that are set during design are placed in this 
method. Notice that the only statement in the constructor for Example 9-2 in the 
Form1.cs file is a call to the InitializeComponent( ) method.
// Constructor from Example 9-2
public Form1( )
{
     // Required for Windows Form Designer support. 
     InitializeComponent( );
}

In Example 9-1, you will remember that the Text property was actually set in the 
constructor method. No InitializeComponent( ) method was created.
// Constructor from Example 9-1
public Form1( )
{
     Text = "Simple Windows Application";
}

In the InitializeComponent( ) method of Example 9-2, each of the properties 
was suffixed with the keyword this, which refers to the current instance of a class. 
In Example 9-2, this referred to the current instance of Form1. In Example 9-2, the 
this keyword could have been completely eliminated from the program listing with-
out changing anything.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Windows Forms | 535

9

Notice that Visual Studio imported several other namespaces in the Form1.cs file:
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;

No using statements were included in the Form1.Designer.cs file where the 
 InitializeComponent( ) method appears. Since the two files (Form1.Designer.cs 
and Form1.cs) are designated as partial classes, they both have access to namespaces 
referenced in either file. If the namespaces had been included in the file, it would not be 
necessary to qualify each class name fully. The  InitializeComponent( ) method 
could read as shown in Example 9-3.

EXAMPLE 9-3

private void InitializeComponent( ) 
{
     SuspendLayout( );
     //
     // Form1
     //
     AutoScaleDimensions = new SizeF(10F, 19F); 
     AutoScaleMode = AutoScaleMode.Font; 
     AutoScroll = true;
     BackColor = Color.PeachPuff; 
     ClientSize = new Size(384, 356); 
     Font = new Font("Arial", 12F, FontStyle.Bold,
           GraphicsUnit.Point, ((Byte)(0))); 
     ForeColor = Color.Blue; 
     Location = new Point(30, 30); 
     Margin = new Padding(5,4,5,4);
     MaximizeBox = false;
     Name = "Form1"; 
     StartPosition = FormStartPosition.CenterScreen; 
     Text = "First Windows Application"; 
     ResumeLayout(false); 
     // Additional statements
}

This code is much more readable than the code generated from Visual Studio. How-
ever, it is not worth your effort to take time to remove the verbage. Do not lose sight 
of the fact that all of the code was automatically generated from the Visual Studio 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



536 | Chapter 9: Introduction to Windows Programming

Form Designer after properties were set from the Properties window. This certainly 
cuts down on the development time. Nevertheless, it is important that you are able to 
read the code and make modifications as necessary.

One of the comments in the Form1.Designer.cs file (Windows Forms Designer 
 generated code region) reads “do not modify the contents of this method with the code 
 editor.” Separating this code into another file helps to discourage modifications.

One additional method, Dispose( ), is added in the Form1.Designer.cs file by 
the IDE. This is shown in Example 9-2. The .NET common language runtime (CLR) 
performs memory management. The CLR’s automatic garbage collector releases 
memory from the application after the program is halted. The purpose of this 
 Dispose( ) method is to clean up or release unused resources back to the operating 
system.

Take a look at the call to the Run( ) method included in the Program.cs file gen-
erated by Visual Studio. This is one of three statements that appear in the Main( ) 
method.
Application.EnableVisualStyles( );
Application.SetCompatibleTextRenderingDefault(false);

The first two lines of code call methods that enable the text and visual effects to be 
placed on Windows Forms controls. For the applications you will be creating, they 
could be removed from the application. However, again it is not worth your effort to 
take time to remove them. In the call to the Run( ) method in Example 9-2, no actual 
identifier was associated with an object of the Form1 type.
//From Example 9-2
Application.Run(new Form1( ));

The new keyword creates an anonymous (unnamed) instance of Form1, but notice 
where this occurs—as an argument to the Run( ) method. There is really no need 
to identify an object of the Form1 type by name, and this Form1 object identi-
fier is not used anywhere else. Thus, the approach taken in the Main( ) method in 
Example 9-2 is more streamlined than in Example 9-1. The two statements that made 
up the Main( ) method body from Example 9-1 are displayed again in the following 
code segment for comparison purposes:
// From Example 9-1
Form1 winForm = new Form1( );                            // Line 5
Application.Run(winForm);                                // Line 6

One of the first things you may want to do is rename the Form1.cs file to some-
thing more representative of the application. You can do this using the  Solution 
Explorer window. Right-click on the Form1.cs file and select the Rename option. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Windows Forms | 537

9

Be sure to end the file with the .cs extension. When you rename this file, the  
Form1.Designer.cs file is automatically renamed and all references to Form1 are 
automatically changed.

Windows Forms events
The topic of Chapter 10 is handling events. However, it is useful to have a brief intro-
duction to them here so that you can add some functionality to your Windows form. 
Figure 9-6 showed a partial list of events to which objects of the Form1 class could 
respond. Visual Studio makes it very simple to add code to respond to events. One 
way to add a method is to find the event in the list of events (from the Properties win-
dow with the lightning bolt (Events) selected) and double-click on the event name. 
When you do this, code is automatically added to your program by the Visual Studio 
Form Designer.

Notice in Figure 9-6 that one of the events listed is FormClosing. Double- clicking 
on the FormClosing event adds the following code to the  InitializeComponent( ) 
method in the Form1.Designer.cs file:
this.FormClosing += new System.Windows.Forms.FormClosingEventHandler
        (this.Form1_FormClosing);

The preceding statement is registering the FormClosing event so that your program 
is notified when a user is closing the application. You will learn more details about 
events in Chapter 10. For now, just realize that this line is necessary if you want to 
have your program receive a message from the operating system when a user clicks 
the “X” to close your application. Visual Studio adds the statement automatically for 
you when you double-click FormClosing, while you are using the Form Designer 
and have the form selected.

The other code automatically generated by the Form Designer and added to the pro-
gram listing for the Form1.cs file when you double-click the FormClosing event is 
the actual event-handler method heading and an empty body, as shown in the follow-
ing code segment:
private void Form1_FormClosing(object sender, FormClosingEventArgs e)
{
}

Also notice that when you double-click on an event name such as FormClosing, the 
Code Editor window for Form1.cs becomes the active window.

A tab is created for the Code Editor window when the source code file is opened. Clicking 
the tab allows you to move between the Code Editor and the Form Designer. The windows 
can also be opened from the  Solution Explorer window or from the View menu if they are 
not visible. Both tabs are shown in  Figure 9-4. The Designer tab is active.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



538 | Chapter 9: Introduction to Windows Programming

The cursor is placed inside the empty body of the Form1_FormClosing( ) method. 
The IDE is waiting for you to program what is to occur when the user is closing your 
application. Take note! This is the first time you have needed to type any code since 
you started developing the FirstWindows application. The following line is typed as 
the body for the Form1_FormClosing( ) method:
MessageBox.Show("Hope you are having fun!");

Figure 9-8 shows the output produced when the user clicks the Close button.

Figure 9-8 Output produced when the Close button causes the event-handler

At this point, the form is still blank. The following section introduces you to controls 
such as buttons and labels that can be placed on the form to add functionality to your 
Windows application.

Controls
The real strength of using C# for Windows applications lies in the number of controls 
that you can add to your applications. The System.Windows.Forms namespace 
includes many classes that you can add to your form representing controls with names 
such as Button, Label, TextBox, ComboBox, MainMenu, ListBox,  CheckBox, 
 PictureBox, MenuStrip, RadioButton, and MonthCalendar. It is important to 
understand the concept that these controls are all classes. Each comes with its own 
bundle of predefined properties and methods. Each fires events—some of which you 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 539

9

should write methods for—indicating what to do when its event is fired. An example 
is the Button class, which fires click events when an object of the class is clicked. 
As stated previously, if you use Visual Studio, most of the standard service plumbing 
code is added automatically for you. All you add is code for the special processing that 
should occur when a particular Button object is clicked.

You are going to find it very easy to work with Visual Studio and Windows applications using 
an object-oriented approach.

Figure 9-9 Control class hierarchy

In C#, object is an alias for System.Object in the .NET Framework. Thus, instead of 
using Object to refer to this top-level base class, you use object with a lowercase 'o'.

All of the control classes that can be added to a form are derived from the  System.
Windows.Forms.Control class. Figure  9-9 shows the class hierarchy of 
namespaces for the Control classes. With Object being the base class from which 
all classes ultimately are derived, Figure 9-9 illustrates that all the Windows control 
classes derive from a class named Control.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



540 | Chapter 9: Introduction to Windows Programming

The dots on the classes in Figure 9-9 indicate that other classes are derived from the 
class. For example, a number of other classes are derived from the class Object; 
other classes are derived from the MarshalByRefObject and ComponentModel.
Component classes. If you examine the .NET documentation, you find a total of 22 
classes that are derived from System.Windows.Forms.Control. The classes shown 
in Figure 9-9 are those that represent some of the more basic GUI controls. They are 
discussed in the sections that follow and in Chapter 10.

Another important concept to recognize is that the Form class is actually a derived 
class of the ContainerControl class. The ContainerControl class is a 
derived class of the ScrollableControl class, which is a derived class of 
Control. Figure 9-9 showed the ScrollableControl class with dots to indicate 
that other classes are derived from it. The reason this is important to you will be 
revealed when you learn about all the properties, methods, and event members that 
the  Control class has predefined. Thus, not only Button, Label, and TextBox 
objects have access to these members but also Form objects inherit members of the 
Control class.

The Form Designer helps you organize the layout of the form window. While in 
Design view, you can select controls from the Toolbox window and drag and drop 
them onto your form container. You can actually write your own control classes and 
have them included on the Toolbox window. A number of third-party vendors also 
sell controls that can be added to your Toolbox window to increase functionality. 
Figure 9-10 shows some of the standard controls included when you install Visual 
Studio.

A large number of additional controls are available, beyond those included when you install 
Visual Studio. To customize a specific Toolbox, select that Toolbox tab, such as All 
 Windows Forms, and right-click on any of its controls. A menu option is displayed that 
includes a Choose Items option. You can select new .NET predefined controls or  deselect 
those that you do not need access to on your desktop. You can even write your own 
 controls (or buy controls from other vendors) and add them to the Toolbox.

Remember, when a class is derived from another class, it inherits the characteristics 
of all of its ancestor classes—meaning its parent class, the parent of the parent, and  
so on.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 541

9

If your Toolbox window is not visible, one way to activate it is to select Toolbox from 
the View menu. The All Windows Forms controls in the Toolbox are only visible 
when you are using the Designer. If the Code Editor window is active, you must select 
the Designer tab to gain access to the All Windows Forms controls.

Placing, Moving, resizing, and Deleting Control Objects
Two procedures are used to place a control on your form. After the control is selected, 
you can either double-click the control or drag and drop the control to the correct 
location. If you use the double-click approach, the control is always placed in the 
upper-left corner of the form—even if it overlaps other controls. To move the control, 
position the mouse pointer over the control until you see the standard Windows cross-
bars. With the left mouse button pressed, you can drag the control to its new location.

Figure 9-10 Windows Forms controls

The illustration shown in Figure 9-10 shows controls available in Visual Studio. You might 
see a slightly different listing if you are using a different version or if the Toolbox has been 
previously customized.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



542 | Chapter 9: Introduction to Windows Programming

In Design view, you can resize controls using the standard Windows conventions of 
positioning the mouse pointer over the resizing handles. When you get the double-
sided arrow, hold down the left mouse button and drag the border to the desired size. 
Another option available to you is to use the Properties window and set the Size 
property.

Select multiple controls using your mouse by either drawing an outline around the controls 
that are to be formatted or holding down the Ctrl key while you click on the controls.

Just as you spent time designing a prototype for a console-based application, you should 
design a prototype for your Windows form. Randomly placing controls on your form leads 
to unorganized source code. It is probably best to place all labels, then all buttons, and so 
on. That way, like items are grouped together in your program listing.

Note that when you select more than one control to format, the last control selected is the 
one used as the template for the action. For example, if label1, label2, and label3 
are all large, but label4 is small, and you click on label4 last when you are identifying 
controls to resize, clicking Make Same Size changes label1, label2, and label3 
to the size of label4. This also holds true for the Align options.

To delete a control, first select the control by clicking on it. The sizing handles become 
visible. Now pressing the Delete or Backspace key not only removes the control visu-
ally from the Form Designer view but also removes all the constructor code and 
associated property changes relating to the selected object.

When you copy and paste controls on the form, you normally must always move 
the object to the new position after it is pasted. Windows Forms Designer has a 
SnapLine feature to help you accomplish precise layout of controls on your form. 
Horizontal and vertical line segments are dynamically created by the SnapLine feature 
to assist in the layout of controls. Several menu options from the Format menu are 
also extremely helpful during design, including Align, Make Same Size, Horizontal 
Spacing, and Vertical Spacing. After the control(s) is (are) selected, the Align selec-
tions include options such as Lefts, Centers, Rights, Tops, Middles, and Bottoms. 
The Make Same Size selection is especially useful for sizing buttons for consistency.

The Horizontal Spacing and Vertical Spacing options enable you to increase or decrease 
the amount of blank space displayed between objects. If multiple objects are selected, 
using these tools helps you have an equal amount of space between your controls.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 543

9

Methods and Properties of the Control Class
You recall that classes that derive from the System.Windows.Forms.Control 
class inherit a number of predefined methods and properties from the Control 
class. This includes Form objects as well as Button, Label, TextBox, and the other 
objects from classes shown in Figure 9-9. Table 9-2 describes some of the more inter-
esting properties that the objects have available to them through inheritance from the 
Control class.

Be sure to practice using the tools available from the Format menu. Using the Align, 
Make Same Size, and Horizontal Spacing and Vertical Spacing options can greatly 
reduce your development time for the GUI and lead to more professional looking designs.

Using the Form Designer, you are able to configure the properties for the form and the 
 controls that are on the form.

Property Description

Anchor Gets or sets which edges of the control are anchored to the edges of its 
container

BackColor Gets or sets the background color for the control

BackgroundImage Gets or sets the background image displayed in the control

CanFocus Gets a value indicating whether the control can receive input focus

CanSelect Gets a value indicating whether the control can be selected

Enabled Gets or sets a value indicating whether the control can respond to user 
interaction

Focused Gets a value indicating whether the control can have input focus

Font Gets or sets the font of the text displayed by the control

ForeColor Gets or sets the foreground color of the control

TABLe 9-2 System.Windows.Forms.Control class properties

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



544 | Chapter 9: Introduction to Windows Programming

Table 9-3 includes a short list of methods in the System.Windows.Forms.Control 
class that derived classes inherit. You should explore the online documentation 
available in Visual Studio to learn about other members. All of the information from 
Tables 9-2 and 9-3 is developed from the Visual Studio MSDN documentation.

Method Description

Focus( ) Sets the input focus to the control

Hide( ) Conceals the control from the user

Select( ) Activates a control

Show( ) Displays the control to the user

TABLe 9-3 System.Windows.Forms.Control methods

Property Description

Location Gets or sets the coordinates of the upper-left corner of the control relative to 
the upper-left corner of its container

Name Gets or sets the name of the control

Size Gets or sets the height and width of the control

TabIndex Gets or sets the tab order of the control within its container

Text Gets or sets the text associated with the control

Visible Gets or sets a value indicating whether the control is displayed

© Cengage Learning

TABLe 9-2 System.Windows.Forms.Control class properties (continued )

The Control class has over 75 properties and over 100 methods. Not all are useful 
for every class that derives from it. Thus, you will not see all of the Control members 
listed in the Properties window for classes that derive from it. For example, the Label 
object has its own Image, ImageIndex, and ImageList properties. It does not 
use Control’s BackgroundImage method to get or set its background image.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 545

9

The Show( ) method functions the same way as setting the Visible property to 
true; Hide( ) does the same thing as setting the Visible property to false. Show-
ing a control is equivalent to setting the Visible property to true. After the Show( ) 
method is called, the Visible property returns true until the Hide( ) method is 
called. When you invoke the Focus( ) method with an object such as a textbox, the 
cursor is positioned on that object. This is very useful when you have a control the 
user will be typing data into. You will be reading about textboxes later in this chapter.

The System.Windows.Forms.Control class also has a number of predefined 
events, many of which you will examine in Chapter 10. The System.Windows.
Forms.Control click events will be used in this chapter with Button objects.

Derived Classes of the System.Windows.Forms.Control Class
All the controls that you add to a form are objects or instances of one of the .NET pre-
defined classes. Figure 9-11 identifies some of the basic user interface controls that can 
be added to a form. Look at each of the controls. They are named and briefly described.

Figure 9-11 GUI controls

One of the most powerful features of the Visual Studio IDE is the extensive help  available. You 
can access Visual Studio’s online MSDN documentation web page for help or use installed 
offline help. Manage help settings from the Help menu option. You choose Launch in 
Browser or Launch in Help Viewer from the Set Help Preference menu option. Open the 
help window using Ctrl+F1, V. You can also position your cursor over controls and click on 
the control or properties and press F1 to cause the documentation to pop up.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



546 | Chapter 9: Introduction to Windows Programming

In the sections that follow, these GUI components are discussed in detail, and you will 
create a small GUI application that can be used to compute the tax due on a purchase.

LABeL

As the name implies, Label objects are normally used to provide descriptive text or 
labels for another control. They can also be used to display information at run time. 
Using Visual Studio, you can drag and drop the Label object onto your form. After 
it is added, you can set its properties to customize it for your application. The actual 
text caption that appears on the Label control object is placed there using the Text 
property. The TextAlign property enables you to position the caption within the 
label control area. The Label object can be programmed to be visible based on 
run time dynamics using the Visible property. By default, the Visible property 
is set to true. Font, Location, and any of the other Control properties given in 
Table 9-2 can be modified using the Form Designer in Visual Studio.

If you prefer, you can manually add statements to instantiate and place control objects 
on your Windows forms, instead of using the Form Designer in Visual Studio. As long 
as the System.Windows.Forms namespace is imported and referenced, you can 
create a Label object manually (without having to qualify the name fully) by calling 
the default constructor and instantiating an object as follows:
Label labelName = new Label( );

If you add a control such as a Label or Button object manually, a second step 
is required. To make the label viewable on the form, it must be added to the Form 
object. This is accomplished as follows:
this.Controls.Add(labelName);

When a form is created, it includes an instance of the ControlCollection class. This 
class is used to manage the controls that are added to the form. The  ControlCollection 
class has a special inherited property named Controls that can be used to get the col-
lection of controls on the form. The ControlCollection class also has methods such 
as Add( ), which adds controls to a form; Clear( ), which removes all controls; and 
Remove( ), which removes a specific control from a form.

If you use Visual Studio to add your controls, you do not have to worry about all 
the details of getting the control registered with the ControlCollection object, 
because that code is added automatically for you. This is certainly the easiest, most 
efficient approach, and is the method used for the remainder of this chapter.

CreATiNg A TAXAPP FOrM

To experience adding labels and changing their properties, a Visual Studio project 
named TaxApp has been created. Table 9-4 lists the properties set for the Form object.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 547

9

ADDiNg LABeL OBJeCTS TO YOur TAXAPP FOrM

Four Label objects are dragged to the form using the Label icon in the Toolbox. 
Figure 9-12 shows the Label objects that are added and formatted.

Property Changes with explanation

BackColor Selected LightSkyBlue from the Web tab; could have typed an RGB code such as 192, 
192, 255 for that selection

Font Selected Microsoft Sans Serif, regular, 12 point; changed the font on the form, so that all 
controls added to this container would have this value set

Size Changed the size of the window to 320, 300

Text Typed "Windows Tax App" for the title bar caption

© Cengage Learning

TABLe 9-4 TaxApp Form1 properties

Figure 9-12 Formatting Label objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



548 | Chapter 9: Introduction to Windows Programming

The Text property for each label is selected and values typed. Each of the individual 
objects needs to be resized so that the text can be displayed. The label4 object, 
which holds the heading “Tax Calculator” for the form, Font property is set to a size 
of 14 points with a bold style. This is done by clicking on the ellipsis beside the Font 
property. A font dialog box is revealed. Bold is selected as the font style and the size 
was set to 14. The TextAlign property for label1 is set to TopCenter.

After label2, label3, and label4 object’s Text properties are changed and they 
are sized properly, the Align option from the Format menu can be used to line them 
up in the same general area. Using the SnapLines, controls can be more easily aligned 
when they are initially added to the form. If you need to use the Align option, you can 
hold the Ctrl key and click on each of the objects you want to format. An alternate 
approach is to hold down the left mouse button and use the mouse to draw a box 
around the objects to be impacted. When you release the mouse button, you should 
ensure that the correct objects are selected.

If you select too many objects, deselect one or more by pressing the Ctrl key and clicking 
on the objects to be deselected. You also have an Undo option under the Edit menu, which 
enables you to back out of a step.

While label2, label3, and label4 are still selected, the vertical spacing between 
the labels is formatted using Format, Vertical Spacing, and Make Equal. This is 
much simpler than trying to align your objects visually and drag them to new loca-
tions. As illustrated in Figure 9-12 several controls were selected and then they were 
all aligned on the left using Format, Align, Lefts.

One additional Label object, label5, is added to the TaxApp form container for 
the actual tax percentage amount. Because the tax rate is a constant value, the num-
ber can be placed on the form at design time. The number can also be used in calcula-
tions. This way, users are not required to enter the value.

A good design principle to follow is to keep data entry to a minimum. Limit the 
amount of typing required by users and do not have them enter values that can 
be calculated or obtained from other sources. This reduces the chances that 
typing errors will corrupt your solutions. It also reduces the amount of coding 
that might have to be done to deal with data entered in inconsistent formats. 
If you were to ask users to enter the tax rate for seven-and-one-half percent, 
one user might enter 0.075; others might enter 7.5%, 7.50%, 7.5, or 07.50. Entries 
stored as constants eliminate the need to program for these potential formatting 
inconsistencies.

After label5 is added to the form to the right of Tax Percentage label, its properties 
are changed, as given in Table 9-5.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 549

9

Because only one label, lblTaxPercent, is programmed for functionality with this 
application, it is the only label named. The Name property of the other Label objects 
are not changed. The default identifier names (label1, label2, . . .) are left as is.

Property Changes with explanation

BackColor Selected medium blue from Custom tab; changed the value to 50, 50, 192 (RGB code for 
that selection)

Font Selected style of bold italic

ForeColor Selected LightBlue from the Web tab

Name lblTaxPercent

Text Typed "7.5%"

© Cengage Learning

TABLe 9-5 TaxApp label5 object properties

Labels are sometimes used to display messages to users during run time. They are  especially 
useful for displaying error messages or text that does not appear with each run of an  application. 
However, labels are most often used primarily to describe other controls on the form.

Set the value of the PasswordChar property to '0' if you do not want the control to 
mask characters as they are typed.

TeXTBOX

The TextBox control object, shown in Figure 9-11, can be used to enter data or dis-
play text during run time. This is probably the most commonly used control because 
it can be used for both input and output. Like most other objects of the Control 
class, the Text property is used to get or set the string value in the control. Nor-
mally, a single line of text is shown in a TextBox object; however, by changing the 
Multiline property to true, the TextBox object can show several lines. There is 
also a ScrollBars property. When this property is used in combination with setting 
the Multiline property to true, you can designate whether vertical or horizontal 
scroll bars are added. You can also restrict the number of characters the TextBox 
object can display by typing a value for the MaxLength property.

The PasswordChar property is used with TextBox objects and is fun to work with. 
By typing a single character such as an asterisk ( ), you can mask the characters entered 
by the user. This is perfect for creating or entering data such as passwords. The 
 PasswordChar property only works when the Multiline property is set to false.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



550 | Chapter 9: Introduction to Windows Programming

Another property, CharacterCasing, can be set so that all characters retrieved by 
the TextBox.Text property are converted into uppercase or lowercase. This is use-
ful when you are comparing the results entered from a user against a specific value. 
By using the CharacterCasing property, you eliminate many of the extra compari-
sons that might be necessary.

There are many interesting properties that can be used with a TextBox object. 
Table 9-6 includes some of them. They were adapted from the Visual Studio MSDN 
documentation.

Property Description

AcceptsReturn Gets or sets a value indicating whether the Enter key creates a new line of text 
in a multiline TextBox control

AcceptsTab Gets or sets a value indicating whether the Tab key inserts a tab into text of a 
multiline TextBox control

CharacterCasing Gets or sets whether the TextBox control modifies the case of the 
characters as they are typed

Lines Gets or sets the lines of text in a TextBox control

MaxLength Gets or sets the maximum number of characters the user can type or paste into 
the TextBox control

Modified Gets or sets a value indicating that the TextBox control has been modified 
since creation or when its contents were last set

Multiline Gets or sets a value indicating whether this is a multiline TextBox control

PasswordChar Gets or sets the character used to mask characters in a single-line TextBox 
control

ReadOnly Gets or sets a value indicating whether text in the TextBox is read-only

ScrollBars Gets or sets which scroll bars should appear in a multiline TextBox control

TextAlign Gets or sets how text is aligned in a TextBox control

WordWrap Indicates whether a multiline TextBox control automatically wraps words 
to the beginning of the next line

© Cengage Learning

TABLe 9-6 TextBox properties

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 551

9

Remember that in addition to the TextBox properties listed in Table 9-6, all the 
 Control properties and methods given in Tables 9-2 and 9-3 are available for use 
with TextBox objects. Several other methods including AppendText( ), which 
adds text to the end of the current text of the TextBox, and Clear( ) can be used 
with TextBox objects. There are many interesting events that can be responded to 
with TextBox objects, and you will read about many of them in Chapter 10.

ADDiNg TeXTBOX OBJeCTS TO YOur TAXAPP FOrM

Two TextBox objects are added to the TaxApp form. The first is used as an input con-
trol allowing the user to enter the total purchase amount. The second is used to display 
the results of the calculation. Because the values entered or displayed in the  TextBox 
objects must be referenced programmatically, one of the first properties to set is the 
Name property. textBox1 is renamed txtPurchase, and textBox2 is renamed 
 txtTotalDue. If you want blanks in TextBox objects, you do not have to clear values. 
By default, the Text property for the TextBox object is set to an empty string.

The Modified property is not listed in the Properties window because it is used to get 
or set the value indicating whether the contents of the text box control have been modified 
by the user since the control was created or its contents were last set.

Remember that to set properties, the Properties window must be active. If you do not see 
it on your screen, it can be displayed from the View menu. Then click on the control that 
you want to change and move down the list of properties in the Properties window until 
you locate the property. Type or select the new setting.

Object Property Changes with explanation

textBox1 Name Typed txtPurchase

textBox2 Name Typed txtTotalDue

txtPurchase TextAlign Selected Right

txtTotalDue Enabled Selected false

txtTotalDue TextAlign Selected Right

© Cengage Learning

TABLe 9-7 TaxApp TextBox objects property changes

Table 9-7 lists the other properties set for the two TextBox objects.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



552 | Chapter 9: Introduction to Windows Programming

As you build your Windows applications, in addition to seeing what the output looks 
like in the Form Designer, you can run the application at any stage as soon as you 
start the project.

The output produced from TaxApp (after adding the Label and TextBox objects and 
setting their properties) is shown in Figure 9-13.

Figure 9-13 TaxApp with Label, TextBox, and Button objects

If you accidentally double-click on the form when you are using the Form Designer, it brings 
up the Code Editor. Entering the Code Editor this way has the undesirable side effect of 
 creating a Form1_Load( ) method heading for you. The creation of the event does not 
 create an error when you run your application, but it clutters your program listing with an 
empty method and a statement that registers the event. If you remove the method heading, 
you should also remove the statement that registered the form load event (this.Load 
+= new System.EventHandler(this.Form1_Load);) in the Form1.Designer.
cs file. This same side effect occurs if you double-click other controls such as labels or text 
boxes. The label_click( ) or textbox_textChanged( ) methods are added.

As controls, such as text boxes and labels, are placed on the form, they are aligned and 
sized using Format, Align; Format, Make Same Size; Format, Center in Form; and 
the other options available from the Format menu. You are encouraged to experiment 
and learn to use these options.

The txtPurchase TextBox object’s TabIndex property is also set to 1. You may 
need to realign it with the label1 text heading. You can do this by selecting both 
control objects and clicking Format, Align, Centers.

At design time, you change the Text property by pointing and clicking in the Text 
property box. However, how do you use the Total Amount value entered by the user? 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 553

9

How do you place text in the TextBox object beside the Total Due Label object? 
This cannot be done at design time. It needs to change based on the value the user 
enters for Total Amount. You are about to experience the programming power of using 
C# and Visual Studio. Any and all of the properties you changed during design can be 
accessed as part of a program statement and changed dynamically when your program 
runs. To experience this powerful characteristic of C#, you will now add a button that 
performs some calculations and displays the result in the Total Due TextBox object.

BuTTON

Button objects are added to your form to increase functionality. They enable a 
user to click a button to perform a specific task. When it is clicked by a user, the 
event- handler method is automatically called up—if the button has an event-handler 
method—and is registered as an event to which your program is planning to respond. 
You place code in the event-handler method to perform any action you choose. A 
click event is normally associated with a mouse click; however, the click event can be 
fired when the Enter key or Spacebar is pressed if the button has the focus.

Having focus means being selected for the next activity. When an object has focus, it 
often appears different from the other controls. It can appear highlighted or selected with  
a box surrounding it.

You can also set the tab order from the Properties window or by writing program 
 statements. A Label object participates in the tab order in that you can set its 
TabIndex. However, labels never receive focus—meaning that the control is not stopped 
at when you press the Tab key. Instead, it is skipped and the next control, that can take 
focus, is selected.

Like other control objects, Button objects have a number of properties, methods, 
and events. They also inherit the properties, methods, and events listed previously in 
Tables 9-2 and 9-3 from the Control class. The Enabled property, inherited from 
the Control class, can be used to get or set a value indicating whether the control 
can respond to user interaction. The Focused property is used to determine whether 
the control has focus or is the one currently selected. The Focus( ) method from 
the Control class is useful with Button objects to set the input focus to that con-
trol. TabIndex, also inherited from Control, is useful for setting or getting the tab 
order of the controls on a form container. Selecting Tab Order from the View menu 
shows the sequential order of how focus moves from control to control if the Tab key 
is used. By default, the tab order is the same order as the order of how the controls are 
added to the form. You can change this order when you are in View, Tab Order by 
clicking the controls sequentially to establish the new order. As you do this, a number 
representing the TabIndex property is displayed beside the control.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



554 | Chapter 9: Introduction to Windows Programming

For a complete list and description of the Button members, you should explore the 
C# documentation provided with Visual Studio.

ADDiNg BuTTON OBJeCTS TO YOur TAXAPP FOrM

A Button object is dragged to the bottom of the form and is center aligned 
with the center of label1, the heading for the form. This is done using the Format, 
 Center in Form, Horizontally option. The Button object’s Name property is set to 
 btnCompute. As noted previously, when you plan to name a control object, this 
should be one of the first things that is done after it is placed on the form container. 
Under most circumstances, it will not create problems for you if the Name is not 
set first. However, with buttons, if you add a click event before naming the control, 
you may have to go into the code generated by Form Designer and manually modify 
the name of the event-handler methods and registrations to have them match the 
new button name. Table 9-8 lists the properties that are set at design time for the 
 button1 object.

Property Changes with explanation

Name Typed btnCompute

BackColor Selected Navy

Font Selected style of bold, point size of 14

ForeColor Selected Yellow

TabIndex 2

Text Typed "Compute"

© Cengage Learning

TABLe 9-8 TaxApp button1 properties

After setting the properties, you probably need to resize the Button object so 
that the text is displayed properly. Remember that it does matter what the GUI 
looks like.

Add a Click event for the btnCompute object. This can be done by double-clicking 
on the actual Button object in the Form Designer. Another option is to display all 
the events using the lightning bolt on the Properties window and then double-click 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 555

9

on the Click event, as illustrated in Figure 9-14. Double-clicking a control allows the 
programmer to program the default event. Clicking the lightning bolt allows a choice 
of all relevant events.

Figure 9-14 Events

If you add the button click event using the list of available events, as shown in Figure 9-14, 
you need to select the Properties icon in that window to reshow the list of properties. The 
Properties icon appears to the left of the lightning bolt.

When you double-click on the Click event, you are taken to the btnCompute_Click( )  
method in the Code Editor window. This is where you write your program statements 
describing the actions to be taken when the user clicks the Compute button.

As you think about what program statements need to be written and in what order, 
you should understand that the first action should be retrieval of the values that are 
entered into the txtPurchase TextBox object. The Text property can be used 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



556 | Chapter 9: Introduction to Windows Programming

to accomplish this. Values retrieved with the Text property are of string type 
and require conversion before arithmetic is performed. A loop can be added to 
ensure that numeric characters are entered prior to the value being parsed. If a non-
numeric  character is entered, a message box is displayed reminding the user that 
numeric  characters should be entered. Using the Text property, zeros replace the 
invalid  characters. The Focus( ) method is then executed on the txtPurchase con-
trol to cause the cursor to be positioned in that textbox. The statements that appear 
in Example 9-4 can be added to the btnCompute_Click( ) method to retrieve the 
purchase price and store it in a double variable for processing.

EXAMPLE 9-4

private void btnCompute_Click(object sender, System.EventArgs e) 
{
     string inValue;
     double purchaseAmt;
     while (double.TryParse(txtPurchase.Text, 
                        out purchaseAmt) == false)
     {
          MessageBox.Show("Value entered must be numeric");
          txtPurchase.Text = "0.0";
          txtPurchase.Focus( );
     }
          // More program statements. . .omitted

You will recall that the actual percentage value associated with the tax rate is dis-
played in the Label object lblTaxPercent. The Text property for this object 
was used to set the value. The Text property can also be used to get the string 
value. However, in addition to the numeric amount representing the tax rate per-
centage, a special character, the percent symbol (%), was used to set the value. It is 
displayed and is retrieved with the Text property.

You learned about many string processing methods in Chapter 8. One of them listed 
in Table 8-2 is the Remove( ) method. It can be used to remove characters from a 
string beginning at a specific location. You also learned in Chapter 8 about the 
Length property. Length is used to return the number of characters in the string. 
The percent symbol (%) is the last character in the string. Remember that the first 
character for a string is indexed by zero. Thus, the last character of the string, 
where the '%' character is located, is indexed by Length - 1.

Two arguments are included with the Remove( ) method. The first argument 
is the index of where character removal should begin. For this example, removal 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 557

9

should start at Length - 1. The second argument, 1, specifies how many char-
acters to remove. Only one character, the '%', needs to be removed before 
converting the string into a double type for calculations. The statements in 
Example  9-5 are added to the  btnCompute_Click( ) method to retrieve and 
place the numeric value representing the tax percentage rate into the variable 
identified by percent.

EXAMPLE 9-5

double percent;
inValue = lblTaxPercent.Text;   // inValue previously declared as string 
inValue = inValue.Remove(inValue.Length - 1, 1); 
percent = double.Parse(inValue) / 100;

The last three lines in Example 9-5 could be written in one statement, as shown in 
Example 9-6. Both produce the same results.

EXAMPLE 9-6

percent = (double.Parse(lblTaxPercent.Text.Remove(
                 lblTaxPercent.Text.Length - 1, 1))) / 100;

Now that you have both values stored in the double variable, simple arithmetic 
can be performed and the result displayed in the txtTotalDue TextBox object. 
Example 9-7 includes those statements.

EXAMPLE 9-7

double ans; 
ans = (purchaseAmt * percent) + purchaseAmt; 
txtTotalDue.Text = string.Format("{0:C}",ans);

Notice that Examples 9-5 and 9-6 invoked the Parse( ) method as opposed to the 
TryParse( ) method. This is because there is no user input; thus, no concern that 
a non-numeric character might be entered. Figure 9-15 shows the output produced 
after the user enters a value and clicks the Compute button.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



558 | Chapter 9: Introduction to Windows Programming

One additional property was set for the form to allow the Enter key to be associated 
with the Compute button. AcceptButton was set to btnCompute. Now pressing the 
Enter key is the same as clicking the Compute Button object. The complete pro-
gram listing for TaxApp is shown in Example 9-8. Remember that the Form Designer 
automatically generated the code for the program based on dropping and dragging 
controls from the Toolbox window and setting properties using the Properties win-
dow during design. The body of the btnCompute_Click( ) is the only code written 
manually.

Example  9-8 shows program statements for the source code files. The application 
is divided into three files. Program.cs was renamed TaxApp.cs because it con-
tains the Main( ) method where execution begins. No new code was added to the 
 TaxApp.cs file.

Figure 9-15 Tax calculator output

For the TaxApp application and other projects illustrated in Chapters 9 and 10, a  number 
of using statements were deleted since the TaxApp application did not need to 
 reference their classes. Since no new code was added to the file holding Main ( ), it is 
not shown below.

Form1.cs contains the partial class definition and includes a call to the 
 InitializeComponent( ) method. Form1.cs also includes methods written to 
handle any events of interest. Form1.Designer.cs is the second partial class and 
contains the rest of the statements defining the Form object. Form1.Designer.cs  
holds the Windows generated code responsible for instantiating controls and set-
ting properties for those controls on the form. Tables 9-4, 9-5, 9-7, and 9-8 show 
the properties set for the Form, Label, Textbox and Button objects for the TaxApp 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 559

9

application. The auto-generated code for those property changes are placed in the 
InitializeComponent( ) method of the Form1.Designer.cs file. That file is 
shown first in Example 9-8.

EXAMPLE 9-8

/* TaxApp            Author:  Doyle
 * A Tax calculator is produced. Labels are used 
 * to display descriptive captions. A textbox 
 * object is used for input and displaying results. 
 * One button click event method is programmed.
 */

// Form1.Designer.cs 
namespace TaxApp
{
     public partial class Form1 
     {
          // Required designer variable.
            private System.ComponentModel.IContainer components = null;
          // Clean up any resources being used. 
          protected override void Dispose(bool disposing) 
          {
               if (disposing && (components != null))
               {
                    components.Dispose( );
               }
               base.Dispose(disposing);
          }
          #region Windows Form Designer generated code
          // Required method for Designer support - do not modify 
          // the contents of this method with the code editor. 
          private void InitializeComponent( )
          {
               this.label1 = new System.Windows.Forms.Label( );
               this.label2 = new System.Windows.Forms.Label( );
               this.label3 = new System.Windows.Forms.Label( );
               this.label4 = new System.Windows.Forms.Label( );
               this.label5 = new System.Windows.Forms.Label( );
                this.txtPurchase = new System.Windows.Forms.TextBox( ); 
                this.txtTotalDue = new System.Windows.Forms.TextBox( ); 
                       this.btnCompute = new System.Windows.Forms.Button( );
               this.SuspendLayout( );
               //
               // label1
               //
               this.label1.AutoSize = true;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



560 | Chapter 9: Introduction to Windows Programming

                          this.label1.Location = new System.Drawing.Point(37, 51); 
               this.label1.Name = "label1";
               this.label1.Size = new System.Drawing.Size(120, 20); 
               this.label1.TabIndex = 0;
               this.label1.Text = "Total Amount:";
               //
               // label2
               //
               this.label2.AutoSize = true;
               this.label2.Location = new 
                    System.Drawing.Point(37, 98); 
               this.label2.Name = "label2";
               this.label2.Size = new System.Drawing.Size(133, 20); 
               this.label2.TabIndex = 1;
               this.label2.Text = "Tax Percentage:";
               //
               // label3
               //
               this.label3.AutoSize = true;
                  this.label3.Location = new System.Drawing.Point(37, 145);
               this.label3.Name = "label3";
               this.label3.Size = new System.Drawing.Size(90, 20);
               this.label3.TabIndex = 2;
               this.label3.Text = "Total Due:";
               //
               // label4
               //
               this.label4.AutoSize = true;
               this.label4.Font = new 
                    System.Drawing.Font("Microsoft Sans Serif",
                    14F, System.Drawing.FontStyle.Bold,
                    System.Drawing.GraphicsUnit.Point, (byte)(0)));
                   this.label4.Location = new System.Drawing.Point(109, 13); 
               this.label4.Name = "label4";
               this.label4.Size = new System.Drawing.Size(128, 19); 
               this.label4.TabIndex = 3;
               this.label4.Text = "Tax Calculator";
               this.label4.TextAlign =
                    System.Drawing.ContentAlignment.TopCenter;
               //
               // lblTaxPercent
               //
               this.lblTaxPercent.AutoSize = true;
               this.lblTaxPercent.BackColor = 
                    System.Drawing.Color.RoyalBlue;
               this.lblTaxPercent.Font = new 
                    System.Drawing.Font("Microsoft Sans Serif",
                    12F, ((System.Drawing.FontStyle)
                    ((System.Drawing.FontStyle.Bold |
                    System.Drawing.FontStyle.Italic))),

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 561

9

                     System.Drawing.GraphicsUnit.Point, 
                     ((byte)(0)));
                   this.lblTaxPercent.ForeColor = 
                         System.Drawing.Color.LightBlue;
               this.lblTaxPercent.Location = new 
                    System.Drawing.Point(185, 98); 
               this.lblTaxPercent.Name = "lblTaxPercent";
               this.lblTaxPercent.Size = new 
                    System.Drawing.Size(48, 20); 
               this.lblTaxPercent.TabIndex = 4;
               this.lblTaxPercent.Text = "7.5%";
               //
               // txtPurchase
               //
               this.txtPurchase.Location = new
                    System.Drawing.Point(180, 50);
               this.txtPurchase.Name = "txtPurchase";
               this.txtPurchase.Size = new 
                    System.Drawing.Size(100, 26); 
               this.txtPurchase.TabIndex = 5;
               this.txtPurchase.TextAlign =
                    System.Windows.Forms.HorizontalAlignment.Right; 
               //
               // txtTotalDue
               //
               this.txtTotalDue.Enabled = false;
               this.txtTotalDue.Location = new
                    System.Drawing.Point(180, 144);
               this.txtTotalDue.Name = "txtTotalDue";
               this.txtTotalDue.Size = new 
                    System.Drawing.Size(100, 26); 
               this.txtTotalDue.TabIndex = 6;
               this.txtTotalDue.TextAlign =
                    System.Windows.Forms.HorizontalAlignment.Right;
               //
               // btnCompute
               //
               this.btnCompute.BackColor =
                    System.Drawing.Color.Navy; 
               this.btnCompute.Font = new
                    System.Drawing.Font("Microsoft Sans Serif", 14F, 
                    System.Drawing.FontStyle.Bold,
                    System.Drawing.GraphicsUnit.Point, ((byte)(0))); 
               this.btnCompute.ForeColor =
                    System.Drawing.Color.Yellow;
               this.btnCompute.Location = new
                    System.Drawing.Point(114, 196);  
               this.btnCompute.Name = "btnCompute"; 
               this.btnCompute.Size = new
                    System.Drawing.Size(119, 34);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



562 | Chapter 9: Introduction to Windows Programming

               this.btnCompute.TabIndex = 2;
               this.btnCompute.Text = "Compute";
               this.btnCompute.UseVisualStyleBackColor = false; 
               this.btnCompute.Click += new
                    System.EventHandler(this.btnCompute_Click); 
               //
               // Form1
               //
               this.AcceptButton = this.btnCompute;
               this.AutoScaleDimensions = new
                    System.Drawing.SizeF(10F, 20F); 
               this.AutoScaleMode =
                    System.Windows.Forms.AutoScaleMode.Font;
               this.BackColor = System.Drawing.Color.LightSkyBlue;
               this.ClientSize = new System.Drawing.Size(310, 242);
               this.Controls.Add(this.btnCompute);
               this.Controls.Add(this.txtTotalDue);
               this.Controls.Add(this.txtPurchase);
               this.Controls.Add(this.label5);
               this.Controls.Add(this.label4);
               this.Controls.Add(this.label3);
               this.Controls.Add(this.label2);
               this.Controls.Add(this.label1);
               this.Font = new 
                    System.Drawing.Font("Microsoft Sans Serif",
                    12F, System.Drawing.FontStyle.Regular,
                    System.Drawing.GraphicsUnit.Point,
                      ((byte)(0))); 
               this.Margin = new System.Windows.Forms.Padding(4);
               this.Name = "Form1";
               this.Text = "Windows Tax App";
               this.ResumeLayout(false);
               this.PerformLayout( );
          }
          #endregion

          private System.Windows.Forms.Label label1;
          private System.Windows.Forms.Label label2; 
          private System.Windows.Forms.Label label3; 
          private System.Windows.Forms.Label label4; 
          private System.Windows.Forms.Label lblTaxPercent; 
          private System.Windows.Forms.TextBox txtPurchase; 
          private System.Windows.Forms.TextBox txtTotalDue; 
          private System.Windows.Forms.Button btnCompute;
     }
}  // End of Form1.Designer.cs file

// Form1.cs
using System;               // Extra using statements omitted.
using System.Windows.Forms;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

Programming Example: TempAgency Application | 563

namespace TaxApp
{
     public partial class Form1 : Form 
     {
          public Form1( )
          {
               InitializeComponent( ); 
          }

          private void btnCompute_Click(object sender, EventArgs e) 
          {
               string inValue;
               double purchaseAmt,
                      percent,
                      ans;
               while (double.TryParse(txtPurchase.Text, 
                                        out purchaseAmt) == false) 
               {
                         MessageBox.Show("Value entered must be numeric"); 
                    txtPurchase.Text = "0.0";
                    txtPurchase.Focus( );
               }
               inValue = lblTaxPercent.Text;
               inValue = inValue.Remove(inValue.Length - 1, 1); 
               percent = double.Parse(inValue) / 100; 
               ans = (purchaseAmt * percent) + purchaseAmt; 
               txtTotalDue.Text = string.Format("{0:C}",ans); 
          }
     }
}

This example demonstrates the design and implementation of a GUI for a  Windows 
application. Two classes are constructed to separate the business logic from 
the presentation details. The first class defines a template for a typical payroll 
employee object. It includes the behaviors for determining withholding deduc-
tions and calculating the net take-home pay; thus, the business logic is described in 
this Employee class. The other class instantiates an object of the Employee 
class and instantiates a Windows Form object to represent the GUI. Using the 
.NET predefined Control classes, labels, text boxes, and button objects are added 
to the Form object. The problem specification for the TempAgency application is 
shown in Figure 9-16.

PrOgrAMMiNg eXAMPLe: TempAgency Application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



564 | Chapter 9: Introduction to Windows Programming

ANALYZE THE 
PROBLEM

You should review the problem specification in Figure  9-16 and make sure you 
understand the problem definition. Several values will be entered into the program 
to represent the name, number of hours worked, and number of dependents for an 
employee. The business logic is separated from the user interface by using two sep-
arate classes. This enables other applications to use the Employee class. Actual 
checks for the XYZ JobSource temp agency may need to be printed, payroll records 
saved, and other reports generated. By separating the logic from the design of the 
GUI presentation, the Employee class can be reused for many other applications.

Figure 9-16 Problem specification for TempAgency

©
 C

en
ga

ge
 L

ea
rn

in
g

Table 9-9 lists the data field members needed for the Employee class. In addition 
to these entered values, instance variables to store deductions and pay amounts 
are needed.

DATA

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

For this example, several values such as hourly rate, Social Security, and federal 
withholding tax rates are the same for all employees. The user does not have to 
enter these values at run time; instead, constants can be defined for the values in 
the Employee class in the methods that use their values. Any objects instantiated 
of that class can then have access to the amounts, as given in Table 9-10.

Data description Type identifier Value

Hourly rate double RATE 150.00

Federal tax deduction 
percentage

double FEDERAL_TAX 0.25

Social Security deduction 
percentage

double SOCIAL_SECURITY_RATE 0.0785

Dependent allowance 
percentage

double DEPENDENT_ALLOWANCE 0.0575

Agency fee for the contract double AGENCY_CHARGE 0.13

TABLe 9-10 Constant field members for the Employee class

Data description Type identifier

Employee last name string employeeLastName

Employee first name string employeeFirstName

Number of dependents int noOfDependents

Number of hours worked double noOfHours

TABLe 9-9 Instance field members for the Employee class

CONSTANTS

A second class is created for the user interface. This class allows the user to 
enter their name, number of dependents, and number of hours worked. Local vari-
ables must be declared to hold these values. The employee name can be entered 
as a single entry. Program statements should be written to separate the first name 
from last name. You almost always want to have last name separated from first 

Programming Example: TempAgency Application | 565

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



566 | Chapter 9: Introduction to Windows Programming

name to facilitate alphabetically ordering records. After values are entered and 
calculations performed, an area on the form displays the results. Thus, objects 
that can be used to display gross and net pay along with calculated deductions are 
needed. During design, a prototype is developed to determine the location of the 
objects on the form.

DESIGN A 
SOLUTION

The desired output is to display the gross and net pay along with deductions. 
 Figure 9-17 shows a prototype for the form. It illustrates what types of objects are 
needed and gives an approximation of where they should be placed.

Figure 9-17 Prototype for TempAgency example

Textbox
objects

Label
objects

Button
objects

©
 C

en
ga

ge
 L

ea
rn

in
g

During design, it is also useful to determine which object types are used to create 
the interface. The GUI is used for both input and output of data. Not all objects 
show on the screen at the same time. The labels and text boxes below the buttons 
are initially set to be invisible to the user. Only after the Calculate button is clicked 
do those objects show on the monitor. When they show, the labels and text boxes 
associated with the number of hours worked and the number of dependents are 
hidden.

When the Reset button is pressed, the text box for the name is cleared and the 
labels and text boxes above the buttons show. All objects below the buttons are 
hidden.

An abstraction for a typical employee has both data and behavior characteristics 
that can be identified. For this application, one of the major actions or behaviors 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

of an object of the Employee class is to calculate the net pay using the num-
ber of hours and the number of dependents. These values can be retrieved from 
the TextBox objects. Methods to determine the deductions for the agency, Social 
Security, and federal tax contributions are needed, as well as a method to calcu-
late the net take-home pay. Class diagrams are used to help design and document 
these characteristics. Figure 9-18 shows the class diagrams for the TempAgency 
example.

Figure 9-18 Class diagrams for TempAgency example

©
 C

en
ga

ge
 L

ea
rn

in
g

The class diagrams do not show the properties needed or the local variables that 
might be needed by specific class methods.

During design, it is important to develop an algorithm showing the systematic pro-
cess for the business logic of the application. Pseudocode for the Employee meth-
ods is shown in Figure 9-19.

Programming Example: TempAgency Application | 567

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



568 | Chapter 9: Introduction to Windows Programming

You should always desk check your design. One way to do this is to develop a test 
plan of values to use for testing. A table with columns for all entered and calcu-
lated values can be developed, as given in Table 9-11. After you identify values to 
be tested, use a calculator to fill in the calculated values. Then, go back and reread 
the problem definition. Are those the correct calculated values? Notice that the 
test plan is developed before any actual coding. This ensures that you design the 
solution to take all possible situations into consideration.

Figure 9-19 Pseudocode for the Employee class for the TempAgency example

©
 C

en
ga

ge
 L

ea
rn

in
g

No Of Dependents No Of Hours gross socialSecurity federalTax agencyFee net

1 10 1500.00 117.75 353.44 195.00 833.81

0 40 6000.00 471.00 1500.00 780.00 3249.00

1 40 6000.00 471.00 1413.75 780.00 3335.25

2 40 6000.00 471.00 1327.50 780.00 3421.50

3 40 6000.00 471.00 1241.25 780.00 3507.75

6 20 3000.00 235.50 491.25 390.00 1883.25

4 40 6000.00 471.00 1155.00 780.00 3594.00

2 30 4500.00 353.25 995.63 585.00 2566.13

0 50 7500.00 588.75 1875.00 975.00 4061.25

2 50 7500.00 588.75 1659.38 975.00 4276.88

3 2 300.00 23.55 62.06 39.00 175.39

© Cengage Learning

TABLe 9-11 Desk check test plan of TempAgency example

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

After you implement your design, be sure to run and test your application using the 
values you identified when you developed the test plan. Compare the results you obtain 
during your desk check using a calculator with the output produced from your program.

CODE THE 
SOLUTION

After you complete the design and verify the algorithm’s correctness, it is time to 
translate the design into source code.

If you are using Visual Studio, much of the code for the user interface class can 
be generated for you by the Form Designer. It is important to make sure your 
GUI looks nice. As was noted earlier in the chapter, consistency and alignment 
of objects on the form are very important. Use of Align, Make Same Size, 
 Horizontal  Spacing,  Vertical Spacing, and Center in Form from the Format 
menu will greatly assist you.

Four separate files are created. Visual Studio creates three files for the user inter-
face; one additional file is needed for the Employee class. If you do not have 
Visual Studio, you can type assignment statements for the property values. For 
example, as shown in Table 9-12, to associate the enter key with a specific  button 
you could type
AcceptButton = btnCalculate;

The statement that the Visual Studio Form Designer generates when you use the 
Properties window to set the AcceptButton is
this.AcceptButton = this.btnCalculate;

Both produce the same result when the application is run. Thus, even though 
Visual Studio was used to produce the code listing that follows, the program state-
ments could all be written using an editor such as Notepad and executed from the 
DOS command line. Table 9-12 presents the different Control objects’ properties 
and values that are set at design time.

TABLe 9-12 Properties set for the TempAgency example 

Type of object identifier Property Value

Form Form1 Name TempAgencyForm

Form TempAgencyForm AcceptButton btnCalculate

Form TempAgencyForm BackColor blue (0,0,192)

Form TempAgencyForm CancelButton btnReset

(continues)

Programming Example: TempAgency Application | 569

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



570 | Chapter 9: Introduction to Windows Programming

Type of object identifier Property Value

Form TempAgencyForm Font ComicSansMS, size 12

Form TempAgencyForm ForeColor light yellow(255,255,192)

Form TempAgencyForm Text Typed "PayRoll App"

Label lblName Text Typed "Name: "

Label lblHours Text Typed "No. of Hours 
Worked: "

Label lblTitle Font Comic Sans MS, size 16, bold

Label lblTitle Text Typed "XYZ 
JobSource"

Label lblNet Text Typed "Net Pay: "

Label lblNet Visible False

Label lblFed Text Typed "Federal 
Ded.: "

Label lblFed Visible False

Label lblGross Text Typed "Gross Pay: "

Label lblGross Visible False

Label lblAgency Text Typed "Agency Fee: "

Label lblAgency Visible False

Label lblSoc Text Typed "Soc Sec 
Ded.: "

Label lblSoc Visible False

TABLe 9-12 Properties set for the TempAgency example (continued )

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

Type of object identifier Property Value

TextBox txtBxHours Text 0

TextBox txtBxHours TabIndex 1

TextBox txtBxHours TextAlign Right

TextBox txtBxNet Font Bold

TextBox txtBxName TabIndex 0

TextBox txtBxDep AcceptsReturn True

TextBox txtBxDep Text 0

TextBox txtBxDep TabIndex 2

TextBox txtBxDep TextAlign Right

TextBox txtBxGross TextAlign Right

TextBox txtBxGross Visible False

TextBox txtBxGross BackColor blue (192,192,255)

TextBox txtBxFed TextAlign Right

TextBox txtBxFed Visible False

TextBox txtBxFed BackColor blue (192,192,255)

TextBox txtBxSoc TextAlign Right

TextBox txtBxSoc Visible False

TextBox txtBxSoc BackColor blue (192,192,255)

TextBox txtBxAgency TextAlign Right

(continues)

TABLe 9-12 Properties set for the TempAgency example (continued )

Programming Example: TempAgency Application | 571

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



572 | Chapter 9: Introduction to Windows Programming

The final application listing appears in the following code segment. Two of the four 
source code files are shown. The Employee class, which contains the business 
logic, is shown first. Next the TempAgencyForm class is shown. Recall Visual 
Studio creates three separate .cs files when you create a simple Windows applica-
tion. Initially, these files are named Form1.cs, Form1.Designer.cs, and Program.cs. 
Program.cs contains the Main( ) method and is not shown below. No additional 
code was added to this file.

The other two files, Form1.cs and Form1.Designer.cs, both include partial class defi-
nitions for the Form1 class. The bodies for the methods, btnCalculate_Click( ), 
btnReset_Click( ), and setVisibility( ), were added to the generated code 
in the TempAgencyForm.cs. The contents of that file are shown after the Employee 
class.

Type of object identifier Property Value

TextBox txtBxAgency Visible False

TextBox txtBxAgency BackColor blue (192,192,255)

TextBox txtBxNet TextAlign Right

TextBox txtBxNet BackColor blue (192,192,255)

Textbox txtBxNet Visible False

Button btnCalculate Text Typed "Calculate 
Take Home Pay"

Button btnCalculate ForeColor Yellow (255, 255, 192)

Button btnCalculate BackColor blue (128,128,255)

Button btnReset Text Typed "Reset"

Button btnReset ForeColor Yellow (255, 255, 192)

Button btnReset BackColor blue (128,128,255)

© Cengage Learning

TABLe 9-12 Properties set for the TempAgency example (continued )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

Table 9-12 displayed the properties set for the controls added to the form. Those 
changes are placed in the TempAgencyForm.Designer.cs. This file stores only 
auto-generated code and since it is recommended that you never edit the .Designer.cs  
file, it is not shown.

When you create your application using Visual Studio, your solution might vary from what 
is shown in the sample code. For example, some of your property value settings might 
differ because you might drag and drop your controls to different locations, or you 
might select the controls in a different order. You might see more or different comments 
than what appears in the code listing. Also, because of space constraints, some lines of 
code must be formatted to appear on two or more lines.

/* Employee.cs                                    Author: Doyle
 * Employee class includes data characteristics of
 * name, employee number, number of dependents and
 * number of hours worked. Methods calculate
 * deductions for social security, federal tax, and
 * agency fee. Both Gross and Net Pay are returned.
 */
using System;
namespace PayRollApp
{
     public class Employee
     { 
          private string employeeFirstName;
          private string employeeLastName;
          private int noOfDependents; 
          private double noOfHours;

          //Default constructor 
          public Employee( )
          {
          }

          public Employee(string first, string last, int dep, double 
                          hours)
          {
                employeeFirstName = first; 
                employeeLastName = last;
                noOfDependents = dep;
                noOfHours = hours;
          }

          public Employee(string first, string last) 
          {
               employeeFirstName = first; 

Programming Example: TempAgency Application | 573

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



574 | Chapter 9: Introduction to Windows Programming

               employeeLastName = last;
          }

          public Employee(string first, string last, int dep)
          {
               employeeFirstName = first;
               employeeLastName = last; 
               noOfDependents = dep;
          }

          //Property used to access or change Employee First Name 
          public string EmployeeFirstName
          {
               set
               {
                    employeeFirstName = value;
               }
               get
               {
                    return employeeFirstName;
               }
          }

          //Property used to access or change Employee Last Name
          public string EmployeeLastName
          {
               set
               {
                    employeeLastName = value;
               }
               get
               {
                    return employeeLastName;
               }
          }

          //Property used to access number of dependents 
          public int NoOfDependents
          {
               set
               {
                    noOfDependents = value;
               }
               get
               {
                    return noOfDependents;
               }
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

          //Property used to access or change hours worked 
          public double NoOfHours
          {
               set
               {
                    noOfHours = value;
               }
               get
               {
                    return noOfHours;
               }
          }
         
          //Using the same constant value for a flat hourly rate, 
          //calculate gross pay prior to any deductions
          public double DetermineGross( )
          {
               const double RATE = 150.00;
               return noOfHours * RATE;
          }

          //Using the same constant value for the Commission Rate
          //for all employees, calculate commission due employee 
          public double DetermineAgencyFee( )
          {
               const double AGENCY_CHARGE = 0.13;
               return DetermineGross( ) * AGENCY_CHARGE;
          }

          //Calculate federal tax due 
          public double DetermineFederalTax( )
          {
               const double FEDERAL_TAX = 0.25; 
               const double DEPENDENT_ALLOWANCE = 0.0575; 
               double gross;
               gross = DetermineGross( ); 
               return (gross − (gross *(DEPENDENT_ALLOWANCE *
                      noOfDependents))) * FEDERAL_TAX; 
          }

          //Calculate Social Security taxes
          public double DetermineSocialSecurity( )
          {
               const double SOCIAL_SECURITY_RATE = 0.0785; 
               return DetermineGross( ) * SOCIAL_SECURITY_RATE; 
          }

Programming Example: TempAgency Application | 575

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



576 | Chapter 9: Introduction to Windows Programming

          public double DetermineNet( )
          {
                return DetermineGross( ) − DetermineSocialSecurity( ) −
                      DetermineFederalTax( ) – 
                          DetermineAgencyFee( );   
          }

          public override string ToString( )
          {
               return employeeFirstName + " " + employeeLastName +
                        "\nTake Home Pay: " + 
                         DetermineNet( ).ToString("C");
          }
     }
}  // End of Employee class

/* TempAgencyForm.cs
 * This partial class contains program statements written to handle
 * the two button click events.
 */
using System;
using System.Windows.Forms;

namespace PayRollApp
{
     public partial class TempAgencyForm : Form 
     {
          public TempAgencyForm( )
          {
               InitializeComponent( ); 
          }
          // Button click event handler for the Calculate button 
              private void btnCalculate_Click(object sender, EventArgs e) 
          {
               int dep;
               double hours;
               string [ ] name = new string[2];
               while (double.TryParse(txtBxHours.Text, 
                                   out hours) == false) 
               {
                    MessageBox.Show("Numeric value should be " +
                                    "entered for Hours"); 
                    txtBxHours.Text = "0";
                    txtBxHours.Focus( );
               }
               if (int.TryParse(txtBxDep.Text, out dep) == false) 
               {
                     MessageBox.Show("Dependent default value " + 
                               "of 0 used for calculations."); 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

                    txtBxDep.Text = "0";
                    txtBxDep.Focus( );
               }
               name = txtBxName.Text.Split(' ');
               if (name.Length < 2)
               {
                    txtBxName.Text = "Please enter full name.";
                    txtBxName.Focus( );
               }
               else 
                    if (hours > 0)
                    {
                        Employee anEmployee =
                             new Employee(name[0], name[1],
                                            dep, hours);
                        txtBxGross.Text =
                            anEmployee.DetermineGross( ).
                                  ToString("C"); //continuation line
                        txtBxSoc.Text =
                            anEmployee.DetermineSocialSecurity( ).
                                  ToString("C");
                        txtBxFed.Text =
                            anEmployee.DetermineFederalTax( ).
                                  ToString("C");
                        txtBxAgency.Text =
                            anEmployee.DetermineAgencyFee( ).
                                  ToString("C");
                        txtBxNet.Text =
                            anEmployee.DetermineNet( ).
                                  ToString("C");
                        txtBxName.Enabled = false; 
                        txtBxHours.Visible = false; 
                        txtBxDep.Visible = false; 
                        lblHours.Visible = false; 
                        lblDep.Visible = false; 
                        setVisibility(true);
                    }
          }

          // Used by both the btnCalculate and btnReset to 
          // change the visibility on the objects below the buttons 
          private void setVisibility(bool visibilityValue)
          {
               lblGross.Visible = visibilityValue;
               lblSoc.Visible = visibilityValue;
               lblFed.Visible = visibilityValue;
               lblAgency.Visible = visibilityValue;
               lblNet.Visible = visibilityValue;
               txtBxGross.Visible = visibilityValue;
               txtBxSoc.Visible = visibilityValue;

Programming Example: TempAgency Application | 577

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



578 | Chapter 9: Introduction to Windows Programming

               txtBxFed.Visible = visibilityValue;
               txtBxAgency.Visible = visibilityValue;
               txtBxNet.Visible = visibilityValue;
          }
          private void btnReset_Click(object sender, EventArgs e) 
          {
               txtBxName.Clear( );
               txtBxHours.Text = "0";
               txtBxDep.Text = "0";
               txtBxName.Enabled = true;
               txtBxHours.Visible = true;
               txtBxDep.Visible = true;
               lblHours.Visible = true;
               lblDep.Visible = true;
               setVisibility(false);
          }
     }
}

Figure 9-20 shows the original user interface as values are entered. Notice that the 
focus is on the Calculate button. The Tab key can be used to move down the form. 
Also, the Enter key or a mouse click can be used to fire the btnCalculate_Click( )  
event as long as the button has the focus.

Figure 9-20 First user interface for the payroll application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

Figure  9-21 shows the result of clicking the Calculate button. Comparing 
 Figure 9-20 with Figure 9-21, notice that the number of hours and the number of 
dependents are hidden, so they are not visible in Figure 9-21. The text box contain-
ing the name is also disabled (grayed out) so that no new values can be typed. Val-
ues representing the results of the calculations are now displayed in Figure 9-21.

Figure 9-21 Output produced when the Calculate button is clicked

Programming Example: TempAgency Application | 579

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



580 | Chapter 9: Introduction to Windows Programming

The Reset button clears the text boxes and readies the form for new input. 
After the values are erased, you will notice that the primary difference between 
 Figure 9-20 (prior to entering the data) and 9-22 is that in Figure 9-22, the focus is 
on the Reset button. As you study the solution, what changes might you make to 
build the GUI to be more user-friendly? One potential change would be to set the 
focus to the Name text box (where the name is entered) when the Reset button is 
clicked. Another change would be to the size of the form. It could be initially set 
to be smaller for data entry and then larger for the display of results. A number of 
other properties could be set to enhance the program. You are encouraged to play, 
experiment, and experience the effect of modifying properties for the application.

Figure 9-22 Output produced when the Reset button is clicked

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Resources | 581

9

Control Prefix

Button btn

CheckBox chkBx

Label lbl

RadioButton radBtn

Text Box txtBx

ListBox lstBx

TABLe 9-13 Example prefix identifiers for controls

Coding Standards
As you drag and drop controls onto Windows applications, lots of code is automati-
cally generated for you. Following agreed-upon naming standards makes your code 
more readable and helps to reduce errors.

guidelines for Naming Controls
Consistently use an appropriate prefix for the user interface elements. For example, 
a button used to calculate a total could be named btnTotal. This will ensure that you 
can identify controls from the rest of the variables. Table 9-13 provides examples of 
some appropriate identifiers. The overriding recommendation is to be consistent.

Resources
Additional sites you might want to explore:

 ? C#: Windows Controls— 
http://csharpcomputing.com/Tutorials/Lesson9.htm

 ? Visual C# Tutorials and Lessons - Windows Forms— 
http://visualcsharptutorials.com/windows-forms

 ? Beginners Guide To User Interface Design in C#— 
http://www.thetechlabz.com/interfaces/user-interface-design/

 ? Free C# Tutorials— 
http://www.homeandlearn.co.uk/csharp/csharp.html

 ? YouTube Visual Studio WinForm Windows Calculator Tutorial Example— 
http://www.youtube.com/watch?v=Is1EHXFhEe4

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



582 | Chapter 9: Introduction to Windows Programming

QuiCK reVieW
 1. Console applications and Windows applications interact differently with 

the operating system. With console applications, the program calls on 
the operating system to perform certain functions such as inputting or 
outputting of data. In contrast, Windows applications are event driven. 
They register events with the operating system. When the event occurs, 
they receive notification from the operating system.

 2. An event is a notification from the operating system that an action has 
occurred, such as the user clicking the mouse or pressing a key on the 
keyboard.

 3. With Windows applications, you write methods called event handlers to 
indicate what should be done when an event such as a click on a button 
occurs.

 4. Another important difference in a Windows application is that unlike 
the sequential nature you can plan on with console-based applications, 
in which one statement executes and is followed by the next, no sequen-
tial order exists with event-handling methods for Windows applications.

 5. As the front end of a program, the interface is the visual image you see 
when you run a program. Windows applications not only function dif-
ferently from console applications, they look different, and can, there-
fore, be used to create a friendlier user interface.

 6. Windows-based GUI applications are displayed on a Windows form. 
Form is a container waiting to hold additional controls, such as but-
tons or labels. Controls are objects that can display and respond to user 
actions.

 7. The Visual Studio integrated development environment (IDE) automat-
ically generates for you all the code needed for a blank Windows form. 
The amount of development time for Windows applications is greatly 
reduced when you use Visual Studio and C#, because it is easy to add 
controls by dropping and dragging them onto the form container.

 8. When you have a class defined that has the class name, followed by a 
colon and then another class name, you have inheritance. The second 
class is called the base class; the first is called the derived class. The 
derived class inherits the characteristics of the base class. In C# and 
all .NET languages, you are limited to single inheritance.

 9. Your design should take into consideration the target audience. Use con-
sistency in the design unless there is a reason to call attention to some-
thing. Alignment should be used to group items. Avoid clutter and pay 
attention to color.

 10. Properties of the Form class include AutoScroll, BackColor, Font, 
ForeColor, Location, MaximizeBox, Size, StartPosition, and 
Text. Text is used to set the caption for the title bar of the form.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

Exercises | 583

 11. A preprocessor directive indicates that something should be done 
before processing. C# does not have a separate preprocessing step. The 
#region preprocessor directive in C# is used to explicitly mark sections 
of source code that you can expand or collapse.

 12. The System.Windows.Forms namespace includes many classes 
representing controls with names such as Button, Label,  TextBox, 
ComboBox, MainMenu, ListBox, CheckBox, RadioButton, and 
 MonthCalendar that you can add to your form. Each comes with its 
own bundle of predefined properties and methods, and each fires events.

 13. The Control class has a number of properties, including Anchor, 
BackColor, Enabled, Font, ForeColor, Location, Name, Size, 
TabIndex, Text, and Visible. Names of properties are quite intuitive.

 14. The Control class has a number of methods, including Focus( ), 
Hide( ), Select( ), and Show( ).

 15. Controls that you add to a form are objects or instances of one of the 
predefined classes such as Label, TextBox, and Button. They inherit 
the properties, methods, and events from the Control class.

 16. Label objects are normally used to provide descriptive text for another 
control. In addition to the inherited members, they have their own 
unique properties, methods, and events.

 17. TextBox objects are probably the most commonly used controls, 
because they can be used for both input and output. In addition to the 
inherited members, they have their own unique properties, methods, 
and events.

 18. Button objects are added to your form to add functionality. Users can 
click Button objects to perform a specific task. In addition to the inher-
ited members, they have their own unique properties, methods, and 
events.

eXerCiSeS

 1. One of the differences between a console application and a Windows 
application is:
a. Classes can only be used with console applications.
b. One font size is used with console applications.
c. Variables must be declared with console applications.
d. Windows applications require that program statements be placed 

in a class.
e. Execution always begins in the Main( ) method for console 

applications.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



584 | Chapter 9: Introduction to Windows Programming

 2. Which namespace includes most of the Control classes for developing 
Windows applications?
a. System

b. System.Windows.Controls

c. System.Windows.Components.Forms

d. System.Windows.Forms

e. System.Windows.Drawing

 3. Which of the following inherits members from the Control class?
a. Label

b. Form

c. TextBox

d. a and c
e. all of the above

 4. The ___________ is the front end of a program that represents the 
 presentation layer or the visual image of the program.
a. interface
b. control
c. Visual Studio
d. IDE
e. framework

 5. A(n) ___________ is a notification from the operating system that an 
action has occurred, such as the user clicking the mouse or pressing a key.
a. method call
b. statement
c. event
d. GUI
e. handler

 6. Which of the Control objects is viewed as a container that can hold 
other objects when you design a Windows application?
a. Control

b. Button

c. Window

d. Frame

e. Form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

 7. Which property is used to set the caption for the Windows title bar?
a. Caption

b. Text

c. Title

d. TitleBar

e. WindowTitle

 8. The class heading public class AForm : Form indicates that:
a. Form is a derived class of the AForm class.
b. AForm is the base class for the Form class.
c. The class being defined is identified as Form.
d. AForm inherits the members of the Form class.
e. none of the above

 9. If the name of the class is GraphicalForm, the following:
public GraphicalForm( ) is an example of a(n):
a. accessor method
b. property
c. constructor
d. mutator method
e. data member

 10. You would use an IDE such as Visual Studio to construct Windows 
applications because it has the following capability:
a. drag-and-drop construction
b. IntelliSense features
c. access to the Properties window listing properties and events
d. access to the Toolbox for dropping controls
e. all of the above

 11. Click is an example of a(n):
a. event
b. property
c. method
d. control
e. handler

Exercises | 585

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



586 | Chapter 9: Introduction to Windows Programming

 12. Visual Studio has a number of windows that can be viewed during 
design. The window used to hold controls that are dragged and dropped 
during construction is called the:
a. Property
b. Code Editor
c. Form Designer
d. Solution Explorer
e. Class View

 13. If the System.Windows.Forms namespace is imported, the following 
statement:

  this.textbox1 = new System.Windows.Forms. TextBox( );  
can be written as:

a. this.textbox1 = new TextBox( );
b. textbox1 = new TextBox( );
c. textbox1 = new System.Windows.Forms.TextBox( );
d. all of the above
e. none of the above

 14. The statement that actually constructs or instantiates a Button object is:
a. this.button1 = new System.Windows.Forms.Button( );
b. private System.Windows.Forms.Button button1;
c. this.Controls.AddRange(this.button1);

d. button1.Name = "A button";

e. button1.Click += new System.EventHandler  
(this.button1_Click);

 15. The statement that registers a Button object click event with the 
operating system is:
a. this.button1ClickEvent = new  

System.Windows.Forms.Button( );

b. private System.Windows.Forms.Button 
button1ClickEvent;

c. this.Controls.AddRange(this.button1ClickEvent);

d. button1.Click = "Register Me";

e. button1.Click += new System.EventHandler  
(this.button1_Click);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

 16. The property of the TextBox control that is used to set all characters to 
uppercase as they are typed is:
a. CharacterCasing

b. Text

c. ToUpper

d. UpperCase

e. ConvertToUpper

 17. Which of the following might be the heading for an event-handler 
method?
a. private void btn1_Click(object sender,  

                       System. EventArgs e)

b. Application.Run( new TempAgencyForm( ));
c. btnCalculate.Click += new  

                       System.EventHandler(this.btnCalculate_Click);
d. this.btnCalculate = new  

                       System.Windows.Forms.Button( );
e. none of the above

 18. Which of the following design considerations leads to more user-friendly 
presentation layers for GUIs?
a. Avoid clutter.
b. Be consistent with font, color, and placement.
c. Design for the target audience.
d. Use contrast to call attention to something.
e. all of the above

 19. The #region #endregion is an example of a C#:
a. Windows class declaration statement
b. required statement for creating Windows applications
c. reference to a namespace called region
d. preprocessor directive
e. collapsible segment of code that must be used for Windows 

applications

Exercises | 587

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



588 | Chapter 9: Introduction to Windows Programming

 20. During design, how can you separate the business logic from the presen-
tation layer?
a. Create two forms, one for input and the other for output.
b. Create two objects using an object-oriented approach.
c. Create at least two methods.
d. Create separate classes for each.
e. all of the above

 21. Describe at least three ways Windows applications differ from console 
applications.

 22. Identify which property could be set so that a Form object would per-
form the following function:
a. Change the background color for the form.
b. Set the default font to Courier for all controls that are added.
c. Change the size of the window to 400 by 400.
d. Associate a name of designForm with the Form object.
e. Position the window near the center of the screen.

 23. Describe what might be done to respond to a button click event.

 24. List at least five issues to consider when you plan the design of GUIs.

 25. Describe the process that must occur to get a TextBox object added to 
a Form object. In your description, consider not only how the process 
is performed with Visual Studio, but also what steps would be necessary 
to do it manually.

PrOgrAMMiNg eXerCiSeS

 1. Create a Windows application that can be used to input a user’s name. 
Include an appropriate label indicator for the name and a textbox for the 
input entry. A button labeled Submit should retrieve and display the 
value entered on another label positioned near the bottom of the form. 
The font color for the text for the label object should be yellow. Change 
the background color of the form to an appropriate one to use with your 
yellow text. Change the Font property to a font of your choice. The size 
of the font for all objects except the Button should be at least 14 points. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

Programming Exercises | 589

The Button font should be 16 points. Add a title caption of “Name 
Retrieval App” to the form. Initially clear the text from the label that will 
display your final answer. When the Submit button is pressed, retrieve 
the name and concatenate that value with a Congratulatory message. 
For example, you might display, “Congratulations, Brenda Lewis, you 
retrieved the data!,” if your name was Brenda Lewis. Position the button 
so it is in the center of the form. Align the other controls so they are aes-
thetically pleasing. Be sure to change the default names of all controls 
involved in program statements.

 2. Create a Windows application that can be used to change the form color. 
Your form background color should initially be blue. Provide at least two 
buttons with two different color choices and a Reset option. Change the 
font style and size on the buttons. Align the buttons so that they are in 
the center of the form. The color choice buttons should be the same size. 
Add event handlers for the buttons so that when the user clicks the but-
ton, the form changes color, and a message box is displayed alerting the 
user as to what color the form is. Be sure to name any controls used in 
program statements prior to registering your event. Change the default 
title bar text.
Hint: This exercise may require you to do some research. You may want 
to review the code placed in the .Designer.cs file after you set the form’s 
initial color.

 3. Create a Windows application that contains two textboxes and three 
buttons. The textboxes should be used to allow the user to input two 
positive numeric values. The buttons should be labeled Add and Mul-
tiply and Reset. Create event-handler methods that retrieve the values, 
perform the calculations, and display the result of the calculations on a 
label. The result label should initially be set to be invisible with a font 
color of yellow. If invalid data is entered, change the font color to red on 
the result label and display a message saying “Value must be numeric 
and > 0.” When the final answer is displayed, the font color should be yel-
low. Additional labels will be needed for the textboxes captions. Do not 
allow non-numeric characters to be entered. Invoke the TryParse( ) 
method to retrieve the values. All controls involved in program state-
ments should be named. Right justify values in the textbox.

 4. Create a Windows application that contains two textboxes (with labels) 
and one button. The textboxes should be used to allow the user to 
input the x- and y-coordinates to indicate where the form should be 
positioned. When the user clicks the button, the window should be 
moved to that new point. Be sure to label the textboxes appropriately. 
Change the form’s background color. Add a title caption to the form. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



590 | Chapter 9: Introduction to Windows Programming

Include a heading above the textboxes and button. Enlarge the size of 
the font. Only allow positive integers to be used for the coordinates. If 
non-numeric or floating point values are entered, place the focus back 
in the textbox and display a message indicating only positive values are 
accepted.
Hint: One easy way to do this is to set the location using an instance 
of the Point class when the user clicks the button. To do this, you 
could allow the user to input values for both x and y into two separate 
textbox objects. After being retrieved, they would need to be parsed or 
converted into their integer equivalent. Then use the numeric values for 
x and y to set the location by typing Location = new Point(x,y);.

 5. Create a Trip Calculator Windows application that can be used to deter-
mine miles per gallon for a given trip. Set the Form object proper-
ties of Name, ForeColor, BackColor, Size, Location, Text, and 
 AcceptButton. The form should contain labels and textboxes to allow 
the user to input trip destination, miles traveled, and gallons of gas con-
sumed. Right justify the number entries. Left justify the destination 
entry. Two buttons should be placed on the form. Center the text on the 
button objects. Name all objects used in program statements. When the 
user clicks the button that performs the calculations, display on a label 
the miles per gallon for that trip. The second button should be used to 
reset or clear all textbox entries.

 6. Create a Windows application that contains two textboxes and three 
buttons. One of the textboxes and one of the buttons are initially invis-
ible. The first textbox should be used to input a password. The text-
box should be masked to some character of your choosing so that the 
characters entered by the user are not seen on the screen. When the 
user clicks the first button, the second textbox and button should be dis-
played with a prompt asking the user to reenter his or her password. Set 
the focus to the second password textbox. Now, when the user clicks the 
second button, have the application compare the values entered to make 
sure that they are the same. Display an appropriate message indicating 
whether they are the same. Once the check is made, display a third but-
ton that resets the form.

 7. Create a Windows application that contains a textbox for a person’s 
name. Plan that the user may enter only first and last name, or they may 
enter first, middle, and last names, or they may enter many parts to their 
name, as in Jr., Sr., II, or III. Disallow entries of single one word names. 
If they enter a single first name, prompt them to enter their full name. 
Include labels to store first, middle, and last names. Disregard names 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



9

beyond three words. Two buttons should be included. Both should be 
positioned in the center of the form. They should overlap. One of the 
buttons should be used to retrieve the value and the second to reset 
the form. Initially only the Retrieve button should be displayed. When 
the Retrieve button is clicked, retrieve the full name, separate it into first, 
middle (if present), and last names and then display the labeled name 
values. At this point, the Reset button should be available. When the 
user clicks the reset button, the form should be readied for new entries.

 8. Create a Windows application that can be used to determine distance trav-
eled given speed and time. Provide textboxes for time and speed and a but-
ton to calculate the distance. Be sure that only numeric data is able to be 
entered into the textboxes. Experiment with the controls’ properties. Spend 
time with your design so that your GUI is very user friendly and looks nice.

 9. Create a Windows application that functions like a banking account reg-
ister. The graphical user interface should initially allow the user to input 
the account name, number, and initial balance. Ensure that the full name 
is entered for the customer and that only numeric values are entered for 
number fields when the Create Account button is selected. Separate the 
business logic from the presentation layer by creating a Customer class. 
Include a deposit to and withdraw from methods in the Customer class 
to keep the balance updated. After an object of the Customer class is 
instantiated, provide textbox objects on your GUI for withdrawals and 
deposits. A second button should be available to update the account for 
withdrawal and deposit transactions showing the new balance.

 10. Create the higher/lower guessing game using a GUI. Allow users to keep 
guessing until they guess the number. Keep a count of the number of 
guesses. Choose two colors for your game: one should be used to indi-
cate that the value the users guessed is higher than the target; the other is 
used to indicate that the value the users guessed is lower than the target. 
With each new guess, show the guess count and change the form color 
based on whether the guess is higher than the target or lower. When 
they hit the target, display a message on a label indicating the number 
of guesses it took. Provide a reset button to enable the user to re-start 
the game without re-running your application. Tie the guess button to 
the enter key and the reset button to the cancel key. Several approaches 
can be used to seed the target: One is to generate a random number by 
constructing an object of the Random class. For example, the follow-
ing stores a random whole number between 0 and 100 in target:
Random r = new Random( );
int target = r.Next(0,101);

Programming Exercises | 591

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

Programming Based on Events
IN THIS CHAPTER, YOU WILL:

 ? Define, create, and use delegates and examine their relationship to events

 ? Explore event-handling procedures in C# by writing and registering event-handler 
methods

 ? Create applications that use the ListBox control object to enable multiple selections 
from a single control

 ? Contrast ComboBox to ListBox objects by adding both types of controls to an 
application

 ? Add Menu and TabControl options to Windows forms and program their event-
handler methods

 ? Wire multiple RadioButton and CheckBox object events to a single event-handler 
method

 ? Design and create a Windows Presentation Foundation (WPF) application

 ? Work through a programming example that illustrates the chapter’s concepts

10CHAPTER

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



594 | Chapter 10: Programming Based on Events

In Chapter 9, you wrote your first real Windows-based application and learned 
how easy it is to develop graphical user interfaces using C# and Visual Studio’s 
 drag- and-drop construction approach. In addition, you learned that included as part 
of the .NET Framework class library are a number of predefined classes located in 
the System.Windows.Forms namespace that enable you to add controls such as 
Label,  Button, and TextBox objects to an object of the Windows Form container 
class. And, finally, you learned a new way of programming based on interactively 
responding to events such as button clicks.

In this chapter, you extend this knowledge by writing additional event-handling meth-
ods for capturing and responding to user input. You create applications that have 
menus and other widgets such as list boxes, radio buttons, combo boxes, and check 
boxes that can be displayed and responded to. You explore other types of events that 
are triggered or raised for Windows applications.

This chapter begins by introducing you to delegates. An understanding of their use 
makes you more aware of what goes on behind the scenes with events. The remainder 
of this chapter focuses on adding controls to Windows applications and program-
ming their events. By the time you complete this chapter, you will be creating very 
sophisticated, highly interactive, Windows-based applications.

Delegates
Delegates form the foundation for events in C#. Delegates are special types of .NET 
classes whose instances store references (addresses) to methods as opposed to storing 
actual data. You are used to passing data into methods through the use of parameters. 
Delegates enable you to pass methods as parameters into other methods. Through 
the use of a delegate, you are able to encapsulate a reference to a method inside a del-
egate object. The delegate object can be passed to code which can call the referenced 
method, without having to know at compile time which method will be invoked. Del-
egates are used in applications other than Windows applications that respond to GUI 
events; however, it is their relationship to events that makes them interesting and 
worth presenting in this section.

Defining Delegates
The delegate base class type is defined in the System namespace. A couple of 
syntactical differences exist between delegates and the other predefined and user-
defined classes that you have already used. First, the declaration for a delegate 
looks more like a method declaration than a class definition; however, it has no 
body. It begins with the keyword delegate and it ends with a parenthesized list of 
parameters followed by a semicolon. Every delegate type has a signature, which 
may include zero or more parameters. Remember that a signature for a method 
includes its name, number of parameters, and parameter types. The signature of a 
method does not include the return type. Like methods, a delegate may include a 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Delegates | 595

1 
0

return type or the keyword void as part of its heading. However, unlike a method, 
the return type of a delegate becomes part of its identifying signature. Example 10-1 
defines a delegate type that takes no arguments and returns a string.

In C#, you can think of the delegate as a way of defining or naming a method  
signature.

EXAMPLE 10-1

delegate string ReturnsSimpleString( );

When you define a delegate type, you identify what types of methods the  delegate 
represents. This identification is accomplished through the delegate signature, 
which is very important. It indicates what the method signatures must look like if 
they are to be referenced by the delegate.

Given the signature for the delegate defined in Example 10-1, any method that has zero 
parameters and returns a string could be referenced by the  ReturnsSimpleString 
delegate. Example 10-2 shows the heading and body for a prospective method.

EXAMPLE 10-2

// Method that returns a string.
static string EndStatement( )
{
     return " in 10 years.";
}

Compare the heading for the EndStatement( ) method shown in Example 10-2 
with the delegate in Example 10-1. Both return strings. Both have zero param-
eters. The delegate does not specify what the statements must be in the body of the 
method, and it does not specify what the name of the method must be, just what the 
signature must look like.

A delegate is implemented in C# as a class; however, an instance of the delegate 
class is also referred to as a delegate, rather than as an object. The fact that both 
the class type and the instance type go by the same name can be confusing.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



596 | Chapter 10: Programming Based on Events

Creating Delegate Instances
To associate the delegate with the method, a delegate instance is defined using the 
method name as the argument inside the parentheses. One way you have  previously 
identified methods from field and property instances is by recognizing that the method 
name identifier is followed by a set of parentheses. When you write a method name 
without parentheses, you are referencing the address of the method. Example 10-3 
instantiates the ReturnsSimpleString delegate with the  EndStatement( ) 
method as the argument.

The constructor for a delegate of the delegate class always takes just one 
parameter. This is because you are sending the name of a method for the constructor to 
reference.

EXAMPLE 10-3

ReturnsSimpleString saying3 = new ReturnsSimpleString(EndStatement);

Notice that the EndStatement argument does not include the parentheses, even 
though EndStatement is a method. A reference to the address of the method is sent 
as an argument. The address stored is the entry point in memory where the method 
begins when it is called.

Using Delegates
After completing the instantiation in Example 10-3, the delegate identifier 
 saying3 references the EndStatement( ) method. Any use of saying3( ) calls 
the  EndStatement( ) method. Example 10-4 illustrates this.

EXAMPLE 10-4

MessageBox.Show(saying3( ));

A call to the Show( ) method of the MessageBox class calls the delegate 
instance, saying3( ), which calls the EndStatement( ) method to display “in  
10 years.” Calling the EndStatement( ) method in the Show( ) method produces 
the same output. This is a simple example but illustrates how a delegate is used to 
call a method. Example 10-4 did not directly call the EndStatement( ) method; 
however, the statements from its body were those executed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Delegates | 597

1 
0

Recall that you must add a reference to System.Windows.Forms in order to use 
the MessageBox.Show( ) method. You access the Reference Manager from the 
 Solution Explorer Window. To avoid fully qualifying the name with your program statements, 
you should also add another using statement, using System.Windows.Forms;.

The program in Example 10-5 illustrates defining a single delegate type, instantiat-
ing three delegate instances, and calling up the three delegates. Without looking 
closely, the arguments to the Show( ) method appear to be normal method calls. 
In reality, the methods are called through the delegates. Notice that the delegate 
instance name and a set of parentheses form the argument to the Show( ) method.

EXAMPLE 10-5

// DelegateExample.cs             Author: Doyle
// After defining a delegate class, three delegate
// instances are instantiated. Delegates are 
// used as arguments for the Show( ) method.
using System;
using System.Windows.Forms;

namespace DelegateExample
{
     delegate string ReturnsSimpleString( );

     class DelegateExample
     {
          static void Main ( )
          {
               int age = 18;
               ReturnsSimpleString saying1 = new
                       ReturnsSimpleString(AHeading);
               ReturnsSimpleString saying2 = new
                       ReturnsSimpleString((age + 10).ToString);
               ReturnsSimpleString saying3= new
                       ReturnsSimpleString(EndStatement);
               MessageBox.Show(saying1( ) + saying2( ) + 
                               saying3( ));
          }

          // Method that returns a string.
          static string AHeading( )
          {
               return "Your age will be ";
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



598 | Chapter 10: Programming Based on Events

          // Method that returns a string.
          static string EndStatement( )
          {
               return " in 10 years.";
          }
     }
}

The signatures for the methods and the delegate class match.

Notice that the second instance of the delegate, saying2, is associated with a 
.NET predefined method of the object class. Remember that the ToString( ) 
method takes no arguments and returns a string. Its signature matches the 
 ReturnsSimpleString( ) delegate.

The methods are said to be wrapped by the delegate. When the delegate is used, it 
passes a method, instead of data, as an argument to the Show( ) method. Figure 10-1 
shows the output produced when you execute the program from Example 10-5.

FIGURE 10-1 Output from delegate example

It is possible to have the delegate wrap more than one method, so that when a 
delegate is used, multiple methods are called, one after the other. This type of 
 delegate is called a multicast delegate. The += and -= operators are used to add 
or remove methods to and from the delegate chain or invocation list. One require-
ment for multicast delegates is that the return type be void.

The real advantage or power of the delegate, however, is that the same delegate 
can call different methods during run time. When the program is compiled, the 
method or methods that will be called are not determined. This is why delegates work 
so well in an event-driven arena, where you do not know, for example, which event 
occurs first or which control gets attention first.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Event Handling in C# | 599

1 
0

Relationship of Delegates to Events
Think about what the word delegate means in the English language; you associ-
ate it with something or someone who acts as a bridge between two things. A 
 delegate serves as a bridge with event-driven applications. It acts as an intermedi-
ary between objects that are raising or triggering an event, and the object that 
captures the event and responds to it. You can think of events as special forms 
of delegates in C# because they enable you to place a reference to event-handler 
methods inside a delegate. After this reference is made, or the event is registered, 
the delegate is used to call the event-handler method when an event, such as a 
button click, is fired.

This behind-the-scenes plumbing is dealt with in C# without much programmer 
intervention. In fact, if you are using Visual Studio, all of the code, with the exception 
of the statements that appear in the event-handler methods, is automatically gener-
ated for you when you identify the events about which your program must receive 
notification.

Event Handling in C#
In Chapter 9, you wrote program statements for methods that were executed when 
a button was clicked. The Form Designer in Visual Studio did much of the work for 
you. Two things were added to your program when you double-clicked on a  Button 
control object during design (or selected its click event from the Event list in the 
Properties window). First, the button click event was registered as being of inter-
est, and second, an event-handler method heading was generated. This process is 
called event wiring. You associate a method in your program to an event, such as 
the user clicking the button. Then, this method is automatically called when the 
event occurs.

Now that you know about delegates, if you examine the Windows Forms Designer 
generated code region, which is generated by Visual Studio, you understand how the 
delegate is used to register the event. The code that appears in Example 10-6 is gen-
erated when you double-click a button in the Form Designer.  System. EventHandler 
is a delegate type. This code associates the two methods, button1_Click( ) and 
button2_Click( ), with that delegate.

If the console application template is selected as the type of application, you will see the 
black command window displayed in the background when you run the program. Remove 
it by first selecting the project in the Solution Explorer window and then select the icon 
representing Properties in the Solution Explorer window. Using the pull-down menu, select 
Windows Application as the Output type.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



600 | Chapter 10: Programming Based on Events

EXAMPLE 10-6

this.button1.Click += new System.EventHandler(this.button1_Click); 
this.button2.Click += new System.EventHandler(this.button2_Click);

The keyword this is added to code generated by Visual Studio. The this keyword 
is used to indicate the current instance of a class. For the Windows applications you 
are developing in this chapter, think of this as the current instance of the form. So, for 
 Example 10-6, when you notice this.button1.Click, you should mentally associate 
that with “the current form’s” button1.Click.

These methods (button1_Click( ) and button2_Click( )) have a return 
type of void with two parameters. The delegate EventHandler( ) has a 
return type of void and two parameters. It’s signature is public delegate void 
EventHandler(object sender, EventArgs e). Their signatures match.

When Visual Studio adds the event-handler method heading, the body of the method 
is empty. You add the program statements to the body of the method indicating what 
actions to perform when the button is clicked. Example 10-7 shows the event-handler 
method for button1_Click.

EXAMPLE 10-7

private void button1_Click(object sender, system.EventArgs e)
{
}

Event-Handler Methods
Example 10-7 includes the heading for the event-handler method. All event-handler 
methods normally have the same signature. They do not return anything; they have 
a return type of void. They take two parameters. The first parameter, object 
sender, represents the source that raises the event, and the second parameter is the 
data for the event. Accessible data, for example, for a MouseEventArg event includes 
which mouse button (left, right, or both) was clicked, how many clicks, and the x- and 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ListBox Control Objects | 601

1 
0

y-coordinates for where the mouse pointer was positioned on the screen when the 
mouse button was clicked. This data can be obtained from the second argument.

The delegate maintains a list of the registered event handlers for an event. To iden-
tify the events about which you are interested in receiving notification, register the 
event and specify what actions to perform when the event occurs by typing the body 
of the event-handler method. The event handlers are called using delegates.

The sections that follow highlight some of the most interesting events that you 
can include in your application to add functionality. An application will be created 
using Visual Studio; controls will be added, their properties set, and their events 
programmed.

ListBox Control Objects
The ListBox control is a very powerful widget that can be added to Windows appli-
cations. ListBox controls can be used to display a list of items from which the user 
can make single or multiple selections. A scroll bar is automatically added to the con-
trol if the total number of items exceeds the number that can be displayed. You can 
add or remove items to and from the ListBox control at design time or dynamically 
at run time.

Creating a Form to Hold ListBox Controls
To experience working with a ListBox object, a new project in Visual Studio 
is created using the Windows application template. Look ahead at Figure 10-5. It 
shows the completed form. When you select the Windows application template, 
a blank form is automatically generated. The Name property for the form is set to 
ClubForm. The Font property for ClubForm is set to 12 points. This property is set 
on the Form1 object so that other objects that are added to ClubForm will already 
be set; this becomes the default font for the application. This procedure ensures 
consistency in Font selection across controls. Of course, the Font can be set for 
individual controls if there is a need for one or more to be different. The BackColor 
Blue (128, 128, 255) is set for ClubForm. The Text property is set to Computer 
Club Outing Sign Up.

Remember, you need to use the Form Designer window to set the properties at design 
time. If you are in the Code Editor instead of the Form Designer, select Designer from 
the View menu or press Shift+F7. Press F7 to return to the Code Editor. If you are using 
the Express version, you may need to press Ctrl+Alt+0 to open the Code Editor. If you 
choose not to use the Properties window to set properties, program statements could be 
added to the FormLoad( ) event-handler method to make the assignments.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



602 | Chapter 10: Programming Based on Events

A TextBox object is dragged onto the ClubForm object and placed at the bottom 
of the form. The Name property is set to txtBxResult. This text box stores the result 
of the list box selection. A Label object is added to ClubForm to the left of the 
TextBox object with its Text property set to "Result".

ADDING A LISTBOX CONTROL OBJECT

Another Label object is added to the ClubForm in the top-left corner with its Text 
property set to “Select Event(s)”. A ListBox object is dragged under the “Select 
Event(s)” label. Its Name property is set to lstBxEvents. The background color for 
the control is set using the BackColor property. It is set to Yellow (255,255,192). 
The ForeColor property is set to Blue (0,0,192) so that the font for characters 
displays in blue. The Items property is used to set the initial values for the list box. 
Clicking on the button with the ellipsis to the right of the word Collection in the 
Items property displays the String Collection Editor window. Values for the list 
box are typed on separate lines using this editor. Figure 10-2 shows the window after 
values were typed for the list box collection. The following string values are typed, 
each on separate lines; “Movie”, “Dance”, “Boat Tour”, “Dinner”, “Hike”, “Amusement 
Park”, and “Sport Event”.

FIGURE 10-2 String Collection Editor

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ListBox Control Objects | 603

1 
0

The Sorted property is set to true for the ListBox object. This keeps you from 
having to type values into the collection as sorted items. By setting the Sorted prop-
erty to true, they are displayed sorted—as if you had typed them in that order. The 
control object is sized by clicking on the object and using the standard Windows 
sizing handles to drag the object so that just four of the strings are shown. If the 
 window is too small to show all choices, a scroll bar is automatically added to  ListBox 
objects when the application is run.

After the controls are placed in their general location, use the Format, Align menu options 
to line up associated controls so they are consistently placed on the same row or column. 
Select multiple controls by drawing a box around the controls using your mouse as the 
selection tool or hold the Ctrl key as you select multiple controls.

You might not want to program a method for the default event for a control. It might 
be a different event that is of interest. The default event for a Button object is the 
 Button Click event. Thus, when you double-click on a button in the Form Designer, the 
 buttonName_Click event is registered. This is usually the event of interest for Button 
objects. Clicking on the Events icon (lightning bolt) in the Properties window shows you a 
selection of events that can be registered for the object selected.

REGISTERING A LISTBOX EVENT

To add functionality, you need to register an event for the ListBox control object. 
To give you an example, you might want to know when the item selection changes. 
When it does, you might want to display or use the selection. In the Form Designer, 
when you double-click on a control, you register the default event for that specific con-
trol. An event-handler method for that registered event is added to your source code.

Double-clicking on the ListBox control adds the line shown in Example 10-8, which 
registers the SelectedIndexChanged event as being of interest.

EXAMPLE 10-8

this.lstBxEvents.SelectedIndexChanged += new
         System.EventHandler(this.lstBxEvents_SelectedIndexChanged);

The Form Designer also adds the empty-bodied method shown in Example 10-9 to 
your program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



604 | Chapter 10: Programming Based on Events

Figure 10-3 shows the output generated from Example 10-11 after the 
 SelectedIndexChanged event is fired. Notice that the items appear in alphabetical 
order. The Sorted property rearranged the items.

EXAMPLE 10-9

private void lstBxEvents_SelectedIndexChanged(object sender,
                                              System.EventArgs e)
{
}

ListBox Event Handlers
One of the properties of the ListBox class is SelectedItem. It returns an object rep-
resenting the selected string item. If you retrieve the selection using this property, the 
object must be converted into a string object to display it in the Result  TextBox. The 
Text property of the txtBxResult object is used to display the selection. The statement 
in Example 10-10 is added to the body of the  lstBxEvents_ SelectedIndexChanged( ) 
method so that when the event is fired, the selection is displayed.

EXAMPLE 10-10

private void lstBxEvents_SelectedIndexChanged(object sender, 
                                              System.EventArgs e)
{
     this.txtBxResult.Text = 
          this.lstBxEvents.SelectedItem.ToString( );
}

The ToString( ) method was used to convert the item object into a string for dis-
playing; the Text property can also be used to retrieve the data from a ListBox con-
trol object. If you use the Text property as opposed to the SelectedItem property, 
there is no requirement of adding the ToString( ) method. Thus, the body of the   
lstBxEvents_SelectedIndexChanged method could read as shown in Example 10-11.

EXAMPLE 10-11

private void lstBxEvents_SelectedIndexChanged(object sender,
                                              System.EventArgs e) 
{
     this.txtBxResult.Text = this.lstBxEvents.Text;
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ListBox Control Objects | 605

1 
0

FIGURE 10-3 SelectedIndexChanged event fired

Multiple Selections with a ListBox Object
The ListBox control object offers the advantage of allowing users to make mul-
tiple selections. The SelectionMode property has selection values of MultiSimple 
and MultiExtended, in addition to None and One. By default, the property is set to 
One. With a MultiSimple selection, the only way to make a selection is by using the 
Spacebar and clicking the mouse. MultiExtended allows users to make selections 
using the Ctrl key, Shift key, and arrow keys in addition to using the Spacebar and 
clicking the mouse. Multiple selections are allowed in Figure 10-4. The text box shows 
that Boat Tour, Dinner, and Hike selections were all highlighted.

FIGURE 10-4 Multiple selections within a ListBox object

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



606 | Chapter 10: Programming Based on Events

After the SelectionMode property is set to MultiExtended, the event-handler 
method must be changed to display each of the items selected. Example 10-12 shows 
the revision to the method.

Remember that when you use + (the plus symbol) with data stored in a string type,  
the characters are appended onto the end of the result string instead of being used  
in  calculations. The += symbol is used to grow the result string.

EXAMPLE 10-12

private void lstBxEvents_SelectedIndexChanged(object sender,
                                              System.EventArgs e)
{
     string result = " ";
     foreach(string activity in lstBxEvents.SelectedItems)
     {
          result += activity + " ";
     }
     this.txtBxResult.Text = result;
}

Using the foreach loop construct, the selected items are concatenated one item at a 
time onto a string instance named result.

Notice that the characters were not appended straight to the Text property of the 
TextBox object in Example 10-12. Instead, they were placed in an intermediate 
memory location (result) to enable multiple selections. Each time the event is fired 
(the selection is changed), the result string is reinitialized (result = " ") and then 
in the loop, the selected items are added onto result. On the outside of the loop, 
after values have been concatenated, the Text property of the TextBox object was 
assigned the string value.

ADDING ITEMS TO A LISTBOX AT RUN TIME

The ListBox control object is a fairly sophisticated control. It can hold data of any 
type. Values returned using the SelectedItem and SelectedItems properties are 
returned as objects; thus, you can easily store numbers in the ListBox. After being 
retrieved as objects, they can be cast into an int or double for processing.

The ListBox control can have values added or removed at run time. To add a value 
when the program is running, you use the Add( ) method with the Items property, 
as shown in Example 10-13.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ListBox Control Objects | 607

1 
0

EXAMPLE 10-13

lstBxEvents.Items.Add("string value to add");

Figure 10-5 shows the form allowing the user to enter another activity to the list of 
events. A new Button and TextBox object is added to the form. The text from 
the TextBox object is added as a selection to the ListBox. Two events were fired 
before the output being displayed in Figure 10-5 was produced. The first event that 
was fired was the button click. This event-handler method added the user-entered 
string to the ListBox. The second event was fired when the user clicked a selection 
from the list box. The selections are displayed in the Result text box. Notice the new 
selection that was typed. Picnic now appears as an option. It was also selected from 
the list box.

FIGURE 10-5 Picnic inserted from the Add(  ) method executed inside the buttonClick event

You may be tempted to double-click the TextBox object to register its default event 
handler instead of adding the extra button object. The default event handler for the 
TextBox object is the TextChanged( ) event, which fires with every character 
that is entered into the textbox. You do not want that to happen with this application. 
The btnNew_Click( ) event-handler body retrieves the text that is typed by the 
user from txtBxAddNew and adds it to the ListBox object. The method is shown 
in Example 10-14.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



608 | Chapter 10: Programming Based on Events

EXAMPLE 10-14

private void btnNew_Click(object sender, System.EventArgs e)
{
     lstBxEvents.Items.Add(txtBxAddNew.Text);
}

Another useful method to use with ListBox controls is AddRange( ). 
AddRange( )enables you to send an array as an argument. This list of items is used 
to fill the ListBox. You still need to use the Items property. A call to AddRange( ) 
might look like listBox1.Items.AddRange(someArray);.

Visual Studio automatically inserts a number of using statements at the top of a  program. 
Most are not needed for examples illustrated in this chapter. Unnecessary using 
 statements have been deleted.

Example 10-15 shows the program listing for the application with a couple of minor 
modifications included. The modifications are discussed following the source list-
ing. Example 10-15 shows the program statements typed for the event handlers. 
Recall that three source code files are created when an application is developed. The 
Windows Forms Designer contains the generated code added when property values 
were changed for the form and other controls added to the application. The third file, 
which includes Main( ), is also not shown with Example 10-15. No program state-
ments were typed for either of these files.

EXAMPLE 10-15

/*   ClubForm.cs
     This application illustrates adding
     Button, Label, Textbox and
     ListBox objects. SelectedIndexChanged
     and click events are fired.
*/
using System; 
using System.Windows.Forms;

namespace ListBoxExample
{
     public partial class ClubForm : Form
     {

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ListBox Control Objects | 609

1 
0

          public ClubForm( )
          {
               InitializeComponent( );
          }

          private void lstBxEvents_SelectedIndexChanged (object
                                    sender, EventArgs e)
          {
               string result = " ";
               foreach (string activity in
                            lstBxEvents.SelectedItems)
                        result += activity + " ";
               this.txtBxResult.Text = result;
          }

          private void btnNew_Click(object sender, EventArgs e)
          {
               lstBxEvents.Items.Add(txtBxAddNew.Text);
               txtBxAddNew.Clear( );
          }
     }
}

To add functionality, the btnNew Button object was set as the value for the 
 AcceptButton property of the Form object. This enables the user to press the Enter 
key after typing in new entries. Now the Enter key functions in the same way as clicking 
the left mouse button on the btnNew Button object. The  btnNew_Click( ) event is 
fired when the user clicks the mouse or presses the Enter key. In the  btnNew_Click( ) 
event-handler method, the TextBox object was also cleared using the Clear( ) 
method. This was done after the value was typed into the TextBox object, retrieved, 
and added to the ListBox object. Table 10-1 includes a list of properties set for the 
ListBoxExample application.

TABLE 10-1 ListBoxExample property values

Name Object type Property Value

ClubForm Form AcceptButton btnNew

ClubForm Form BackColor Blue (128,128,255)

ClubForm Form Font Microsoft Sans Serif, 
12, Bold

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



610 | Chapter 10: Programming Based on Events

Example 10-15 just touched the surface for what you can do with ListBox objects. 
You will want to explore this class further. The Items, SelectedItems, and 
 SelectedIndices properties are useful for getting a collection of selected items from 
the ListBox object. The Count property can also be used with the  SelectedItems, 
and SelectedIndices properties to return the number of items selected. To retrieve 
that value you would type lstBxEvents.SelectedItems.Count. To reset the list-
box or clear all selections, invoke the ClearSelected( ) method.

In addition to being useful for entering values at design time, the ListBox object is 
a control that can be populated with new values at run time. By including the Add( ) 
method with the Items property inside a loop, values entered by the user or read 

Name Object type Property Value

ClubForm Form Text Typed "Computer Club 
Outing Sign Up"

lstBxEvents ListBox BackColor Yellow (255, 255, 192)

lstBxEvents ListBox ForeColor Blue (0, 0, 192)

lstBxEvents ListBox SelectionMode MultiExtended

lstBxEvents ListBox Sorted true

lstBxEvents ListBox TabIndex 1

lstBxEvents ListBox Items (Collection) Typed "Amusement Park", 
"Boat Tour", "Dance", 
"Dinner", "Hike", 
"Movie", "Sport Event"

label1 Label Text Typed "Result"

label2 Label Text Typed "Select Event(s)"

Label3 Label Text Typed "Add an Activity"

BtnNew TextBox Text Typed "Add New One"

© Cengage Learning

TABLE 10-1 ListBoxExample property values (continued )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ListBox Control Objects | 611

1 
0

Table 10-3 gives a partial list of methods and events of the ListBox object.  Remember 
that the ListBox object also inherits members from the Control class. Tables 9-2  
and 9-3, in Chapter 9, listed many of the Control class  members. You should 
review those tables.

Property Description

Items Gets the values (items) in the list box

MultiColumn Gets or sets a value indicating whether the list box supports multiple  
columns

SelectedIndex Gets or sets the zero-based index of the currently selected item

SelectedIndices Gets a collection that contains the zero-based indexes of all currently  
selected items

SelectedItem Gets or sets the selected item

SelectedItems Gets a collection containing the currently selected items

SelectionMode Gets or sets the method in which items are selected 
(MultiExtended, MultiSimple, One, None)

Sorted Gets or sets a value indicating whether the items are sorted 
alphabetically

Text Gets or searches for the text of the currently selected item

© Cengage Learning

TABLE 10-2 ListBox properties

The information included in Tables 10-2 and 10-3 was adapted from the MSDN 
documentation.

from a file or database table can be added to the control while the application is run-
ning. The AddRange( ) method, also used with the Items property, allows you to 
quickly populate the ListBox with an array of objects. Table 10-2 describes some of 
the more interesting properties of the ListBox class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



612 | Chapter 10: Programming Based on Events

A similar control, but one with additional functionality, is the ComboBox. The  ComboBox 
class is discussed in the following section; the differences between the ComboBox 
class and ListBox controls are highlighted.

ComboBox Control Objects
In many cases, the ListBox controls and ComboBox controls can be used interchange-
ably. They share many of the same properties and methods because they are both 

Method (and event) Description

ClearSelected( ) Unselects all items

Enter( )  
Event – [inherited from Control]

Occurs when the control is entered

FindString( ) Finds the first item that starts with the specified string

FindStringExact( ) Finds the first item that exactly matches the specified string

GotFocus( )  
Event – [inherited from Control]

Occurs when the control receives focus

KeyPress( )  
Event – [inherited from Control]

Occurs when a key is pressed while the control has focus

Leave( )  
Event – [inherited from Control]

Occurs when the input focus leaves the control

MouseEnter( )  
Event – [inherited from Control]

Occurs when the mouse pointer enters the control

MouseHover( )  
Event – [inherited from Control]

Occurs when the mouse pointer hovers over the control

MouseLeave( )  
Event – [inherited from Control]

Occurs when the mouse pointer leaves the control

SelectedIndexChanged( ) 
Event – [default event]

Occurs when the SelectedIndex property has changed

SetSelected( ) Selects or clears the selection for the specified item

© Cengage Learning

TABLE 10-3 ListBox methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ComboBox Control Objects | 613

1 
0

derived from the System.Windows.Forms.ListControl class. The  ListBox 
control is usually used when you have all the choices available at design time. You saw 
in previous code segments that values can be added to the ListBox using the Add( ) 
method. For the example illustrated in Figure 10-5, an additional control object was 
required. The TextBox provided a place on the form for the user to enter a new value. 
After being retrieved, it was then added to the ListBox.

A ComboBox facilitates displaying a list of suggested choices; however, it has an added 
feature. ComboBox objects contain their own text box field as part of the object. This 
makes it easy to add a new value at run time. In addition, ComboBox objects save space 
on a form. Figure 10-6 shows the difference in appearance between the two controls.

A new Windows application is created to illustrate features of the ComboBox and 
 ListBox. The Text, Name, Font, BackColor, ForeColor, and Size properties 
were all set for the new Form object.

FIGURE 10-6 ComboBox and ListBox objects

Adding ComboBox Objects
When you place the ComboBox object on the form, it looks like a TextBox object. 
The top line of the control is left blank for the entry of typed text. The default setting 
for the property that determines the combo box’s appearance (the DropDownStyle 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



614 | Chapter 10: Programming Based on Events

property) is DropDown. If you accept the default setting, the user can either type a 
new entry into the object or select from the list of items that you assign to the con-
trol during design. Another DropDownStyle option, DropDownList, disables new 
text from being entered into the ComboBox object and offers additional navigational 
options for viewing the list.

DropDown, the default value, is set as the DropDownStyle for Figure 10-7. A new 
entry can be typed and added to the list. The full list of choices is not displayed until the 
user clicks the down arrow button.

FIGURE 10-7 ComboBox list of choices

Handling ComboBox Events
Another difference between the ComboBox and ListBox is that the ComboBox allows 
only a single selection to be made. Unlike the ListBox, the ComboBox object does 
not have a SelectionMode property. Selections from ComboBox objects can be either 
a new typed value or one of the choices displayed from the drop-down selection. As 
with the ListBox control object, SelectedIndexChanged( ) is the default event-
handler method. When a value such as "Sunflower" is typed into the  ComboBox, 
the SelectedIndexChanged( ) event-handler method is not triggered or raised.  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ComboBox Control Objects | 615

1 
0

A different event must be registered to respond to values being typed into the text 
portion. One way to deal with this is to have a KeyPress( ) or TextChanged( ) 
event-handler method executed when new values are entered.

Registering other Events
The TextChanged( ) event is the default event handler for Textbox objects. 
It is raised if the Text property is changed by either a programmatic modifica-
tion or user interaction. This makes it a great option for ComboBox objects. If the 
TextChanged( ) event has been registered for the ComboBox object, it is fired 
when the user types a new value into the ComboBox open textbox area. Values typed 
into the text area can be retrieved and processed when the event fires.

Another option is the KeyPress( ) event. The KeyPress( ) event occurs when 
the user presses a key. Actually, the event is fired with each and every keystroke. The 
final end result may be the same, but the event handler method will be called many 
times. It is called each time a key is pressed. 

 Example 10-16 shows the two events being registered for the ComboBox control. 
Notice that the Name property for the ComboBox object was set to cmboFlowers.

Another option with ComboBox objects is the TextUpdate( ) event. It is fired 
 whenever the text changes.

EXAMPLE 10-16

this.cmboFlowers.SelectedIndexChanged += new System.EventHandler 
               (this.cmboFlowers_SelectedIndexChanged); 
this.cmboFlowers.TextChanged += new System.EventHandler
               (this.cmboFlowers_TextChanged);

Programming Event Handlers
To access text from the ComboBox and the ListBox objects shown in  Figure  10-7, 
three event-handler methods are programmed. New TextBox objects are added 
to store the values retrieved from these controls. Both the cmboFlowers_ 
SelectedIndexChanged( ) and the cmboFlowers_TextChanged( ) event han-
dler methods use the Text property to get the value from the ComboBox object. After 
retrieving the value, both methods set the text for the associated TextBox object. The 
body for both of those event handlers contains the following statement:
this.txtBxResultFlowers.Text = cmboFlowers.Text;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



616 | Chapter 10: Programming Based on Events

USING COLLECTION INDEXES

Because the ListBox object allows multiple selections, the Text property cannot be 
used. Text retrieves a single selection, the first one selected. To retrieve all of the choices, 
you have several options. You can use the SelectedItems,  SelectedIndices, or 
Items methods to retrieve a collection of items selected. These collections are zero-
based structures such as an array. You can access them as you would access an element 
from an array by taking advantage of their array-like nature.

SelectedIndices is a collection of indexes. Thus, if the first, third, and seventh items 
were selected, the SelectedIndices collection would contain 0, 2, and 6 because the 
collection is zero-based.

It is possible to use an int to traverse through the collection of SelectedIndices, 
as shown in Example 10-17.

EXAMPLE 10-17

private void lstBxTrees_SelectedIndexChanged(object sender,
                                             System.EventArgs e)
{
     this.txtBxResultTrees.Text = " ";
     foreach(int i in lstBxTrees.SelectedIndices)
     {
          this.txtBxResultTrees.Text +=
                          this.lstBxTrees.Items[i] + " ";
     }
}

Compare the event-handler method shown in Example 10-17 to the  ListBox 
 SelectedIndexChanged( ) event-handler method shown in Example 10-12. 
 Example 10-12 accessed the items using the SelectedItems property as opposed to 
the SelectedIndices property. Instead of accessing the selection by retrieving the 
items, the statements in Example 10-17 retrieved the indexes. The output produced 
from the application after adding these event-handler methods is shown in Figure 10-8.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



MenuStrip Control Objects | 617

1 
0

Sunflower was not placed in the collection list at design time; it is typed when the 
program is launched. The TextChanged( ) event-handler method fired. If the 
 KeyPress( ) event had been registered, recall it would be fired for each and every 
character pressed. Thus, it would be fired when the character S is typed; it is fired 
again when the character u is typed, and so on. This TextChanged( ) method uses 
the Text property of the ComboBox to get the selection and the Text property of the 
TextBox object to set the value for display purposes. Two selections were made 
from the ListBox object. The SelectionMode for the ListBox object was set 
to MultiExtended. The SelectedIndexChanged( ) method set the text of the 
TextBox object by concatenating (+=) the selections into the Text property. Most 
Windows applications include a number of menu options. In the following section, 
you add menus to this application and learn how easy it is to add traditional menus 
found on most Windows applications.

MenuStrip Control Objects
Menus offer the advantage of taking up minimal space on your window. They enable 
you to add more functionality to your application through offering additional options 
to the user. In the System.Windows.Forms namespace, a number of classes are 
available that enable you to add layers of menus to your applications.

FIGURE 10-8 TextChanged and SelectedIndexChanged events fired

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



618 | Chapter 10: Programming Based on Events

Adding Menus
One of the .NET Framework classes is the MenuStrip class. MenuStrip replaces and 
adds functionality to the MainMenu control of previous versions. MainMenu is retained for 
both backward compatibility and future use if you choose. Using the Visual Studio Tool-
box window, it is easy to drag and drop a MenuStrip control object to your form. When 
you do this, an icon representing the MenuStrip object is placed below the design win-
dow in the grayed area called the Component Tray. Selecting the MenuStrip object 
enables you to set its properties, such as its Name, using the Properties window. To add 
the text for the menu option, select the MenuStrip icon and then click on the upper-left 
corner of the form where the words “Type Here” are displayed as illustrated in Figure 10-9.

FIGURE 10-9 First step to creating a menu

The menu structure is created by typing the text for each menu option in the prompted 
text box. This is the blank text box in the upper-left corner immediately below the 
icon that appears on the title bar, as shown in Figure 10-9. This class enables you 
not only to create the top-level structure but also to type options for drop-down 
subordinate menus. Notice the phrase “Type Here” in Figure 10-9. Moving to the 
right or below the current text box selection enables you to type either a subordinate 
menu option (below it) or another top-level menu option to the right. Additional 
 drop-down options can be typed from the lower layers so that you can create a menu 
structure exactly like you see in applications such as your word-processing program.
With most Windows application menus, shortcuts are available for selections. Visual 
Studio enables you to create keyboard shortcuts or access keys. An access key is an 
underlined character in the text of an item or on the label of a control such as a button. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



MenuStrip Control Objects | 619

1 
0

With an access key defined on a button, the user can “click” the button, without using 
the mouse, by pressing the Alt key in combination with the predefined access key 
character. When you type the text that is to appear in the menu, preceding the char-
acter with an ampersand (&) creates an access key. As shown in Figure 10-10,  the 
ampersand is typed between the F and o for the Format option. This makes Alt+o 
the shortcut for Format. This enables the option to be selected by pressing the Alt 
key plus the key that you type following the ampersand. For example, instead of typ-
ing File, type &File. This creates a shortcut of Alt+F for the File menu. You will see 
File displayed when you press the Alt key. To the right of File, F&ormat is typed fol-
lowed by &Help. Under File, Exit was typed. As an option under the Format menu, 
Font was typed, followed by Color. Under Help, About was typed.

As you review the properties displayed in Figure 10-10, notice three properties, 
 ShortcutKeyDisplayString, SortcutKeys, and ShowShortcutKeys. are shown. 
They enable you to set a special shortcut for menu items exists. Selecting the box to the 
right of ShortcutKeys in the Properties window enables you to select which Modifier, 
Alt, Shift or Ctrl and it reveals a drop-down list of characters to associate with the Mod-
ifer. You can associate the Alt, Shift, Ctrl or any combination of these three Modifier 
keys, with any of the function keys, alphabetic characters, or many of the other keyboard 
characters including the keys on the numeric keypad to any menu option. The text to 
be displayed for the shortcut is set using the ShortcutKeyDisplayString property.

If you add shortcuts, you would want to see the shortcut on the menu option. For example, if 
you associate Ctrl+S with save, the text for the menu for save should not just read “Save”, 
but should read “Save Ctrl+S”; otherwise, how will users know what shortcuts you have  
 programmed for them? The ShortcutDisplayString property enables you to iden-
tify what additional text should be appended to the right of the menu option’s Text. The 
Text property would be set to Save and the ShortcutDisplayString property 
would be set to Ctrl+S.

FIGURE 10-10 Creating a shortcut for a menu item

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



620 | Chapter 10: Programming Based on Events

You are accustomed to seeing separators between menu options. These are easily 
created in Visual Studio by right-clicking on the text label below the needed separa-
tor and selecting Insert, Separator, as illustrated in Figure 10-11. When launched, a 
separator appears between the Font and Color options.

FIGURE 10-11 Adding a separator

If you are using the MainMenu control as opposed to the MenuStrip control, after 
you type the text that will appear on the menu, you must set the Menu property on the 
form to the name of the MainMenu object. Otherwise, the menu does not display 
when you launch the application. If you use the MenuStrip control you do not have 
to set this property. The association is made automatically for you.

You can assign a tool tip to controls, such as text boxes or menu items, so that text 
is displayed when the cursor is rested on top of the component. To create a tool tip, 
drag the ToolTip control from the Toolbox and drop it anywhere on the form. It will 
rest in the Component Tray below the form. The ToolTip is not associated with 
any specific control object. After it is placed on the form, controls have a new prop-
erty available in the Properties window. To define a tool tip for a specific control, 
select the control and type what you want to have displayed into the ToolTip prop-
erty in the Properties window. For example, to alert the user that multiple selections 
could be made from the list box holding the tree names, the ToolTip property for 
the  lstBxTrees control was set to "Press and Hold the Ctrl Key for Multiple 
Selections!", as shown in Figure 10-12.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



MenuStrip Control Objects | 621

1 
0

When you create the menu structure using the MenuStrip control, separate 
 ToolStripMenuItem objects are created for each of the selectable menu options 
that you type. After you finish laying out the structure, the Name property for these 
ToolStripMenuItem objects can be set by selecting the individual menu option 
prior to selecting the Name property in the Properties window. This is especially 
important if the menu item will be wired to an event because the name of the control 
becomes part of the name of the event-handler method.

To wire a method to an event such as a menu option means you are associating the 
event to a specific method. After the method is wired to the menu option, the method is 
executed automatically when the menu option is clicked. When the menu option is clicked, 
it can be said that the event triggers, happens, or is fired. This is one of the underlying 
 concepts behind event-driven applications.

FIGURE 10-12 Setting the ToolTip property

Property names such as menuExit, menuFont, menuColor, and menuHelp were set 
in the Properties window after selecting each individual ToolStripMenuItem in 
the Form Designer. Click events are registered by double-clicking on the option. 
Form Designer generates individual click event-handler methods. The click event 
method name for the menuExit option is menuExit_Click( ); the event handler 
for the menuFont option is menuFont_Click( ).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



622 | Chapter 10: Programming Based on Events

When you place a MenuStrip object on your form, the smart tag for the control 
reveals an option titled “Insert Standard Items”. Selecting this option automatically 
places File, Edit, Tools, and Help menus on the top of the form. You get the standard 
options (New, Open, Save, Save As, Print, Print Preview, and Exit) on the File 
menu. Undo, Redo, Cut, Copy, Paste, and Select All are automatically added to the 
Edit menu. You can, of course, add additional options or remove any of these that you 
do not want to include in your application.

The click event-handler methods for the Exit and About menu options are shown in 
Example 10-18.

If you name a menu option after wiring its event handler to the menu option, the 
 event-handler method name does not carry the name of the control. This does not impact 
the results—it just leads to less readable code. You can actually change the method name 
to match the new name for the control; however, if you do this, you must also change the 
method name in the statement that wires the event handler to the object. You can use 
the debugger to show you where that statement appears in the .Designer code. A syntax 
error is presented when you change the name and try to launch your application. Double 
clicking on the error message takes you to the statement that wires the event handler to 
the object. There you can replace the method name with the new name.

EXAMPLE 10-18

private void menuExit_Click(object sender, System.EventArgs e)
{
     Application.Exit( );
}
private void menuAbout_Click(object sender, System.EventArgs e)
{
     MessageBox.Show("Gardening Guide Application\n\n\nVersion" +
                     " 1.0", "About Gardening");
}

A message dialog box is displayed when the user clicks the About option. All win-
dows are closed and the program is terminated when the user clicks the Exit option.

Adding Predefined Standard Windows Dialog Boxes
Included as part of .NET are a number of preconfigured dialog boxes. They include 
boxes that look like the standard Windows File Open, File Save, File Print, File Print 
Preview, Format Font, and Format Color dialog boxes. They are added to your appli-
cation by dragging and dropping the control object on your form. Figure 10-13 
shows a partial list of controls highlighting the Dialog controls.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



MenuStrip Control Objects | 623

1 
0

FIGURE 10-13 Adding dialog controls to menu options

As shown in Figure 10-13, objects of the colorDialog and fontDialog are added 
to the ComponentTray when they are dragged and dropped onto the form. They 
join the ToolTip and MenuStrip controls already on the form. To see the effect of 
the Font and Color menu options, a new Label object is placed on the Form. Its 
Name property is set to lblOutput. The Text property for lblOutput is set to "Add 
Water!".

Double-clicking on the Font and Color menu options registers click events and gen-
erates event-handler methods. Example 10-19 shows the body of these methods.

EXAMPLE 10-19

private void menuFont_Click(object sender, System.EventArgs e)
{
     fontDialog1.Font = lblOutput.Font;
     if (fontDialog1.ShowDialog( ) != DialogResult.Cancel)
     {
         lblOutput.Font = fontDialog1.Font;
     }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



624 | Chapter 10: Programming Based on Events

private void menuColor_Click(object sender, System.EventArgs e)
{
     colorDialog1.Color = lblOutput.ForeColor;
     if (colorDialog1.ShowDialog( ) != DialogResult.Cancel)
     {
          lblOutput.ForeColor = colorDialog1.Color;
     }
}

The first statement in the menuFont_Click( ) method retrieves the current Font set-
ting from the Label object’s Font property. This value is shown as the selected option 
when the dialog box is displayed. The first statement in the menuColor_Click( ) 
method retrieves the current ForeColor property setting for the Label object. Again, 
this value is used when the Color dialog box is displayed. For this example, the Color 
dialog box originally has a box around the yellow color, which is the value set as the 
ForeColor on the Form property. The if statement in Example 10-19 is checking to 
make sure that the Cancel button has not been clicked. If it has been clicked, no change 
is made; otherwise, the Font and ForeColor are set to the selections made by the user.
Launching the program and selecting the Color menu option, displays a window, as 
shown in Figure 10-14. Clicking on the pink color and then clicking OK changes the 
ForeColor for the Label to that selection once the dialog box closes.

FIGURE 10-14 Color dialog box menu option

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



MenuStrip Control Objects | 625

1 
0

The Font dialog box displayed from the Format menu in the Gardening Guide is 
shown in Figure 10-15. It contains the styles, sizes, effects, and a sample output win-
dow for viewing. Notice that Informal Roman, Bold, 28 point, and underline effects 
were all chosen. The Label object containing the text “Add water!” is changed to 
reflect these selections once the dialog box is closed.

FIGURE 10-15 Font dialog box menu option

You could certainly change any or all of the fonts and colors on the form using the 
name of the control object in your program statements. The lblOutput Label 
object is the only one modified by the font and color selections at run time. The 
source code listing for the GardeningForm.cs file is given in Example 10-20.

You will recall that three separate source code files are created for each Windows 
 application. One file stores the Main( ) method. This file has a default name of 
 Program.cs. The second and third files, taken together define the class for the 
application. Their heading indicates that each file has a partial class definition. 

You can add color selections to the Font dialog box by setting the ShowColor 
property of the FontDialog object to true. Your program statement would read: 
 fontDialog1.ShowColor = true;. By that same token, you could remove the 
Effects selections by setting the ShowEffects property to false. Doing this 
removes the check boxes for Strikeout and Underline.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



626 | Chapter 10: Programming Based on Events

One of these two files is named the GardeningForm.Designer.cs. This file stores 
all the Visual Studio generated code used to instantiate objects that were dragged 
and dropped onto the form. No developer code was added to this file. It is now 
shown here.

The file illustrated in Example 10-20 is named GardeningForm.cs. It stores the 
code written to handle the events, such as button clicks and menu option selections. 
Some of the code is automatically generated; however, it is in this file that all devel-
oper code is placed. The other two files hold only code automatically generated by 
Visual Studio. They are not shown. Notice that the only using statement shown with 
this example is using System.Windows.Forms. EventArgs, for example, is in the 
 System namespace so references to that class in the event handler method head-
ings are fully qualified (System.EventArgs e) since the using System namespace 
is not included. 

EXAMPLE 10-20

// GardeningForm.cs               Author: Doyle
// Menu, ListBox, ComboBox, Label, and TextBox 
// objects are included in the design. KeyPress( ), 
// Click( ), and SelectedIndexChanged( ) events 
// are programmed. Font and Color dialog boxes 
// are added.
using System.Windows.Forms;

namespace GardeningForm
{
     public partial class GardeningForm : Form 
     {
          public GardeningForm( )
          {
               InitializeComponent( );
          }

          private void cmboFlowers_SelectedIndexChanged
                         (object sender, System.EventArgs e) 
          {
               this.txtBxResultFlowers.Text =
               this.cmboFlowers.Text;
          }

          private void cmboFlowers_TextChanged (object sender,
                                        System.EventArgs e)
          {
               this.txtBxResultFlowers.Text =
                                   cmboFlowers.Text;
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



MenuStrip Control Objects | 627

1 
0

          private void lstBxTrees_SelectedIndexChanged (object sender, 
                                                 System.EventArgs e)
          {
              this.txtBxResultTrees.Text = " ";
              foreach(int i in lstBxTrees.SelectedIndices)
                   {
                         this.txtBxResultTrees.Text +=
                    this.lstBxTrees.Items[i] + " ";
                   }
          }

          private void menuExit_Click(object sender,
                                      System.EventArgs e)
          {
               Application.Exit( );
          }

          private void menuAbout_Click(object sender,
                                       System.EventArgs e)
          {
               MessageBox.Show("Gardening Guide " + 
                               "Application\n\n\nVersion 1.0",
                               "About Gardening");
          }

          private void menuFont_Click(object sender,
                                      System.EventArgs e)
          {
               fontDialog1.Font = lblOutput.Font;
               if (fontDialog1.ShowDialog( ) != 
                              DialogResult.Cancel)
               {
                    lblOutput.Font = fontDialog1.Font;
               }
          }

          private void menuColor_Click(object sender,
                                       System.EventArgs e)
          {
               colorDialog1.Color = lblOutput.ForeColor;
               if (colorDialog1.ShowDialog( ) !=
                               DialogResult.Cancel)
               {
                    lblOutput.ForeColor = colorDialog1.Color;
               }
          }
    }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



628 | Chapter 10: Programming Based on Events

A number of properties were set for the different objects of the GardeningForm applica-
tion. To aid you in reviewing these settings, Table 10-4 includes a list of properties and 
the values used to set them. The source code for the GardeningForm. Designer . cs 
is not shown; however, the file is available from the publisher like all other examples 
illustrated in the book.

Name Object type Property Value

GardeningForm Form BackColor Medium Blue  
 (0, 0, 192)

GardeningForm Form Font Microsoft  
Sans Serif, 12

GardeningForm Form Text Typed "Gardening 
Guide"

lstBxTrees ListBox Items(Collection) Typed "Maple", 
"Oak","Palm", 
"Pine", 
"Spruce", 
"Walnut"

lstBxTrees ListBox SelectionMode MultiExtended

lstBoxTrees ListBox ToolTip Typed "Press  
and Hold the  
Ctrl Key for 
Multiple 
Selections!"

cmboFlowers ComboBox Items(Collection) Typed "Roses", 
"Orchids", 
"Tulips", 
"Daisies", 
"Asters",  
"Mums"

TABLE 10-4 GardeningForm property values

(continues)

As you review the source code for Example 10-20, keep in mind that the Visual  Studio 
Form Designer automatically generated many statements that are stored in the 
 GardeningForm.Designer.cs file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



MenuStrip Control Objects | 629

1 
0

Name Object type Property Value

lblFlower Label Text Typed "Flowers"

lblTrees Label Text Typed "Trees"

lblHeading Label Text Typed "Make your 
Selection"

txtBxResultTrees TextBox Multiline True

txtBxResultTrees TextBox ScrollBars Horizontal

txtBxResultTrees TextBox Text (left blank)

lblFlowerAnswer Label Text Typed "Flower 
preferences"

lblTreeAnswer Label Text Typed "Tree 
preferences"

menuFile ToolStripMenuItem Text Typed "&File"

menuExit ToolStripMenuItem Text Typed "Exit"

menuFormat ToolStripMenuItem Text Typed "F&ormat"

menuFont ToolStripMenuItem Text Typed "Font"

menuColor ToolStripMenuItem Text Typed "Color"

menuHelp ToolStripMenuItem Text Typed "&Help"

menuAbout ToolStripMenuItem Text Typed "About"

lblOutput Label Text Typed "Add  
water!"

© Cengage Learning

TABLE 10-4 GardeningForm property values (continued )

The program in Example 10-20 wired a number of objects to event-handler methods. 
Table 10-5 presents the event handlers that are registered for specific objects. Two 
events are registered for the ComboBox object.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



630 | Chapter 10: Programming Based on Events

For each entry in the table, a statement was added to the GardeningForm.
Designer.cs file that registered the method as being the event handler for the par-
ticular object. The actual method is raised when the event is fired.

You have now wired and programmed Click( ), TextChanged( ), and 
 SelectedIndexChanged( ) events. RadioButton and CheckBox objects fire a dif-
ferent type of event. When their values are changed, they raise CheckedChanged( ) 
events. These types of events are discussed in the following section.

CheckBox and RadioButton Objects
Radio buttons and check boxes are two types of objects commonly used in Windows 
applications. They are often grouped together for discussion; however, they differ in 
appearance and functionality. You will first explore CheckBox objects.

CheckBox Objects
CheckBox objects can be added to a Windows form application in the same man-
ner as other objects. If you are using Visual Studio, you drag and drop the control. If 
you are developing in a simple text editor, such as Notepad, instantiate an object of 
the CheckBox class using the new operator. Check boxes usually appear as small 
boxes that allow users to make a yes/no or true/false selection. After the objects 
are placed on the form, Name and Text properties are normally set for each of the 
CheckBox objects.

Object Event-handler method

lstBxTrees SelectedIndexChanged( )

cmboFlowers SelectedIndexChanged( )

cmboFlowers TextChanged( )

menuExit menuExit_Click( )

menuFont menuFont_Click( )

menuColor menuColor_Click( )

menuAbout menuAbout_Click( )

© Cengage Learning

TABLE 10-5 GardeningForm events

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CheckBox and RadioButton Objects | 631

1 
0

Previous applications used a separate event-handler method for every object added 
to the form. You can, however, write an event-handler method and wire it to more 
than one control. This is illustrated in the following example. You might want to look 
ahead to Figure 10-20 to see an example of what the final solution looks like.

A new project is started. It is also a Windows application. This one allows users to  register 
for swim, snorkel, or dive lessons. The form enables the user to select his or her skill 
level. The Text property for the Form object is set to “Registration Form”. The Name 
 property is set to RegForm and the BackColor property is set to DarkBlue.

Adding CheckBox Objects
A TextBox object is added near the bottom of the form to display the final charge 
for the lessons. Swim lessons cost $50; snorkel lessons cost $25; scuba diving les-
sons cost $100. A user can select more than one lesson. Three CheckBox objects are 
added to the form. Their Name properties are set to ckBxSwim, ckBxSnorkel, and 
ckBxDive. The Text property on each is set to represent the type of lessons along 
with a cost (that is, Swim—$50, Snorkel—$25, and Dive—$100). A Label object 
is used to describe the TextBox where the total charges will be displayed. Another 
Label object is added near the top of the form describing the TextBox object to 
its right, which will accept as input the user’s name. Additional Label objects are 
added above and below the check boxes with text of "Select lesson" and "Check 
all that apply".

After the Text properties are set for the controls, the Checked property of the 
CheckBox objects is reviewed. The Checked property is set to either true or false 
depending on whether a check mark appears. This property can be set at design time. 
At run time, the Checked property can be set or inspected using an if statement to 
determine which selections are checked by users. All CheckBox objects remain set at 
their default false value.

Registering CheckBox Object Events
The default event-handler method for CheckBox objects is CheckedChanged( ). 
Double-clicking on one of the CheckBox objects registers a CheckedChanged( ) 
event for that one CheckBox object. The method that is fired checks all the check 
boxes to see which are checked. This code could be copied and pasted to different 
methods or the one method could be wired to all three objects. The last option is a 
better approach. If you copy and paste the code to three methods, any minor modifi-
cations that you make require you to make those changes to all three different meth-
ods. A run-time or logic error is easily created by this scenario. It is easy to forget to 
make those slight changes to all three methods. A better approach is to wire a single 
method to multiple objects.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



632 | Chapter 10: Programming Based on Events

In Visual Studio, the Form Designer prefixes the name of the event-handler method 
with the name of the object to which the method is wired. You can change the name 
of the method so that the method appears to be used by all three objects and not just 
associated with one object. If you do this, a second step is required. You cannot just 
change the name of the method in the method heading. You must also change the 
name of the method in the statement that registered the method to handle the event.

For this example, the original heading for the event-handler method for the Swim 
CheckBox object was
private void ckBxSwim_CheckedChanged (object sender,
                                      System.EventArgs e)

The heading of the ckBxSwim_CheckedChanged( ) method was changed to
private void ComputeCost_CheckedChanged (object sender,
                                         System.EventArgs e)

The characters ckBxSwim were replaced by ComputeCost so that the new method 
name is ComputeCost_CheckedChanged( ). This makes the code more  readable. 
You could have actually wired the other two events to the method without changing any 
names; however, it would be more difficult to read and modify later because it would 
appear that the method was associated with the Swim CheckBox object only.

If you change the name of the method, the second step you must take uses the new name 
to register the event for the Swim CheckBox object. Originally, the statement read:
this.ckBxSwim.CheckedChanged += new System.EventHandler
                                    (this.ckBxSwim_CheckedChanged);

It was changed to
this.ckBxSwim.CheckedChanged += new System.EventHandler
                                     (this.ComputeCost_CheckedChanged);

A quick way to find the program statement in the .Designer.cs file is to run the application 
after you made the name change. Double-clicking on the error that’s generated will take 
you directly to the line in the Designer.cs file you need to change. Notice that you are only 
changing the method name inside the parentheses. You do not change the name of the 
object on the left side of the += symbols.

After those changes are made, you can write the body for the method that will be fired 
when any of the CheckBox object states change. This method is shown in the following.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CheckBox and RadioButton Objects | 633

1 
0

// Event handler to be used by all three CheckBoxes.
private void ComputeCost_CheckedChanged (object sender,
                                         System.EventArgs e)
{
     decimal cost = 0;
     if (this.ckBxSwim.Checked)
     {
          cost += 50;
     }
     if (this.ckBxSnorkel.Checked)
     {
          cost += 25;
     }
     if (this.ckBxDive.Checked)
     {
          cost += 100;
     }
     this.txtBxResult.Text = cost.ToString("C");
}

Actually, this is the only event-handler method written so far; thus, it is the only one 
 available to choose.

Notice that a nested if statement is not used here because the user might click one, two, 
or all three selections. A nested if would exit the selection statement as soon as one con-
dition evaluated to true.

Wiring One Event Handler to Multiple Objects
The Swim CheckBox object is wired to the ComputeCost_CheckedChanged( ) 
method. You changed the name associated with the event-handler method. Now with 
two clicks you can wire the other events. First select the Snorkel CheckBox object, 
as shown in Figure 10-16. Using the Visual Studio Properties window, click on the 
Events icon (lightning bolt). Move down to the CheckedChanged event. Click the 
down arrow associated with that event and select ComputeCost_CheckedChanged. 
Follow the same steps for the Dive CheckBox object.

When you launch the application, changes to any of the CheckBox objects fire the 
ComputeCost_CheckedChanged( ) method.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



634 | Chapter 10: Programming Based on Events

GroupBox Objects
CheckBox objects can be grouped together using the GroupBox control. This is ben-
eficial for visual appearance. It also helps during design because you can move or set 
properties that impact the entire group. However, it does not provide any additional 
functionality for CheckBox objects.

A GroupBox control should be placed on the form before you add the  RadioButton 
objects to it. If you add the RadioButton objects first and then try to add the 
GroupBox control object on top of the RadioButton objects, it does not work as 
smoothly. If you add the GroupBox control object last, you need to physically drag 
the RadioButton objects onto the top of the GroupBox control object.

A number of Form properties were set. These properties were set when the Form 
object was initially created. The Name, BackColor, ForeColor, Text, Font, and 
Size properties should almost always be set.

Do not forget about the useful tools on the Format menu. The Align, Make Same Size, 
Horizontal Spacing, Vertical Spacing, and Center in Form tools save you hours of 
time. Remember, it does matter what your interface looks like!

RadioButton Objects
There are differences between the RadioButton and CheckBox objects, other than 
their visual representation. RadioButton controls appear as small circles on the 
Form object. They are used to give users a choice between two or more options. 
Remember that it is appropriate to select more than one CheckBox object. This is 
not the case with RadioButton objects. Normally, you group RadioButton objects 
by placing them on a Panel or GroupBox control. If a radio button is clicked, it is 
selected and all other radio buttons within the group box are deselected.

Adding RadioButton Objects
To build on the application developed in the previous section containing the 
 CheckBox objects, a GroupBox control is placed on the form. It should be placed 
there before adding objects to the group. GroupBox control objects provide an iden-
tifiable grouping for other controls. After it is dragged onto the form, a GroupBox 
control object must usually be resized. Using Visual Studio, you can drag three 
RadioButton objects on top of the GroupBox.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CheckBox and RadioButton Objects | 635

1 
0

Setting the Text property for the GroupBox adds a labeled heading over the group 
of radio buttons without you having to add an additional Label object.  Whatever 
value you type for the Text property for RadioButton objects is used to label the 
control. By default, the text appears to the right of the small circle, as shown in 
 Figure 10-16. If you want the text in the label to display to the left of the small circle, 
set the  RightToLeft property to Yes for the RadioButton control. For this example, 
the GroupBox Text property is set to "Skill level"; RadioButton Text proper-
ties are set to "Beginner", "Intermediate", and "Advanced". An extra Label 
object is added to the bottom right to display messages regarding special  discounts 
or extra charges associated with different skill levels. The new Label object’s Text 
property is set to "". Figure 10-16 shows the form in Design view after the Text 
 properties are set for the newly added GroupBox and RadioButton objects.

After the RadioButton objects are placed on the GroupBox, you can set properties 
of the GroupBox and impact all members of the group. Want to make them invisible? Set 
the Visible property of the GroupBox. It is not necessary to set all of the members. If 
you want to change the font color of all radio buttons, just change the GroupBox Font 
property.

FIGURE 10-16 GroupBox and RadioButton objects added

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



636 | Chapter 10: Programming Based on Events

The middle RadioButton object is set as the default by selecting true for its 
Checked property. This is done during design using the Checked property, located 
in the Properties window list of properties. You change the value by selecting true 
from the drop-down list. Double-clicking on the property name also toggles the set-
ting between false (default) and true. The Visual Studio Form Designer inserts the 
following line of code in your program: this.radInterm.Checked = true;

Notice the box drawn around the RadioButton objects. This is added by the 
 GroupBox control object. The heading that appears over the radio buttons is the 
Text property for the GroupBox.

If you plan to have more than one set of RadioButton objects on your form, each 
set must be associated with a different Panel or GroupBox control object. This is 
 necessary to allow mutually exclusive selections from different categories. For example, if 
you had one set of buttons for skill level and another set for age group (1–5 years; 6–10 
years; over 10 years), to allow selection from both categories, the two categories of radio 
buttons must be connected to two different group boxes or panels.

Registering RadioButton Object Events
Like CheckBox objects, RadioButton objects raise a number of events, including 
Click( ) and CheckedChanged( ) events. For this application, the skill level helps 
determine the cost of the lessons. The prices shown on the form are actually for reg-
istrants of intermediate skill level. Those with an advanced skill level are discounted 
$15; beginners are charged an extra $10. Because the skill level is used to determine 
the cost of lessons, the RadioButton Click event is wired to the same event-handler 
method that was written for the CheckBox objects. Modifications are made to the 
method to reflect the additional problem specification.

Wire the Click event for each of the RadioButton objects—just as you wired the 
Scuba and Dive CheckBox objects. This can be done in Visual Studio by displaying the 
list of events (click on the Events lightning bolt icon) in the Properties window. Select 
the Click( ) event and then use the down arrow to select the event- handler method 
ComputeCost_CheckedChanged( ). This is still the only event- handler  method 
available to be displayed, as shown in Figure 10-17. No other event-handler 
 methods have been written for this application. Figure 10-16 shows the  ckBxSnorkel 
 CheckBox object being wired to the ComputeCost_CheckedChanged( ) method. 
That same method, ComputeCost_CheckedChanged( ), is wired to the other 
CheckBox objects. The Click event for the RadioButton objects is also wired to 
the  ComputeCost_CheckedChanged( ) method shown in Figure 10-17.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CheckBox and RadioButton Objects | 637

1 
0

Additional statements are added to the end of the ComputeCost_ CheckedChanged( ) 
method to take the skill level into consideration. The Checked property is used again. 
This time, it is inspected to determine which RadioButton object is selected. This 
is shown in the following.
if (this.radBeginner.Checked)
{
     cost +=10;
     this.lblMsg.Text = "Beginner — Extra $10 charge";
}
else
     if (this.radAdvanc.Checked)
     {
          cost -=15;
          this.lblMsg.Text = "Advanced Discount $15";
     }
     else
     {
          this.lblMsg.Text = " ";
     }

FIGURE 10-17 Wired Click event

Notice that a nested if statement is used here with the RadioButton objects. Unlike 
the CheckBox objects, only one selection is possible. Thus, as soon as an expression 
evaluates to true, there is no need to test the other expressions.

Example 10-21 includes the RegForm program listing. The RegForm.Designer.cs 
file is not shown. The full project is available as a download from the publisher’s 
website. Although the .Designer.cs file seems long, the Form Designer in Visual 
Studio generates the code from selections made in the Properties window.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



638 | Chapter 10: Programming Based on Events

EXAMPLE 10-21

/* RegForm.cs
 * This application enables users to register for water
 * activities. GroupBox, RadioButtons, CheckBoxes, TextBoxes,
 * and Labels are added. Several CheckedChanged( ) and Click( )
 * events are wired to a single method.
 */
using System; 
using System.Windows.Forms;

namespace RegistrationApp
{
     public partial class RegForm : Form 
 {
          public RegForm( )
          {
               InitializeComponent( );
          }

          // Handles CheckChanged( ) events for CheckBox objects 
          // and Click( ) events for RadioButton objects
          private void ComputeCost_CheckedChanged(object sender,
                                                  EventArgs e)
          {
               decimal cost = 0;
               this.lblMsg.Text = " ";
               if (this.ckBxSwim.Checked)
               {
                    cost += 50;
               }
               if (this.ckBxSnorkel.Checked)
               {
                    cost += 25;
               }
               if (this.ckBxDive.Checked)
               {
                    cost += 100;
               }
               if (this.radBeginner.Checked)
               {
                    cost += 10;
                    this.lblMsg.Text = 
                         "Beginner -- Extra $10 charge";
               }
               else
                    if (this.radAdvanc.Checked)
                    {
                         cost -= 15;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Windows Presentation Foundation (WPF) | 639

1 
0

                         this.lblMsg.Text = 
                              "Advanced -- Discount $15"
                    }
                    else
                    {
                         this.lblMsg.Text = " ";
                    }
                    this.txtBxResult.Text = cost.ToString("C");
               }
          }
     }

A sample run of the application appears in Figure 10-18.

As illustrated in Figure 10-18, users can select one or more lessons; however, only one 
skill level is permissible.

Windows Presentation Foundation (WPF)
In Chapter 9, you read that one of the options for creating Windows applications was 
to use WPF as opposed to WinForms. The Application Programming Interface (API) 
is capable of taking full advantage of the multimedia facilities of modern PCs. The 
power of WPF comes from the fact that it is vector-based and resolution- independent 
so you get really sharp graphics. Its sophisticated layout system handles arrangement 
of all visual elements.

FIGURE 10-18 ComputeCost_CheckedChanged( ) and Click( ) events raised

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



640 | Chapter 10: Programming Based on Events

You should try out this platform. You will find many of the controls that you used 
with Windows Forms Applications, such as buttons, labels, listboxes, textboxes, 
and  comboboxes. As with WinForms applications, you can drag and drop controls 
from the Toolbox onto the window. You can set property values and register events 
using the Properties window. There is not a one-to-one correspondence between 
 properties with WinForms and properties with WPF, but you should explore them. 
For example, instead of setting the Text property for buttons, labels, checkboxes, and 
radio buttons, you set the Content property.

WPF Application is one of the options available when you create a new Windows  
 project in Visual Studio. Select File, New Project and the second template listed is  
WPF  Application. It is immediately below the Windows Forms Application option.  
You can look back at Figure 9-2 to see that option.

When you are creating a WPF Application, if you do not see Content listed as one of the 
properties, you may want to arrange the properties by name. The Arrange by: option is 
available at the top of the Properties window under the Search Properties textbox.

A Header property is used as identifying text over groupbox objects in WPF. The Text 
property is used for textboxes. The graphics user interface is crisper with WPF. You 
have greater color control with backgrounds, foregrounds, and images. Figure 10-19 
illustrates the design of an application using WPF.

FIGURE 10-19 WPF design
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Windows Presentation Foundation (WPF) | 641

1 
0

The RegistrationApp that you saw earlier in this chapter was recreated using 
WPF. As shown in Figure 10-19, the Toolbox contains many of the same controls you 
have already experienced. There are two Toolbox categories (Common WPF Con-
trols and All WPF Controls). You have more control placing items on the window 
with WPF. Notice the slider to the left of the MainWindow. You can zoom in/out for 
greater precision using this tool. It is not available with WinForms. You can build a 
more aesthetically appealing window with WPF.

As you review Figure 10-19, you will see different files in the Solution Explorer 
window than you saw with WinForms applications. You will see a new XAML file. 
WPF files end with the .xaml file extension. WPF’s XAML file resembles a Hypertext 
Markup Language (HTML) file. XAML stands for eXtensible Application Markup 
Language. It is an Extensible Markup Language (XML) file complete with beginning 
and ending tags. You can think of the XAML file as an HTML file for Windows appli-
cations. HTML files are normally associated with Web applications. You will explore 
these files in Chapter 15. XML is readable and can be easily edited by hand. Below 
the design window in Figure 10-19, you had a peek at the XAML file. Each of the con-
trols placed on the window appear as separate lines in the XAML file. Content was 
assigned a value in the Properties window for the label. Example 10-22 provides the 
statements found in that .xaml file.

EXAMPLE 10-22

<Window x:Name="RegForm"
     x:Class="WPF_Example.MainWindow"
      xmlns="http://schemas.microsoft.com/" +
            "winfx/2006/xaml/presentation"
      xmlns:x=http://schemas.microsoft.com/" +
            "winfx/2006/xaml"
      Title="Registration Form" Height="350"
             Width="525">
<Grid Background="#FF3B51DC">
     <Grid.BindingGroup>
          <BindingGroup/>
     </Grid.BindingGroup>
     <Grid.RowDefinitions>
          <RowDefinition Height="87*"/>
          <RowDefinition Height="233*"/>
     </Grid.RowDefinitions>
<Label Content="Name:" HorizontalAlignment="Left"
          Margin="97,23,0,0" VerticalAlignment="Top"
          RenderTransformOrigin="−1.877,0.567"
          FontSize="16" Foreground="#FFEBF508"/>
<TextBox HorizontalAlignment="Left"
          Height="23"Margin="165,26,0,0"
          TextWrapping="Wrap" VerticalAlignment="Top"

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



642 | Chapter 10: Programming Based on Events

          Width="260" FontSize="16"
          Foreground="#FFEBF508" IsTabStop="False"/>
<CheckBox x:Name="ckBxSwim" Content="Swim - $50"
          HorizontalAlignment="Left"
          Margin="64,37,0,0"Grid.Row="1"
          VerticalAlignment="Top"
          FontSize="16" Foreground="#FFEBF508"
          IsTabStop="False" Checked="ComputeCharges"/>
<CheckBox x:Name="ckBxSnorkel"
          Content="Snorkel - $25"
          HorizontalAlignment="Left"
          Margin="64,76,0,0" Grid.Row="1"
          VerticalAlignment="Top" FontSize="16"
          Foreground="#FFEBF508" IsTabStop="False"
          Checked="ComputeCharges"/>
<CheckBox x:Name="ckBxDive"
          Content="Dive - $100"
          HorizontalAlignment="Left"
          Margin="64,111,0,0" Grid.Row="1"
          VerticalAlignment="Top" FontSize="16"
          Foreground="#FFEBF508" IsTabStop="False"
          Checked="ComputeCharges"/>
<GroupBox x:Name="skillGroup" Header="Skill level"
          HorizontalAlignment="Left"
          Margin="292,0,0,0" Grid.Row="1"
          VerticalAlignment="Top" Height="143
          Width="138" FontSize="16"
          Foreground="#FFEBF508">
<RadioButton x:Name="radBeginner"
          Content="Beginner"
          HorizontalAlignment="Left" Height="25"
          VerticalAlignment="Top" Width="104"
          Margin="18,15,0,0" FontSize="16"
          Foreground="#FFEBF508" IsTabStop="False"
          GroupName="skillGroup"
          Checked="ComputeCharges"/>
</GroupBox>
<RadioButton x:Name="radInterm"
          Content="Intermediate"
          HorizontalAlignment="Left"
          Margin="316,65,0,0" Grid.Row="1"
          VerticalAlignment="Top" FontSize="16"
          Foreground="#FFEBF508" IsTabStop="False"
          GroupName="skillGroup"
          Checked="ComputeCharges"/>
<RadioButton x:Name="radAdvanced"
          Content="Advanced"
          HorizontalAlignment="Left"
          Margin="317,95,0,0" Grid.Row="1"
          VerticalAlignment="Top" FontSize="16"

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Windows Presentation Foundation (WPF) | 643

1 
0

          Foreground="#FFEBF508" IsTabStop="False
          GroupName="skillGroup" Checked="ComputeCharges"/>
<Label Content="Select lesson"
          HorizontalAlignment="Left" Margin="62,0,0,0"
          Grid.Row="1" VerticalAlignment="Top"
          FontSize="16" Foreground="#FFEBF508"/>
<Label Content="Total: "
          HorizontalAlignment="Left"
          Margin="44,174,0,0" Grid.Row="1"
          VerticalAlignment="Top" FontSize="16
          Foreground="#FFE3F904"/>
<TextBox x:Name="txtBxResult"
          HorizontalAlignment="Left" Height="23"
          Margin="105,178,0,0" Grid.Row="1"
          TextWrapping="Wrap" VerticalAlignment="Top"
          Width="120" FontSize="16"
          Foreground="#FFE3F904" IsEnabled="False"/>
<Label x:Name="lblMsg"
          HorizontalAlignment="Left"
          Margin="244,174,0,0" Grid.Row="1"
          VerticalAlignment="Top" FontSize="16"
          Foreground="#FFE3F904" Width="250"/>
</Grid>
</Window>

You do not find the objects, like RadioButtons, instantiated. There is no .Designer . cs 
file. Objects like textboxes and labels are described in the XAML file. As you review 
the program statements from Example 10-22, you will notice that their appearance 
is controlled here in the XAML file. There is a beginning and an ending tag for each 
control placed on the window. Take a look at the label controls shown in the example. 
It is very easy to read the XML text. The last label is the blank label placed to the right 
of the result textbox. It does not have any content. Thus, no value was assigned to the 
Content property. The other labels have a value for Content. The Name property 
associated with the controls becomes the control’s identifier.

The Solution Explorer window in Figure 10-19 shows a MainWindow.xaml.cs file. 
This is the code behind file. Yes, there is still the code behind file found with WPF 
applications. This is the main feature that WinForms and WPF applications share in 
common. With a slight modification of property names, you have the same program 
statements written for the WPF application as you had with the WinForms applica-
tion. The primary namespace for WPF applications is System.Windows as opposed 
to the System.Windows.Forms namespace used with Windows Forms applications. 
Like Windows Forms applications, a number of using statements are automatically 
added. Even more using statements are added with WPF applications. Most are not 
needed. As was done with previous examples, extraneous ones are removed. Example 
10-23 shows the program statements found in the code behind file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



644 | Chapter 10: Programming Based on Events

EXAMPLE 10-23

// WPF_Example.xaml                          Author: Doyle
// CheckBox and RadioButton objects added to the Windows form.
// Illustrates wiring several methods to the same event handler.
using System.Windows;
namespace WPF_Example
{
     public partial class MainWindow : Window 
     {
          public MainWindow( )
          {
               InitializeComponent( );
          }

          private void ComputeCharges(object sender,RoutedEventArgs e)
          {
               decimal cost = 0M;

               if (this.ckBxSwim.IsChecked == true)
               {
                    cost += 50;
               }
               if (this.ckBxSnorkel.IsChecked == true)
               {
                    cost += 25;
               }
               if (this.ckBxDive.IsChecked == true)
               {
                    cost += 100;
               }

               if (this.radBeginner.IsChecked == true)
               {
                    cost += 10;
                    this.lblMsg.Content = "Beginner — — Extra " + 
                                          "$10 charge"; 
               }
               else
                    if (this.radAdvanced.IsChecked == true)
                    {
                         cost -= 15;
                         this.lblMsg.Content = "Advanced — — " +
                                               "Discount $15";
                    }
                    else
                         this.lblMsg.Content = " ";
               this.txtBxResult.Text = cost.ToString("C");
          }
     }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TabControl Objects | 645

1 
0

When you compile an application that contains XAML files, the markup gets con-
verted into binary XAML (BAML). BAML is a tokenized, binary representation of 
XAML. This binary representation is then stored inside the application’s resources 
and loaded as needed by WPF during the execution of your program. The main 
advantage of this approach is that you get a faster user interface load time by reading 
a binary stream than through parsing XML. Figure 10-20 shows the final output when 
the application runs.

FIGURE 10-20 WPF application

TabControl Objects
There may be times when you build applications that require too many controls for a 
single screen. You will recall that an important design consideration is to avoid clut-
tering your graphical user interface (GUI). Readability is very important. An option 
that you have available is to add tab controls to the page. The TabControl object 
displays multiple tabs, like dividers in a notebook or labels in a set of folders in a filing 
cabinet. This control makes it possible to create a multiple-page dialog box similar to 
what you see with many Windows applications. A Windows form using tab controls 
is illustrated in Figure 10-21.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



646 | Chapter 10: Programming Based on Events

Each separate tab can be clicked to display other options, as shown in Figure 10-21. 
You can place pictures, buttons, labels, or any control on each tabbed page. Add a 
TabControl object to the page by dragging the control from the Container section 
of the Toolbox onto your blank form. You can move the control to the upper-left cor-
ner of the form and use the size handles to stretch the control. You can cover the part 
of the form as shown in Figure 10-21 or all of the form, as is illustrated in Figure 10-22.

FIGURE 10-21 Tabbed controlled application

FIGURE 10-22 TabControl object stretched to fill form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TabControl Objects | 647

1 
0

When the TabControl object is placed on the form, as shown in Figure 10-22, 
two tabs are included by default. Additional tabs can be added or removed by right-
clicking on a tab and selecting the Add Tab option. The most important property the 
TabControl has is the TabPages property. The TabPages property enables you to 
format individual tabs. Clicking the ellipsis beside the Collection value displays the 
TabPage Collection Editor shown in Figure 10-23.

FIGURE 10-23 TabControl's TabPage Collection Editor

You change the appearance of the tabs using the TabPage Collection Editor. You can 
display images on tabs, change the background or foreground colors, or change the 
text using the Text property. You also change the order of the tabs using the Collection 
Editor by selecting the tab and using the arrows to the right of the member name to 
move the tab to its preferred position. Tabs can be displayed vertically instead of hori-
zontally using the Alignment property. Multiple rows of tabs can be displayed by set-
ting the MultiLine property to true. You can also register Click events for each of 
the tabs so that when an individual tab is selected, its Click event method is executed. 
If you want to control which tab appears on top, use the SelectedTab property. For 
example, if you had not changed default names, to indicate tabPage2 should be on 
top, your program statement would read: tabControl1. SelectedTab = tabPage2;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



648 | Chapter 10: Programming Based on Events

When you add a TabControl object, you expand the area where controls can be 
placed. It is almost like having multiple forms to place controls on, but the tabs are all 
placed on a single form. TabControl objects enable you to separate the form into 
separate sections or categories. When you write program statements, you do not have 
to qualify or indicate which tab holds the controls. All of the controls are available. 
The pizza application, shown in Figure 10-21, has three categories of items for sale. 
Each was placed on a separate tab. In order to determine the final amount due, data 
had to be retrieved from all three tabs.

Do not confuse the TabControl objects with the tab order that is used to move from 
one control to another using the Tab key. Each form has its own tab order. By default, 
the order is the same as the order in which the controls are placed on the form. You can 
change that order by setting the TabIndex property for each of the controls. Tab-order 
numbering begins with zero.

As you look at the final design for the pizza application, shown in Figure 10-21, you might 
think it looks pretty plain. It actually is. Very few properties were set for this application. You 
will get to use your creativity to enhance it since this is one of the programming exercises 
at the end of this chapter.

If you want to have a control, such as a button, visible, no matter which tab is selected, 
you might consider not completely stretching the TabControl object over the full 
size of the form as shown in Figure 10-22. This will allow you to determine the size 
of the tabbed area.

Figure 10-21 shows the form during design. You are encouraged to be creative when 
you build the application at the end of this chapter. Example 10-24 provides a listing 
of the PizzaApp.cs file where the event-handler program statements were added.

EXAMPLE 10-24

/* PizzaApp.cs
 * This application illustrates using
 * TabControls, ComboBoxes, Textboxes, 
 * CheckListBox. Items can be ordered 
 * with a total price displayed.
 */
using System; 
using System.Windows.Forms;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TabControl Objects | 649

1 
0

namespace PizzaApp
{
     public partial class PizzaForm : Form
     {
          private string order;
          private double totalCost;

          public PizzaForm( )
          {
               InitializeComponent( );
          }

          private void PizzaForm_Load(object sender, EventArgs e) 
          {
               this.cmboSize.SelectedIndex = 1;
               this.cmboCrust.SelectedIndex = 0;
               this.cmboSpeciality.SelectedIndex = 0;
               this.txtBxSodaQty.Text = "0";
               this.txtBxWaterQty.Text = "0";
               order = "";
               totalCost = 0;
          }

          private void btnPlaceOrder_Click(object sender, EventArgs e)
          {
               double drinkCost,
               pizzaCost,
               specialtyCost;
               order = "";
               order += cmboCrust.SelectedItem.ToString( ) + 
                         " - ";
               order += cmboSize.SelectedItem.ToString( ) +
                         "\n";
               if (ckBxItems.SelectedItems.Count > 0)
               {
                    order += "Toppings:";
                    foreach (string s in ckBxItems.CheckedItems)
                    {
                         order += "\n" + s;
                    }
               }
               pizzaCost = DeterminePizzaCost( );
               if (pizzaCost != 0) 
                    order += "\nPizza Total: " + 
                             pizzaCost.ToString("C");
               drinkCost = DetermineDrinkCost( );
               if (drinkCost != 0) 
                    order += "\nDrink Total: " + 
                             drinkCost;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



650 | Chapter 10: Programming Based on Events

               specialtyCost = DetermineSpecialtyCost( );
               if (specialtyCost != 0)
               {
                    order += "\n\nSpecialty Items:\ n" +
                      cmboSpeciality.SelectedItem.ToString( );
               }
               order += "\n\nAmount Due: " + 
                         (pizzaCost + drinkCost +
                          specialtyCost).ToString("C");
               MessageBox.Show(order,
                              "B & D Pizza Express Order\n");
          }

          private double DetermineDrinkCost( ) 
          {
               double sodaCnt,
                      waterCnt;
               totalCost = 0;
               if (txtBxSodaQty.Text != "")
               {
                    while (double.TryParse (txtBxSodaQty.Text,
                                         out sodaCnt) == false)
                    {
                         lblErrorMsg.Text =
                                   "Quantity must be numeric";
                         txtBxSodaQty.Text = "0";
                    }
                    order += "\n\nDrink Selections:\ n" + sodaCnt + 
                             " soda(s)";
                    totalCost = sodaCnt * 1.75;
               }
               if (txtBxWaterQty.Text != "")
               {
                    while (double.TryParse(txtBxWaterQty.Text,
                                         out waterCnt) == false)
                    {
                         lblErrorMsg.Text =
                                   "Quantity must be numeric";
                         txtBxWaterQty.Text ="0";
                    }
                    order += "\n" + waterCnt + " water(s)"; 
               }
               return totalCost; 
          }

          public double DeterminePizzaCost( )
          {
               double cost;
               if (cmboSize.SelectedIndex == 0) 
                   cost = 9.95;
               else

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



TabControl Objects | 651

1 
0

                   if (cmboSize.SelectedIndex == 1)
                       cost = 12.95;
                   else
                       cost = 15.95; 
               return cost + 
                    (ckBxItems.CheckedItems.Count * 1.50);
          }

          public double DetermineSpecialtyCost( ) 
          {
               double cost;
               if (cmboSpeciality.SelectedIndex == 1)
               {
                    cost = 5.00;
               }
               else
                   if (cmboSpeciality.SelectedIndex == 2)
                   {
                        cost = 4.00;
                   }
                   else
                        if (cmboSpeciality.SelectedIndex == 3) 
                        {
                             cost = 3.00;
                        }
                        else
                             cost = 0;
               return cost;
          }
     }
}

As you review Example 10-24, notice that two identifiers, order and totalCost, are 
both defined as private data members as opposed to being defined as local variables 
inside an event-handler method. This is to enable all methods in the class to have 
access to them. The Form_Load( ) event handler initializes and sets default values 
for each of the controls on the form. The functionality of the application is controlled 
from the btnPlaceOrder_Click ( ) event handler. The total amount due is deter-
mined in this method based upon which selections were made on the form.

The auto-generated code in the PizzaApp.Designer.cs file is not shown here to 
conserve space. However, this application, like all the other examples in the book, is 
available as a fully functioning Visual Studio project. A new control,  CheckedListBox, 
is added to this example. The control displays a list of items with a check box on the 
left. Thus, it places all of the check box items in a group, providing additional func-
tionality of a GroupBox, but no GroupBox is added. Two new properties are used 
with the CheckedListBox control: Count and CheckedItems. The CheckedItems 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



652 | Chapter 10: Programming Based on Events

property returns a collection of the items checked; Count returns the number of 
items checked.

Another control, PictureBox, was also dragged onto the top tab on the PizzaForm. 
To associate an image with the PictureBox control, the Image property is selected. 
This enables you to browse to the location where the image is stored. You can create 
a separate folder for your images or as was done with this application place the image 
in the bin\debug directory. Once you select the Image property and click the three 
dot-ellipsis, the Select Resource dialog box is revealed. Import the image using the 
Local resource option.

As you review the toolbox, notice that there are over 100 different controls in the 
Toolbox. Details were provided for a small portion of them in this book. You are 
encouraged to explore, discover, and experiment with the other controls and their 
properties. Intellisense provides you with a short description. Additional details can 
be found via the Visual Studio Help system and online resources.

This example demonstrates event-driven applications that include the design 
and implementation of a graphical user interface. Two classes are constructed to 
separate the business logic from the presentation details. The first class defines 
a template for a food order object. It includes behaviors for processing an order 
that includes selections for entrée, drink, and special requests. The class assigns 
prices to each item selected and determines the overall price of the order. The 
other class instantiates an object of the Order class and instantiates a Windows 
Form object to represent the graphical user interface. Using the .NET predefined 
Control classes, Label, ComboBox, ListBox, RadioButton, CheckBox, and 
Menu objects are added to the Form object. The problem specification for the 
DinerGUI application is shown in Figure 10-24.

PROGRAMMING EXAMPLE: DinerGUI Application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

Programming Example: Dinergui Application | 653

ANALYZE THE 
PROBLEM 
DATA

You should review the problem specification in Figure 10-24 and make sure you 
understand the problem definition. Several values will be selected from GUI con-
trols to represent the entree and drink selections, as well as preferences for water 
and special requests. The business logic is separated from the user interface using 
two classes. The data members for the Order class are given in Table 10-6.

FIGURE 10-24 Problem specification for DinerGUI example

©
 C

en
ga

ge
 L

ea
rn

in
g

DATA Table 10-6 lists the data field members needed for the Order class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



654 | Chapter 10: Programming Based on Events

A second class, OrderGUI, is created for the user interface. This class allows 
the user to select an entree and a drink, enter special requests, and request water. 
During design, a prototype is developed to determine which controls would be 
most appropriate for each selection.

Drink selections are constant and include "Milk", "Juice", "Soda", "Lemonade", 
"Tea" and "Coffee". Menu options may change occasionally and should not be 
statically placed on the graphical user interface. Current options are "Chicken 
Salad", "Ham and Cheese", "Turkey", "Vegetable Wrap", "Tuna Salad", 
"Avocado and Cheese", "Club", "Peanut Butter & Jelly", "Grilled 
Cheese", and "Reuben".

Data description Type Identifier

Entree selection string entree

Water preference bool waterSelection

Drink preference string drinkSelection

Special requests string specialRequest

Entree price decimal entreePrice

Drink price decimal drinkPrice

© Cengage Learning

TABLE 10-6 Order class data fields

DESIGN A 
SOLUTION

The desired output is to produce a graphical user interface that allows a user to 
pick from a number of selections while placing an order. According to the  problem 
 definition, menu options should be available to clear the entire order or just 
part of it. After the items are selected, the total price and items selected should 
be  displayed. These options can also appear as selections from the menu bar. 
 Figure 10-25 shows a prototype of the form that illustrates the types of objects to 
be used and  approximates their placement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

Programming Example: Dinergui Application | 655

During design, determine which object types will be used to create the interface. 
The MenuStrip object was selected rather than a number of buttons so that the 
screen does not become cluttered. Menus offer the advantage of requiring less real 
estate on your screen. The entrees are displayed in a ListBox object. A scroll bar 
is automatically added when the number of entries exceeds the available space. The 
text selections for the ListBox object are loaded at run time to enable the diner 
manager to change the menu options in the class that deals with the business 
logic and keep that separate from the actual display.

Special requests are stored in a ComboBox object because it enables users either 
to choose from a list of options or to type a new entry. The water selection is a yes/
no format; thus, a CheckBox object is used. RadioButton objects are used for 
drink selection. The buttons are placed in a GroupBox so that only one drink is 
selected.

Menu options include the following features:

File

 ? Place Order—Displays the current order and the total price of the order

 ? Clear Order—Deselects all options on the GUI and sets all of the individual 
selections back to their defaults

FIGURE 10-25 Prototype for DinerGUI example

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



656 | Chapter 10: Programming Based on Events

 ? Display Order—Displays the current order

 ? Exit—Closes all windows and exits the application

Edit

 ? Entree—Displays a message indicating that the entree selection is cleared, 
clears the entree selection, and deselects the selected entree

 ? Drink—Displays a message indicating that the drink selection is cleared, 
clears the drink selection, and deselects the selected drink

 ? Special Request—Displays a message indicating that the special request 
selection is cleared, clears the special request selection, and deselects the 
selected special request, or clears the text area if a value is typed

Help

 ? About—Displays the name of the application along with the version 
number.

The Order class has both data and behavior characteristics that can be identi-
fied. The major actions or behaviors of an Order object are to set instance vari-
ables using the selection from the GUI objects, determine the individual prices, 
and determine the overall charge for the order. Class diagrams are used to help 
design and document these characteristics. Figure 10-26 shows the class dia-
grams for the DinerGUI example.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

Programming Example: Dinergui Application | 657

FIGURE 10-26 Class diagrams for DinerGUI example

©
 C

en
ga

ge
 L

ea
rn

in
g

The class diagrams do not show the properties or the local variables that may 
be required for specific class methods. They do not show which event-handler 
methods are associated with particular objects.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



658 | Chapter 10: Programming Based on Events

During design, it is important to develop algorithms showing the step-by-step pro-
cess for the business logic of the application. Pseudocode for the Order class 
methods is shown in Figure 10-27.

There are a number of ways to document collaboration between objects using an 
 object-oriented approach. They include sequence, collaboration, state transition, and 
activity diagrams. Systems analysts often use these diagrams to design an application. 
Development of these types of models is beyond the scope of this book; however, you 
are encouraged to research and learn about them.

FIGURE 10-27 Pseudocode for the Order class for the DinerGUI example

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

Programming Example: Dinergui Application | 659

Many of the objects on the interface must be registered with event-handler meth-
ods. It is important that you spend time thinking about what should happen when 
each event is fired. Figures 10-28–10-30 show pseudocode for the event handlers 
of the GUI class.

FIGURE 10-28 Pseudocode for RadioButton, CheckBox, ListBox, and ComboBox object event handlers

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



660 | Chapter 10: Programming Based on Events

FIGURE 10-29 Pseudocode for menu object event handlers

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

Programming Example: Dinergui Application | 661

FIGURE 10-30 Pseudocode for menu object event handlers and the ClearDrinks( ) method

After completing the design and verifying the algorithm’s correctness, you trans-
late the design into source code. For this application, two separate files, one for 
each class, are created. Form Designer can generate much of the code for the user 
interface class. Control object’s property values are as given in Table 10-7.

CODE THE 
SOLUTION

You should always desk check your design. Develop your test plan for testing the 
application. Walk through your logic and ensure you have accounted for each of 
the events that need to be programmed. Reread the problem specification and 
ensure you have taken all issues into consideration.

After you implement your design, be sure to run and test your application using 
your test plan.

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



662 | Chapter 10: Programming Based on Events

TABLE 10-7 DinerGUI property values

Name Object type Property Value

OrderGUI Form Text Typed "Student Union 
-Diner by the 
Valley"

OrderGUI Form BackColor Goldenrod

OrderGUI Form Menu menuStrip1

OrderGUI Form Font Arial, 9.75

OrderGUI Form Icon NOTE16.ICO

fileToolStrip 
MenuItem

ToolStrip 
MenuItem

Text Typed "File"

fileToolStrip 
MenuItem

ToolStrip 
MenuItem

MenuItems menuPlaceOrder,  
menuClearOrder 
menuDisplayOrder, 
menuExit

menuPlaceOrder ToolStrip 
MenuItem

Text Typed "Place Order"

menuClearOrder ToolStrip 
MenuItem

Text Typed "Clear Order"

menuDisplayOrder ToolStrip 
MenuItem

Text Typed "Display 
Order"

menuExit ToolStrip 
MenuItem

Text Typed "Exit"

editTool 
StripMenuItem

ToolStrip 
MenuItem

MenuItems menuEditEntree,
menuEditDrink, 
menuEditSpecial

editTool
StripMenuItem

ToolStrip
MenuItem

Text Typed "Edit"

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

Name Object type Property Value

menuEditEntree ToolStrip
MenuItem

Text Typed "Entree"

menuEditDrink ToolStrip
MenuItem

Text Typed "Drink"

menuEditSpecial ToolStrip
MenuItem

Text Typed "Special 
Requests"

helpToolStrip 
MenuItem

ToolStrip 
MenuItem

Text Typed "Help"

menuAbout ToolStrip 
MenuItem

Text Typed "About"

lstBxEntree ListBox BackColor Khaki

label1 Label Text Typed "Entree 
Selection"

drinkGroup GroupBox Controls radMilk, radJuice, 
radSoda, radLemon, 
radTea, radCoffee

radMilk RadioButton Text Typed "Milk"

radJuice RadioButton Text Typed "Juice

radSoda RadioButton Text Typed "Soda"

radLemon RadioButton Text Typed "Lemonade"

radTea RadioButton Text Typed "Tea"

radCoffee RadioButton Text Typed "Coffee"

(continues)

TABLE 10-7 DinerGUI property values (continued ) 

Programming Example: Dinergui Application | 663

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



664 | Chapter 10: Programming Based on Events

If you do not have Visual Studio, you can type assignment statements for the prop-
erties, making the assignments indicated in Table 10-7. For example, the first two 
properties could be set by typing:
Text = "Student Union - Diner by the Valley";
BackColor = Color.Goldenrod;

If the System.Drawing namespace is imported and referenced, it is not neces-
sary to fully qualify the name. When the Form Designer generates the code to set 
these two properties, the statements read:
this.Text = "Student Union - Diner by the Valley";
this.BackColor = System.Drawing.Color.Goldenrod;

Both produce the same result with this application.

The complete source listing for the application is given in the following. The first 
class, Order, was written manually. Much of the code for the second file shown, 
which is a partial class definition for the OrderGUI class, was created by 
Visual Studio Form Designer. The third file contains the event-handler methods. 
Code was written for each of the methods following the pseudocode developed 
during the design of the application.

Name Object type Property Value

cmboSpecial ComboBox Items 
(Collection)

Typed "Whole Wheat", 
"Pumpernickel", 
"Seedless Rye", 
"Pita","Sour 
Dough"

cmboSpecial ComboBox BackColor Khaki

label2 Label Text Typed "Special
Requests"

ckBxWater CheckBox Text Typed "Water"

TABLE 10-7 DinerGUI property values (continued ) 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

// Order.cs Author: Doyle 
// Creates an order class with entree, drink, and special 
// request data members. Methods to calculate total cost 
// of order and set each data member included.
using System;
using System.Windows.Forms;

namespace Diner
{
     public class Order
     {
          public string [ ] menuEntree = new string [ ] {"Chicken 
                 Salad", "Ham and Cheese",
                    "Turkey", "Vegetable Wrap", "Tuna Salad", 
                  "Avocado and Cheese", "Club", "Peanut Butter & 
                  Jelly", "Grilled Cheese", "Reuben"};
          public decimal [ ] menuEntreePrice = new decimal [ ]
 {4.50m, 5.00m, 4.75m,4.00m, 4.50m, 4.00m, 5.50m, 
 3.75m, 3.50m, 5.00m};
          private string entree; 
          private bool waterSelection; 
          private string drinkSelection; 
          private string specialRequest; 
          private decimal entreePrice; 
          private decimal drinkPrice;
        
          // Default constructor 
          public Order( )
          {
               entree = ""; 
               waterSelection = false; 
               specialRequest = ""; drinkPrice = 0; 
               entreePrice = 0;
          }

          // Property for entree 
           public string Entree
          {
               get
 {
                    return entree;
               }
               set
 {
                    entree = value; 
                    SetEntreePrice( ); 
               }
          }

Programming Example: Dinergui Application | 665

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



666 | Chapter 10: Programming Based on Events

          // Property for special requests
          public string SpecialRequest
          {
               get
               {
                    return specialRequest;
               }
               set
 {
                    specialRequest = value; 
               }
          }

          // Property for Water selection 
          public bool WaterSelection
          {
               set
 {
                    waterSelection = value; 
               }
          }

          // Property for Drink selection 
          public string DrinkSelection
          {
               get
               {
                    return drinkSelection; 
               }
               set
               {
                    drinkSelection = value; 
                    SetDrinkPrice( );
               }
          }
          
          // Read-only property for entree price 
          public decimal EntreePrice
          {
               get
               {
                    return entreePrice;
               }
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

          // Read-only property for drink price 
          public decimal DrinkPrice
          {
               get
               {
                    return drinkPrice;
               }
          }

         // After the entree is set, store the entrée price. 
          public void SetEntreePrice( )
          {
               for (int i = 0; i < menuEntree.Length; i++)
               {
                    if (menuEntree[i] == entree)
                    {
                         entreePrice = menuEntreePrice[i];
                    } 
               }
          }

          // Return the water selection. 
          public string GetWaterSelection( ) 
          {
               string waterOrNot;
               if (waterSelection)
               {
                    waterOrNot = "Water";
               }
               else
               { 
                    waterOrNot = "No Water"; 
               }
               return waterOrNot;
          }

          // After the drink is set, store the drink price. 
          public void SetDrinkPrice( )
          {
               switch(drinkSelection)
               {
                    case "Tea" :
                    case "Coffee" :
                         drinkPrice = 1.50m;
                         break;
                    case "Soda" :
                    case "Lemonade" :
                         drinkPrice = 2.00m;
                         break;

Programming Example: Dinergui Application | 667

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



668 | Chapter 10: Programming Based on Events

                    case "Milk" :
                    case "Juice" :
                         drinkPrice = 1.75m;
                         break;
               }
          }

          // return the total cost of the order. 
          public decimal DetermineTotalCharges( ) 
          {
               return entreePrice + drinkPrice;
          }

          public override string ToString( ) 
          {
               return "Total Due: " +
                 DetermineTotalCharges( ).ToString("C");
          }
     }
}

The source listing for the two files that comprise the OrderGUI class is shown in 
the following.

Remember that much of the code for the following listing was generated by the Form 
Designer in Visual Studio. The complete listing is shown so that you can see the pro-
gram statements added for the set properties. It is also included for those readers 
developing applications using a simple editor such as Notepad.

// OrderGUI Designer.cs Author: Doyle
// Create the graphical user interface
// to take an order and display the total cost.
using System;
using System.Windows.Forms;

namespace Diner
{
     partial class OrderGUI : Form
     {
        // Required designer variable. 
          private System.ComponentModel.IContainer 
                                        components = null;
        // Clean up any resources being used. 
          protected override void Dispose(bool disposing)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

          {
               if(disposing && (components != null))
               {
                    components.Dispose( );
               }
               base.Dispose(disposing);
          }

          #region Windows Form Designer generated code 
          private void InitializeComponent( )
          {
            System.ComponentModel.ComponentResourceManager
                  resources = new
                  System.ComponentModel.ComponentResourceManager
 (typeof(OrderGUI));
            this.lstBxEntree = new System.Windows.Forms.ListBox( );
            this.label1 = new System.Windows.Forms.Label( );
            this.drinkGroup = new System.Windows.Forms.GroupBox( ); 
            this.radCoffee = new System.Windows.Forms.RadioButton( );
            this.radTea = new System.Windows.Forms.RadioButton( );
            this.radLemon = new System.Windows.Forms.RadioButton( );
            this.radSoda = new System.Windows.Forms.RadioButton( );
            this.radJuice = new System.Windows.Forms.RadioButton( );
            this.radMilk = new System.Windows.Forms.RadioButton( );
            this.cmboSpecial = new
                    System.Windows.Forms.ComboBox( );
            this.label2 = new System.Windows.Forms.Label( );
            this.ckBxWater = new System.Windows.Forms.CheckBox( );
            this.menuStrip1 = new System.Windows.Forms.MenuStrip( );
            this.fileToolStripMenuItem = new
                    System.Windows.Forms.ToolStripMenuItem( );
            this.menuPlaceOrder = new
                    System.Windows.Forms.ToolStripMenuItem( );
            this.menuClearOrder = new
                    System.Windows.Forms.ToolStripMenuItem( );
            this.menuDisplayOrder = new
                    System.Windows.Forms.ToolStripMenuItem( );
            this.menuExit = new
                    System.Windows.Forms.ToolStripMenuItem( );
            this.editToolStripMenuItem = new
                    System.Windows.Forms.ToolStripMenuItem( );
            this.menuEditEntree = new
                    System.Windows.Forms.ToolStripMenuItem( );
            this.menuEditDrink = new
                    System.Windows.Forms.ToolStripMenuItem( );
            this.menuEditSpecial = new
                    System.Windows.Forms.ToolStripMenuItem( );

Programming Example: Dinergui Application | 669

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



670 | Chapter 10: Programming Based on Events

            this.helpToolStripMenuItem = new
                    System.Windows.Forms.ToolStripMenuItem( );
            this.menuAbout = new
                    System.Windows.Forms.ToolStripMenuItem( );
            this.drinkGroup.SuspendLayout( );
            this.menuStrip1.SuspendLayout( );
            this.SuspendLayout( );
         //
         // lstBoxEntree
         //
            this.lstBxEntree.BackColor =
                    System.Drawing.Color.Khaki;
            this.lstBxEntree.ItemHeight = 16;
            this.lstBxEntree.Location = new
                    System.Drawing.Point(23, 59);
            this.lstBxEntree.Name = "lstBxEntree";
            this.lstBxEntree.Size = new
                    System.Drawing.Size(156, 68);
            this.lstBxEntree.TabIndex = 0;
            this.lstBxEntree.SelectedIndexChanged += new
                    System.EventHandler(
                         this.lstBxEntree_SelectedIndexChanged);
         //
         // label1
         //
            this.label1.Location = new System.Drawing.Point(37, 33);
            this.label1.Name = "label1";
            this.label1.Size = new System.Drawing.Size(120, 23); 
            this.label1.TabIndex = 1;
            this.label1.Text = "Entree Selection";
         //
         // drinkGroup
         //
            this.drinkGroup.Controls.Add(this.radCoffee);
            this.drinkGroup.Controls.Add(this.radTea);
            this.drinkGroup.Controls.Add(this.radLemon);
            this.drinkGroup.Controls.Add(this.radSoda);
            this.drinkGroup.Controls.Add(this.radJuice);
            this.drinkGroup.Controls.Add(this.radMilk);
            this.drinkGroup.Location = new
                    System.Drawing.Point(205, 50); 
            this.drinkGroup.Name = "drinkGroup"; 
            this.drinkGroup.Size = new
                    System.Drawing.Size(120, 176);
            this.drinkGroup.TabIndex = 3;
            this.drinkGroup.TabStop = false;
            this.drinkGroup.Text = "Drink Selection"; 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

         //
         // radCoffee
         //
            this.radCoffee.Location = new
                    System.Drawing.Point(8, 144);
            this.radCoffee.Name = "radCoffee";
            this.radCoffee.Size = new
                    System.Drawing.Size(104, 24);
            this.radCoffee.TabIndex = 5;
            this.radCoffee.Text = "Coffee";
            this.radCoffee.CheckedChanged += new
                     System.EventHandler(this.Drink_CheckedChanged);
         //
         // radTea
         //
            this.radTea.Location = new
                    System.Drawing.Point(8, 120);
            this.radTea.Name = "radTea";
            this.radTea.Size = new
                    System.Drawing.Size(104, 24);
            this.radTea.TabIndex = 4;
            this.radTea.Text = "Tea";
            this.radTea.CheckedChanged += new 
                       System.EventHandler(this.Drink_CheckedChanged);
         //
         // radLemon
         //
            this.radLemon.Location = new
                    System.Drawing.Point(8, 96);
            this.radLemon.Name = "radLemon";
            this.radLemon.Size = new
                    System.Drawing.Size(104, 24);
            this.radLemon.TabIndex = 3;
            this.radLemon.Text = "Lemonade";
            this.radLemon.CheckedChanged += new
                        System.EventHandler(this.Drink_CheckedChanged);
         //
         // radSoda
         //
            this.radSoda.Location = new 
                    System.Drawing.Point(8, 72);
            this.radSoda.Name = "radSoda";
            this.radSoda.Size = new System.Drawing.Size(104, 24);
            this.radSoda.TabIndex = 2;
            this.radSoda.Text = "Soda";
            this.radSoda.CheckedChanged += new 
                        System.EventHandler(this.Drink_CheckedChanged);

Programming Example: Dinergui Application | 671

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



672 | Chapter 10: Programming Based on Events

         //
         // radJuice
         //
              this.radJuice.Location = new System.Drawing.Point(8, 48);
            this.radJuice.Name = "radJuice"; 
            this.radJuice.Size = new
                    System.Drawing.Size(104, 24);
            this.radJuice.TabIndex = 1;
            this.radJuice.Text = "Juice";
               this.radJuice.CheckedChanged += new System.EventHandler
                                  (this.Drink_CheckedChanged);
         //
         // radMilk
         //
            this.radMilk.Location = new
                    System.Drawing.Point(8, 24);
            this.radMilk.Name = "radMilk";
            this.radMilk.Size = new 
                    System.Drawing.Size(104, 24); 
            this.radMilk.TabIndex = 0;
            this.radMilk.Text = "Milk";
            this.radMilk.CheckedChanged += new System.EventHandler
                   (this.Drink_CheckedChanged);
         //
         // ckBxWater
         //
            this.ckBxWater.Location = new
                    System.Drawing.Point(69, 210);
            this.ckBxWater.Name = "ckBxWater";
            this.ckBxWater.Size = new
                    System.Drawing.Size(64, 24);
            this.ckBxWater.TabIndex = 6;
            this.ckBxWater.Text = "Water";
            this.ckBxWater.CheckedChanged += new
               System.EventHandler(this.ckBxWater_CheckedChanged);
         //
         // cmboSpecial
         //
            this.cmboSpecial.BackColor =
                    System.Drawing.Color.Khaki;
            this.cmboSpecial.Items.AddRange(new object[ ] {
                    "Whole Wheat", "Pumpernickel", "Seedless Rye",
                    "Pita", "Sour Dough"} );
            this.cmboSpecial.Location = new
                    System.Drawing.Point(23, 170);
            this.cmboSpecial.Name = "cmboSpecial"; 
            this.cmboSpecial.Size = new
                    System.Drawing.Size(168, 24);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

            this.cmboSpecial.TabIndex = 4;
            this.cmboSpecial.SelectedIndexChanged += new
                    System.EventHandler
                         (this.cmboSpecial_SelectedIndexChanged); 
            this.cmboSpecial.TextChanged += new
                    System.EventHandler
                         (this.cmboSpecial_TextChanged); 
         //
         // label2
         //
            this.label2.Location = new
                    System.Drawing.Point(45, 146);
            this.label2.Name = "label2";
            this.label2.Size = new System.Drawing.Size(112, 23); 
            this.label2.TabIndex = 5;
            this.label2.Text = "Special Requests";
         //
         // fileToolStripMenuItem
         //
            this.fileToolStripMenuItem.DropDownItems.AddRange (new
                    System.Windows.Forms.ToolStripItem[ ] 
                    {    this.menuPlaceOrder,
                         this.menuClearOrder,
                         this.menuDisplayOrder,
                         this.menuExit
                    });
            this.fileToolStripMenuItem.Name =
                    "fileToolStripMenuItem";
            this.fileToolStripMenuItem.Size = new
                    System.Drawing.Size(35, 20);
            this.fileToolStripMenuItem.Text = "File";
         //
         // menuPlaceOrder
         //
            this.menuPlaceOrder.Name = "menuPlaceOrder"; 
            this.menuPlaceOrder.Size = new
                    System.Drawing.Size(152, 22);
            this.menuPlaceOrder.Text = "Place Order";
            this.menuPlaceOrder.Click += new System.EventHandler
                    (this.menuPlaceOrder_Click);
         //
         // menuStrip1
         //
            this.menuStrip1.Items.AddRange(new
                    System.Windows.Forms.ToolStripItem[ ] 

Programming Example: Dinergui Application | 673

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



674 | Chapter 10: Programming Based on Events

                    { 
                         this.fileToolStripMenuItem,
                         this.editToolStripMenuItem,
                         this.helpToolStripMenuItem
                    } );
            this.menuStrip1.Location = new
                    System.Drawing.Point(0, 0);
            this.menuStrip1.Name = "menuStrip1";
            this.menuStrip1.Size = new
                    System.Drawing.Size(342, 24);
            this.menuStrip1.TabIndex = 7;
            this.menuStrip1.Text = "menuStrip1";
         //
         // menuClearOrder
         //
             this.menuClearOrder.Name = "menuClearOrder"; 
            this.menuClearOrder.Size = new
                     System.Drawing.Size(152, 22);
            this.menuClearOrder.Text = "Clear Order";
            this.menuClearOrder.Click += new System.EventHandler
                    (this.menuClearOrder_Click);
         //
         // menuDisplayOrder
         //
            this.menuDisplayOrder.Name = "menuDisplayOrder";
            this.menuDisplayOrder.Size = new
                      System.Drawing.Size(152, 22);
            this.menuDisplayOrder.Text = "Display Order";
            this.menuDisplayOrder.Click += new System.EventHandler
                    (this.menuDisplayOrder_Click);
         //
         // menuEditEntree
         //
            this.menuEditEntree.Name = "menuEditEntree"; 
            this.menuEditEntree.Size = new
                     System.Drawing.Size(166, 22);
            this.menuEditEntree.Text = "Entree";
            this.menuEditEntree.Click += new System.EventHandler
                    (this.menuEditEntree_Click);
         //
         // menuEditDrink
         //
            this.menuEditDrink.Name = "menuEditDrink";
            this.menuEditDrink.Size = new
                      System.Drawing.Size(166, 22);
            this.menuEditDrink.Text = "Drink";
            this.menuEditDrink.Click += new System.EventHandler
                    (this.menuEditDrink_Click);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

         //
         // menuExit
         //
            this.menuExit.Name = "menuExit";
            this.menuExit.Size = new System.Drawing.Size(152, 22);
            this.menuExit.Text = "Exit";
            this.menuExit.Click += new System.EventHandler
                    (this.menuExit_Click);
         //
         // editToolStripMenuItem
         //
            this.editToolStripMenuItem.DropDownItems.AddRange
                    (new System.Windows.Forms.ToolStripItem[ ] 
                    { 
                         this.menuEditEntree,
                         this.menuEditDrink,
                         this.menuEditSpecial
                    });
            this.editToolStripMenuItem.Name =
                    "editToolStripMenuItem";
            this.editToolStripMenuItem.Size = new
                    System.Drawing.Size(37, 20);
            this.editToolStripMenuItem.Text = "Edit";
         //
         // menuEditSpecial
         //
            this.menuEditSpecial.Name = "menuEditSpecial"; 
            this.menuEditSpecial.Size = new
                    System.Drawing.Size(166, 22);
            this.menuEditSpecial.Text = "Special Requests";
            this.menuEditSpecial.Click += new System.EventHandler
                    (this.menuEditSpecial_Click);
         //
         // menuAbout
         //
            this.menuAbout.Name = "menuAbout";
            this.menuAbout.Size = new
                    System.Drawing.Size(152, 22);
            this.menuAbout.Text = "About";
            this.menuAbout.Click += new System.EventHandler
                    (this.menuAbout_Click);
         //
         // helpToolStripMenuItem
         //
            this.helpToolStripMenuItem.DropDownItems.AddRange
                      (new System.Windows.Forms.ToolStripItem[ ] 
                    { this.menuAbout });

Programming Example: Dinergui Application | 675

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



676 | Chapter 10: Programming Based on Events

            this.helpToolStripMenuItem.Name =
                    "helpToolStripMenuItem";
            this.helpToolStripMenuItem.Size = new
                  System.Drawing.Size(40, 20);
            this.helpToolStripMenuItem.Text = "Help";
         //
         // OrderGUI
         //
            this.AutoScaleBaseSize = new 
                    System.Drawing.Size(6, 15);            
            this.Load += new
                    System.EventHandler(this.OrderGUI_Load); 
            this.drinkGroup.ResumeLayout(false);
            this.menuStrip1.ResumeLayout(false);
            this.menuStrip1.PerformLayout( );
                    System.Drawing.Size(6, 15);
            this.BackColor = System.Drawing.Color.Goldenrod; 
            this.ClientSize = new System.Drawing.Size(342, 253); 
            this.Controls.Add(this.ckBxWater);
            this.Controls.Add(this.label2);
            this.Controls.Add(this.cmboSpecial);
            this.Controls.Add(this.drinkGroup);
            this.Controls.Add(this.label1);
            this.Controls.Add(this.lstBxEntree);
            this.Controls.Add(this.menuStrip1);
            this.Font = new System.Drawing.Font("Arial", 9.75F,
                  System.Drawing.FontStyle.Regular,
                       System.Drawing.GraphicsUnit.Point, ((byte)(0))); 
            this.ResumeLayout( false );
            this.PerformLayout( );
            this.ForeColor = System.Drawing.Color.Navy;
            this.Icon = ((System.Drawing.Icon)
                      (resources.GetObject("$this.Icon")));
            this.MainMenuStrip = this.menuStrip1;
            this.Name = "OrderGUI";
            this.Text = "Student Union - Diner by the Valley";
          } 
          #endregion // End of Windows Form Designer generated code

          private System.Windows.Forms.Label label1;
          private System.Windows.Forms.GroupBox drinkGroup; 
          private System.Windows.Forms.Label label2;
          private System.Windows.Forms.ListBox lstBxEntree;
          private System.Windows.Forms.ComboBox cmboSpecial; 
          private System.Windows.Forms.CheckBox ckBxWater;
          private System.Windows.Forms.RadioButton radCoffee; 
          private System.Windows.Forms.RadioButton radTea;
          private System.Windows.Forms.RadioButton radLemon; 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

          private System.Windows.Forms.RadioButton radSoda;
          private System.Windows.Forms.RadioButton radJuice; 
          private System.Windows.Forms.RadioButton radMilk;
          private System.Windows.Forms.MenuStrip menuStrip1; 
          private ToolStripMenuItem fileToolStripMenuItem;
          private ToolStripMenuItem menuPlaceOrder;
          private ToolStripMenuItem menuClearOrder;
          private ToolStripMenuItem menuDisplayOrder;
          private ToolStripMenuItem menuExit;
          private ToolStripMenuItem editToolStripMenuItem;
          private ToolStripMenuItem menuEditEntree; 
          private ToolStripMenuItem menuEditDrink;
          private ToolStripMenuItem menuEditSpecial;
          private ToolStripMenuItem helpToolStripMenuItem;
          private ToolStripMenuItem menuAbout;
              private System.ComponentModel.IContainer components = null; 
     }
} // End of OrderGUI.Designer.cs file

// OrderGUI.cs Author: Doyle
// This file contains the event-handler methods.
using System;
using System.Windows.Forms;

namespace Diner
{
     public partial class OrderGUI : Form 
     {
          private Order newOrder;

          public OrderGUI( )
          {
               InitializeComponent( );
          }

          // Instantiates an object of the Order class when 
          // the form is first loaded. 
          private void OrderGUI_Load(object sender,
                                        System.EventArgs e)
          {
               newOrder = new Order( );
                 for (int i = 0; i < newOrder.menuEntree.Length; i++) 
               {
                    this.lstBxEntree.Items.Add
                         (newOrdermenuEntree[i]);
               }
          }

Programming Example: Dinergui Application | 677

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



678 | Chapter 10: Programming Based on Events

          // Event handler that gets the entree from the 
          // ListBox and sets the entree price. 
          private void lstBxEntree_SelectedIndexChanged
                            (object sender,System.EventArgs e)
          {
                newOrder.Entree = this.lstBxEntree.Text;
          }

          // Event handler that gets the special request –
          // if one is selected from the predefined list. 
          private void cmboSpecial_SelectedIndexChanged
                       (object sender, System.EventArgs e)
          {
                newOrder.SpecialRequest = this.cmboSpecial.Text;
          }

          // Menu item that displays the order. 
          private void menuDisplayOrder_Click(object sender,
                                        System.EventArgs e)
          {
               MessageBox.Show (newOrder.Entree + "\n" +
                         newOrder.SpecialRequest + " \n" +
                         newOrder.DrinkSelection +
                         "\n" +
                         newOrder.GetWaterSelection( ), 
                         "Current Order");
          }

          // Event handler that gets the radio button 
          // selected and sets the drink selection.
          private void Drink_CheckedChanged(object sender,
                                            System.EventArgs e)
          {
               if (this.radTea.Checked)
                         newOrder.DrinkSelection = radTea.Text;
               else
                    if (this.radCoffee.Checked)
                         newOrder.DrinkSelection = radCoffee.Text;
                    else
                         if (this.radSoda.Checked)
                              newOrder.DrinkSelection =
                                        radSoda.Text; 
                         else
                              if (this.radLemon.Checked)
                                   newOrder.DrinkSelection = 
                                             radLemon.Text;
                              else

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

                                   if (this.radJuice.Checked)
                                        newOrder.DrinkSelection =
                                                radJuice.Text;
                                   else
                                        if (this.radMilk.Checked)
                                             newOrder.DrinkSelection =
                                                 radMilk.Text;
          }

          // Event handler that gets raised when the check box
          // for Water gets clicked. 
          private void ckBxWater_CheckedChanged
                           (object sender, System.EventArgs e)
          {
               if (this.ckBxWater.Checked)
                  newOrder.WaterSelection = true;
               else
                  newOrder.WaterSelection = false;
          }

          // Event handler that gets raised when the
          // user types values into the text area of
          // the combo box. 
          private void cmboSpecial_TextChanged 
                           (object sender, System.EventArgs e)
          {
               newOrder.SpecialRequest = this.cmboSpecial.Text;
               
          }

          // Event handler that gets raised when the edit menu
          // is clicked to change the entree.
          private void menuEditEntree_Click (object sender,
                                             System.EventArgs e)
          {
               MessageBox.Show("Please select a new Entree"); 
               newOrder.Entree = "";
               this.lstBxEntree.ClearSelected( );
          }

          // Event handler that gets raised when the edit menu
          // is clicked to change the drink. 
          private void menuEditDrink_Click
                  (object sender, System.EventArgs e)
          {
               MessageBox.Show("Please select a new Drink");
               newOrder.DrinkSelection = "";
               this.ClearDrinks( );
          }

Programming Example: Dinergui Application | 679

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



680 | Chapter 10: Programming Based on Events

          // Clears selections for all drink radio buttons.
          public void ClearDrinks( )
          {
               this.radMilk.Checked = false;
               this.radJuice.Checked = false;
               this.radSoda.Checked = false;
               this.radLemon.Checked = false;
               this.radTea.Checked = false;
               this.radCoffee.Checked = false;
          }

          // Clears all selections so that a new order
          // can be placed. Resets the Order object back 
          // to its default values. 
          private void menuClearOrder_Click
                    (object sender, System.EventArgs e)
          {
               this.lstBxEntree.ClearSelected( );
               this.ckBxWater.Checked = false;
               this.cmboSpecial.SelectedIndex = −1; 
               this.cmboSpecial.Text = "";
               this.ClearDrinks( );
                 newOrder.DrinkSelection = "";
               newOrder.Entree = "";
               newOrder.SpecialRequest = ""; 
               newOrder.WaterSelection = false;
          }

          // Displays the values for the current instance of
          // Order object members. 
          private void menuPlaceOrder_Click
                    (object sender, System.EventArgs e)
          {
               MessageBox.Show(newOrder.Entree + "\n" + 
                               newOrder.SpecialRequest + "\n" + 
                               newOrder.DrinkSelection + "\n" + 
                               newOrder.GetWaterSelection( ) + 
                               "\n\n\n" + newOrder , 
                               "Placed Order" );
          }

          // Event handler that gets raised when the edit menu
          // is clicked to change the special requests. 
          private void menuEditSpecial_Click
                    (object sender, System.EventArgs e)
          {
               MessageBox.Show("Special Request cleared."); 
               newOrder.SpecialRequest = "";
               this.cmboSpecial.SelectedIndex = −1;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

               this.cmboSpecial.Text ="";
               newOrder.SpecialRequest = "";
          }

          // Event handler that gets raised when the Help
          // menu is clicked to show the About message.
          private void menuAbout_Click
                    (object sender, System.EventArgs e)
          {
               MessageBox.Show("Student Union −" +
                               " Diner by the Valley" + 
                               "\n\n\nVersion 1.0");
          }

          // Event handler that gets raised when
          // Exit is clicked. 
          private void menuExit_Click
                    (object sender, System.EventArgs e)
          {
                 Application.Exit( );
          }
   }
}

Figure 10-31 shows the original user interface with the File menu selections. Notice 
that a new icon is used in the title bar. The icon was added by setting the Icon 
property for the OrderGUI form.

FIGURE 10-31 Interface showing menu selections

Programming Example: Dinergui Application | 681

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



682 | Chapter 10: Programming Based on Events

All that is required to add pictures to a form is to instantiate an object of the 
PictureBox class. If you are using Visual Studio, drag the PictureBox control 
object to your form. Set the Image property to the desired picture.

Any file that ends with an .ico extension can be used as the icon for the application. 
Many sources on the Internet contain free graphics. They are easily added to your 
 Windows applications.

You can select graphic file types such as *.bmp, *.gif, *.jpeg, *.jpg, *.png, and *.ico or 
metafile types such as *.emf or *.wmf for the Image property. Store the image in the 
bin\debug subdirectory of the current project.

The Form object also has a BackgroundImage property that can be set to display a 
picture on the background. To have a picture in the background, using Visual Studio 
select the form and then use the Properties window to select the BackgroundImage 
property. Browse to a location that contains a bitmap or metafile.

When the form is loaded, the OrderGUI_Load event is raised. At that time, an 
object of the Order class is instantiated. Using the entree array of the Order 
class, the list box is filled. With each click on the form, a different event is fired. 
Figure 10-32 shows the message displayed after several options were selected, 
including the Place Order menu option.

FIGURE 10-32 Message displayed from Place Order menu option

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

The ComboBox object allows special requests to be typed. Any new selections set 
new values for the instance of the Order class. When users type values in the text 
area of the ComboBox object, the TextChanged( ) event is fired. Figure 10-33 
illustrates a typed entry for the ComboBox object. The MessageBox.Show( ) 
method is used to display messages from the menu options. Figure 10-33 is dis-
played from the File, Display Order option.

FIGURE 10-33 Message displayed from Display Order menu option

When events are raised from the Edit menu, the event-handler methods display a 
message indicating that the selections are being cleared. Then, the control on the 
form GUI is cleared and the Order instance data member is set back to its default 
value. Figure 10-34 shows the result of selecting the Edit, Special Requests menu 
option.

Programming Example: Dinergui Application | 683

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



684 | Chapter 10: Programming Based on Events

FIGURE 10-34 Special Requests click event fired

Firing the Clear Order menu option (shown in Figure 10-35) deselects all entries 
on the form and resets the Order instance data members to their default values. 
The Windows application is in a Run state until the Exit menu option is fired or the 
Close button is clicked.

FIGURE 10-35 Clear Order click event fired

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

A number of event-handler methods are wired to objects for this application. 
Table 10-8 lists the event-handler methods and their associated objects. These are 
all instantiated in the OrderGUI class.

Event-handler method Class Object

ckBxWater_
CheckedChanged

CheckBox ckBxWater

cmboSpecial_TextChanged ComboBox cmboSpecial

cmboSpecial_Selected 
IndexChanged

ComboBox cmboSpecial

Drink_CheckedChanged RadioButton radTea,
radSoda,
radLemon,
radMilk,
radCoffee,
radJuice

OrderGUI_Load OrderGUI this

lstBxEntree_Selected  
IndexChanged

ListBox lstBxEntree

menuAbout_Click ToolStripMenuItem menuAbout

menuClearOrder_Click ToolStripMenuItem menuClearOrder

menuDisplayOrder_Click ToolStripMenuItem menuDisplayOrder

menuEditDrink_Click ToolStripMenuItem menuEditDrink

menuEditEntree_Click ToolStripMenuItem menuEditEntree

menuEditSpecial_Click ToolStripMenuItem menuEditSpecial

menuExit_Click ToolStripMenuItem menuExit

menuPlaceOrder_Click ToolStripMenuItem menuPlaceOrder

© Cengage Learning

TABLE 10-8 DinerGUI events

Programming Example: Dinergui Application | 685

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



686 | Chapter 10: Programming Based on Events

Coding Standards
As discussed in Chapter 9, it is important to follow a consistent naming standard for 
controls added to a Windows form. Before you register events, such as button click 
events, name the associated control. Then when you register the event handler using 
Visual Studio, the code that is automatically generated uses the control’s identifier as 
part of the identifier for the method. Naming the control first will make your code 
more readable and help reduce errors.

Resources
Additional sites you might want to explore:

 ? Visual Studio - Getting Started Tutorials— 
http://msdn.microsoft.com/en-us/library/dd492171.aspx

 ? Visual C# Windows Forms Tutorials— 
http://visualcsharptutorials.com/windows-forms

 ? Delegates and Events in C#/.NET— 
http://www.akadia.com/services/dotnet_delegates_and_events.html

 ? C# Programmers Reference - Delegates Tutorial— 
http://msdn.microsoft.com/en-us/library/aa288459(VS.71).aspx

 ? Microsoft Virtual Academy - C# Fundamentals for Absolute Beginners— 
http://www.microsoftvirtualacademy.com/training-courses/ 
c-fundamentals-for-absolute-beginners

QUICK REVIEW
 1. Delegates are special types of .NET classes whose instances store refer-

ences (addresses) to methods.
 2. A declaration for a delegate looks more like a method declaration than 

a class definition. Every delegate type has a signature, which may 
include zero or more parameters. The signature indicates what method 
signatures must look like if they are to be referenced by the delegate.

 3. Multicast delegates are wired to multiple methods, all of which are 
 executed, one after the other, when an event is raised.

 4. Events can be considered special forms of delegates in C# because 
they enable you to place a reference to event-handler methods inside a 
 delegate. After this reference is made, or the event is registered, the 
delegate is used to call the event-handler methods.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

Quick Review | 687

 5. To respond to events in your program, two things must occur. First, 
you must register the event as being of interest, and second, an event- 
handler method must be generated. This process is called event wiring.

 6. All event-handler methods normally have the same signature. They do 
not return anything; they have a return type of void. They have two 
parameters.

 7. ListBox controls can be used to display a list of items from which the 
user can select. Single or multiple selections can be made. A scroll bar is 
automatically added to the control if the total number of items exceeds 
the number that can be displayed.

 8. At design time or dynamically at run time, you can add or remove items 
to and from the ListBox control.

 9. The default event for the  ListBox object is the   SelectedIndexChanged( ) 
event. It is raised or triggered when the selection changes for the ListBox  
object.

 10. The ListBox class has a number of interesting properties includ-
ing Items, which get the items of the list. SelectedIndex and 
 SelectedItem properties get or set the selected item.

 11. ListBox and ComboBox objects are zero-based structures.  SelectedIndex  
and SelectedIndices properties access the object by its indexed 
location.

 12. The Text property is the most often used property. It receives the text 
of the currently selected item.

 13. ListBox controls and ComboBox objects share many of the same prop-
erties and methods. ComboBox objects contain their own text box field 
as part of the object. This makes it easy to add a new value at run time.

 14. A KeyPress( ) event occurs when the user presses a key. Actually, the 
event is fired with each and every keystroke. This event-handler method 
is sometimes used with ComboBox objects.

 15. The SelectedIndexChanged( ) event-handler method is often wired 
to ComboBox and ListBox objects. The TextChanged( ) event is the 
default event handler for textboxes. It can also be wired to ComboBox 
objects and fires when the text is entered in the text area.

 16. Using the Visual Studio Toolbox window and the MenuStrip class, it 
is easy to drag and drop a MenuStrip control object onto your form.

 17. You can create shortcuts to menu options. Shortcuts using the Alt key 
are quickly and easily created. When you type the text that is to appear 
in the menu (using the Text property), preceding the character with an 
ampersand (&) enables the user to press the Alt key plus the key that 
follows the ampersand as a shortcut.

 18. If you are using the MainMenu object, to have the menu be displayed 
on the Form, you set the Menu property on the Form to the name of the 
MainMenu object.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



688 | Chapter 10: Programming Based on Events

 19. There are a number of preconfigured dialog boxes that can be added to 
menus. They include those that resemble the standard Windows File 
Open, File Save, File Print, File Print Preview, Format Font, and Format 
Color dialog boxes. These can be added to your application by dragging 
and dropping the control object onto your form.

 20. Check boxes appear as small boxes that allow users to make a Yes/No or 
True/False selection. The default event-handler method for CheckBox 
objects is CheckedChanged( ). A Click( ) event can also be wired 
to CheckBox objects. Double-clicking on one of the CheckBox objects 
registers a CheckedChanged( ) event for that one object.

 21. For visual appearances, CheckBox objects may be grouped together 
using the GroupBox control. The grouping also aids design because you 
can move all the objects as a group. However, grouping does not provide 
any additional functionality for CheckBox objects.

 22. A GroupBox control should be placed on the form for radio buttons. 
Radio buttons give users a choice between two or more options. Remem-
ber that it is appropriate to select more than one CheckBox object. 
Not so with RadioButton objects.

 23. Multiple radio buttons can be wired to the same event-handler method.
 24. Windows Presentation Foundation (WPF) applications create a special 

XAML file with tags to control the appearance of an application. No 
.Designer.cs is created.

 25. The TabControl object displays multiple tabs on the form, like labels 
in a set of folders in a filing cabinet. Each tab stores different controls 
and has a Click event.

EXERCISES

 1. What namespace must be referenced in order to instantiate objects 
from control classes such as Label, Button, and TextBox?
a. System
b. Windows
c. System.Windows.Forms
d. System.Windows.Controls
e. Windows.Forms.Control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

Exercises | 689

 2. Given the delegate declaration 
  delegate void PerformsSomeTask(int arg1, double arg2); 
  which of the following statements would appear to create a delegate 

instance of PerformsSomeTask( ) with no syntax errors?
a. PerformsSomeTask task1 = new

     PerformsSomeTask (CalculateThis);

b. PerformsSomeTask task1 = new
     PerformsSomeTask (CalculateThis( ));

c. PerformsSomeTask( ) task1 = new
     PerformsSomeTask (CalculateThis( ));

d. PerformsSomeTask( ) task1 = new
     PerformsSomeTask (CalculateThis(int, double));

e. PerformsSomeTask task1 = new
     PerformsSomeTask  (CalculateThis(int arg1, double arg2));

 3. Given the delegate declaration 
  delegate void PerformsSomeTask(int arg1, double arg2); 
  which of the following represents a method heading that could be asso-

ciated with the delegate?
a. int CalculateThis(int value1, double value2)
b. double CalculateThis(int value1, double value2)
c. void CalculateThis(int value1, double value2)
d. int CalculateThis( )
e. all of the above

 4. The signature for a method includes only the:
a. return type, method name, number of parameters, and the data 

type of the parameters
b. method name and return type
c. number of parameters and the data type of the parameters
d. method name, number of parameters, and the data type of the 

parameters
e. return type, number of parameters, and the data type of the 

parameters

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



690 | Chapter 10: Programming Based on Events

 5. A multicast delegate is one that:
a. has more than one method wrapped to it
b. has more than one parameter
c. has more than one instance of itself created in a program
d. has more than one return type
e. none of the above

 6. What method is used with the Items property to populate a ListBox 
control with the contents from an array?
a. Populate( )

b. Add( )

c. AddArray( )

d. AddRange( )

e. all of the above

 7. One distinguishing characteristic between a ListBox control object 
and a ComboBox control object is that:
a. Multiple selections are possible with ListBox objects.
b. ComboBox objects are used for output only.
c. A scroll bar can be seen with ComboBox objects.
d. It is easier to program the ComboBox object event-handler 

method(s).
e. none of the above

 8. A default event-handler method for a ListBox object is:
a. KeyPress( )

b. Click( )

c. SelectedItem( )

d. SelectedIndexChanged( )

e. Selected( )

 9. The property that returns a collection of the indexes selected for a 
ListBox object is:
a. SelectedIndex

b. SelectedIndices

c. Text

d. Items

e. SelectedItems

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

 10. ComboBox objects offer the added functionality over a ListBox 
object of:
a. allowing values to be removed at run time
b. allowing multiple selections to be made
c. including a scroll bar for moving down the items
d. containing a text box for values to be entered at run time
e. none of the above

 11. Assuming comboBoxData is instantiated as a ComboBox, which of 
the following statements would retrieve its selection and place it in a 
string variable?
a. string s = ComboBox.Selection;
b. string s = ComboBox.comboBoxData.Text;
c. string s = comboBoxData.Text;
d. string s.Text = comboBoxData.Text;
e. none of the above

 12. After you type the text for a menu using the MainMenu control, what 
else must be done before the menu will be seen on the form?
a. Set the Menu property on the form to the name of the menu.
b. Set the Form property on the menu to the name of the form.
c. Create menuItems subordinate to the menu.
d. Program the event-handler methods for each menuItem.
e. all of the above

 13. When you type the text for the Help menu option, which of the  following 
creates a shortcut of Alt+P for the Help?
a. Help(Alt p)
b. &Help
c. &Hel&p
d. Hel&p
e. Help(Alt &p)

Exercises | 691

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



692 | Chapter 10: Programming Based on Events

 14. If you want all options to be displayed on the screen, but allow only one 
of the options to be selected, which type of structure is normally used?
a. check box
b. combo box
c. menu
d. radio button
e. text box

 15. Which property is used with CheckBox and RadioButton objects to 
determine whether their option is selected?
a. Selected

b. SelectedIndex

c. SelectedItem

d. Checked

e. none of the above

 16. Wiring an event handler to multiple objects involves:
a. using the same method to handle the events fired for more than one 

object

b. selecting the same objects property for each event-handler method
c. creating multiple methods that do the same task
d. naming the object’s Event property with an ampersand
e. none of the above

 17. The GroupBox provides more functionality for which type of objects?
a. ComboBox

b. ListBox

c. CheckBox

d. RadioButton

e. TextBox

 18. Click( ) events are the default event for which type of object?
a. Button

b. RadioButton

c. MenuItem

d. CheckBox

e. all of the above
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

 19. Which statement could be used in C# to set a ListBox object’s selection 
mode to MultiExtended if you did not have Visual Studio’s Properties 
window available? The name for the ListBox object is lstBox1.
a. lstBox1.SelectionMode = SelectionMode.MultiExtended;

b. lstBox1 = MultiExtended;

c. SelectionMode = MultiExtended;

d. SelectionMode.MultiExtended;

e. all of the above

 20. Which property can be set for a form to enable the Enter key to function 
like a mouse click for a selected Button object?
a. Enter

b. Button_Click

c. EnterKey

d. AcceptButton

e. AcceptKey

Exercises | 693

 21. Describe what is required to make a menu option clickable or a check 
box functional.

 22. When is a RadioButton control preferred over a CheckBox control? 
When is a ComboBox control preferred over a ListBox control?

 23. Identify two control options you might add to a Windows form to enable 
more controls to be available without consuming a lot of additional 
space.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



694 | Chapter 10: Programming Based on Events

 24. For the following table, identify which properties can be used to set the 
given values for the controls.

Desired action Property

Get the selected item from a ComboBox object

Change the label over a group box

Arrange the items in a list box in ascending order

Change the color of the text in a label

Change the text that appears in the title bar of a form

Associate a Main menu to a form

© Cengage Learning

 25. From the following partial code listing, identify the name(s) of event-
handler method(s) that would need to be written. To what object(s) are 
they wired?
public class Question : System.Windows.Forms.Form
{
     private System.Windows.Forms.Label label1;
     private System.Windows.Forms.TextBox txtBxActivity; 
     private System.Windows.Forms.CheckBox ckBxSwim;
     private System.Windows.Forms.CheckBox ckBxSnorkel; 
     private System.Windows.Forms.TextBox txtBxResult;

     : // Colon indicates items missing.

     private void InitializeComponent( )
     {
          this.label1 = new System.Windows.Forms.Label( );
          this.ckBxSwim = new
                    System.Windows.Forms.CheckBox( ); 
          this.ckBxSnorkel = new
                    System.Windows.Forms.CheckBox( );
          this.lstBxEvents.SelectedIndexChanged += new
                    System.EventHandler
                   (this.lstBxEvents_SelectedIndexChanged);
          : // Colon indicates items missing.
          this.label2.Size = new
                    System.Drawing.Size(120, 24);
          this.txtBxResult.Location = new
                    System.Drawing.Point(−2, 240);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

Programming Exercises | 695

          this.btnNew.Text = "Add New One";
          this.btnNew.Click += new
                    System.EventHandler(this.btnNew_Click);
          this.AutoScaleBaseSize = new
                    System.Drawing.Size(8, 19);
          this.BackColor = System.Drawing.Color.FromArgb
                    (((System.Byte)(128)),
                    ((System.Byte)(128)), 
                    ((System.Byte)(255)));
          this.ClientSize = new
                    System.Drawing.Size(292, 273);
          this.Controls.AddRange
                       (new System.Windows.Forms.Control[] 
                    { this.btnNew,
                      this.txtBxNewAct, 
                      this.label3,
                      this.label1,
                      this.txtBxResult, 
                      this.label2,
                      this.lstBxEvents } );
          :    // Colon indicates items missing.

PROGRAMMING EXERCISES

 1. Create an application that can be used to allow users to enter information 
such as their names, e-mail addresses, and phone numbers. The appli-
cation should provide a minimum of four features. The first retrieves 
and displays the information entered by the user. Output should be dis-
played in a Windows dialog message box. The second feature clears the 
entries so that new values can be entered. Provide an “About” feature 
under a “Help” menu option that displays information about the appli-
cation such as who developed it and what version it is. Another menu 
option closes the application. Be creative and be sure to produce an aes-
thetically pleasing design using options from the Format menu if you are 
using Visual Studio.

 2. The computer club is selling T-shirts. Create an attractive user interface 
that allows users to select sizes (S, M, L, and XL) and quantity. Which 
controls would be most appropriate? Remember, the fewer keystrokes 
required of the user the better. Provide a menu labeled “Process”.  Display 
the selections made by the user from a Process menu option under a 
“Display Order” option. Include an option to exit the application from 
the Process menu option.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



696 | Chapter 10: Programming Based on Events

 3. Create a Windows application that can be used as a sign-up sheet for 
ski equipment for the Flyers Sports Club. The club has ski equipment 
that it makes available to members at a minimal charge. In an attempt to 
determine what type of equipment members might need for an upcom-
ing trip, they have asked you to design and implement an equipment-
needs form. Include CheckBox objects that allow users to select the 
type of gear they will need to purchase for the trip. Include selections of 
snow gloves, skis, goggles, earmuffs, and other items you feel are appro-
priate. Include at least one picture image on your application. After all 
selections are made, display a message indicating what items have been 
selected. You will probably want to include menu options to display and 
clear the order for the next user. Also include an option that enables the 
user to exit the application.

 4. Create a graphical user interface that can be used by a community group 
to enable youths to sign up for different sporting events. Include radio 
buttons with a minimum of five sports. Wire a single event-handler 
method to each of the radio buttons. Program the method to display 
a different message for each different sport. For example, if one of the 
sports is skiing, the message might say, “Bring warm clothes!” Also 
include a PictureBox object on the form to display a different pic-
ture based on which sporting event was selected. One approach would 
be to layer multiple picture box objects in the same location. When the 
particular sport is selected, make the associated PictureBox visible. 
You can find free graphics on the Internet to use in your application. 
Hint: One way to associate a file to the PictureBox control is to Import 
an image from the Image property.

 5. Create an Inspirational Message Displayer that has one ComboBox 
object with a list of at least five of your favorite sayings or inspira-
tion messages. Your design should include the capability of letting users 
enter their own sayings. When a selection is made or a new entry is 
typed, display the selection on a Label object on your form. Add a 
menu to the application that includes at least the menu options of “File”, 
“Format”, and “Help”. Under the “Format” selection, include options of 
“Font” and “Color”. Wire the “Font” and “Color” options to the Windows 
predefined Font and Color dialog boxes so that when their values are 
changed, the text in the Label object displaying the saying is changed. 
Provide an “About” selection under the “Help” menu and an “Exit” under 
the “File” selection.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
0

 6. Create an order form that allows bags to be purchased. There are six 
different types: full decorative, beaded, pirate design, fringed, leather, 
and plain. Create a ListBox object for the different styles. Include a 
ComboBox for quantity. Quantities up to 10 should be provided. After 
the user makes a selection, display a message indicating which selection 
was made. Include an option to clear selections. Provide appropriate 
error messages when selections are not made.

 7. Add to the application in Exercise 6 by including a control that allows 
the user to determine the type of shipping they desire. Include a set 
of radio buttons that contain shipping options of overnight, three day, 
and standard. Add the price for each bag to the listbox selection as fol-
lows: full decorative—$50.00; beaded—$45.00; pirate design—$40.00; 
fringed—$25.00; leather—$80.00; and plain—$20.00. Display the items 
in the listbox in sort order. Using methods of the string class, retrieve the 
price from the listbox. Display in a Windows dialog message box the total 
cost for the purchase. Include the selection, quantity, and shipping charge. 
The shipping charges are based on the total purchase. The following per-
centages are used: overnight—10%, three day—7%, and standard—5%.

 8. Add to your solution in Exercise 2 by including two more sizes, XSmall 
and XXLarge. Add statements that process the order by calculating 
the total cost. Each shirt is $16 except the XSmall and XXLarge; their 
specialty prices are $20.00 each. Include an “Add to Cart” option from 
the “Process” menu that enables the user to add multiple selections to 
the order. Allow users to purchase different sizes on the same order. The 
“Display Order” option should be modified so that it displays the total 
cost for each selection and the final cost for the order. Include an addi-
tional “Help” menu option that displays instructions to the user indicat-
ing that they can make multiple size selections on a single order.

 9. Create a Windows application for purchasing floor covering. Allow the 
length and width (feet and inches) of a room to be entered. Be sure to 
include program statements that will keep your program from crashing 
if they enter nonnumeric characters for the room dimensions. Using the 
tab control, provide selections such as Hardwood, Carpet, and Laminate. 
On each tab allow the user to select a type and price. Have a control that 
displays different types along with the prices of floor covering. Include, 
for example, options like Oak, Maple, Walnut, and Cherry Hardwood 
floors with prices such as $34.95 per square yard for Oak and $41.95 per 
square yard for Cherry. After the users enter their room dimensions and 
select the floor covering and price, display the total cost to cover the 
room. Include an option to clear selections. Place both the type of floor 
covering and the price in a single control, such as a ComboBox, and use 
string manipulation techniques to strip the price out of the string.

Programming Exercises | 697

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



698 | Chapter 10: Programming Based on Events

 10. Create an application for a Pizza Delivery Company. You might check out 
the graphical user interface shown in Figure 10-21. Your solution does 
not need to resemble this one; however, it might give you some ideas. 
You must provide a place for the user to enter their contact informa-
tion (i.e., address, phone number, and e-mail), and some of the contact 
information should be displayed when an order is placed. Your applica-
tion should have a picture logo and company name. Provide selections 
such as Small, Medium, and Large for size. Allow users to select from 
at least a dozen items to place on their pizza. You might consider offer-
ing different types of sauce (i.e., tomato, pesto, or no sauce), different 
types of crust, different specialty types of pizza (Supreme, Veggie, etc.). 
BE CREATIVE! You can also sell wings, bread sticks, chicken strips, or 
something else of your choosing. Consider offering beverages. You must 
display the price for the order and allow the user to change their mind 
while they are ordering and reset the order form. Experiment, explore, 
change properties, and then review the .Designer.cs file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

AdvAnced Object-Oriented 
PrOgrAmming FeAtures

IN THIS CHAPTER, YOU WILL:

 ? Learn the major features of object-oriented languages

 ? Design and develop multitier applications using component-based development 
methods

 ? Use inheritance to extend the functionality of user-defined classes

 ? Create abstract classes that include abstract methods

 ? Distinguish the differences between sealed and abstract classes

 ? Become aware of partial classes

 ? Design and implement interfaces

 ? Understand why polymorphic programming is a common goal in .NET

 ? Explore generics and learn how to create generic classes and generic methods

 ? Investigate static versus dynamic typing and become aware of when dynamic and var 
types are used

 ? Work through a programming example that illustrates the chapter's concepts

11CHAPTER

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



700 | Chapter 11: Advanced Object-Oriented Programming Features

In this chapter, you extend your knowledge of programming by exploring advanced 
features of object-oriented design. You will be introduced to component-based devel-
opment and learn how to create your own class library files. You investigate new 
ways to write classes and new ways to use the more than 2000 classes that make up 
the Framework class library (FCL).

In addition, you learn more about inheritance and are introduced to interfaces and 
abstract classes. You explore the differences between extending a class through 
inheritance and implementing an interface. You learn how polymorphism relates 
to object-oriented design and learn how to do polymorphic programming using 
.NET-supported languages. Advanced features such as overriding, overloading, and 
the use of virtual methods are included in this chapter.

Object-Oriented Language Features
For a language to be considered a true object-oriented programming (OOP) language, 
it must support the following four major concepts, which C# and the .NET platform 
embrace:

 ? Abstraction: The language must provide a way to simplify complex 
problems by generalizing or allowing you to think about something a 
certain way and then representing only essential features appropriate to 
the problem, hiding the nonessential complexities.

 ? Encapsulation: The language must provide support for packaging data 
attributes and behaviors into a single unit, thus hiding implementation 
details.

 ? Inheritance: The language must provide features that enable reuse of 
code through extending the functionality of the program units.

 ? Polymorphism: The language must enable multiple implementations 
of the same behaviors so that the appropriate implementation can be 
executed based on the situation.

These features form the foundation for object-oriented development. From your first 
introduction to C#, you have experienced abstraction in your design of applications. 
Through designing classes, you are able to abstract out common characteristics that 
all objects of that type possess, including both behavioral and data characteristics. 
You defined the data in terms of instance fields and the behaviors in terms of meth-
ods. You encapsulated or packaged these common characteristics into a single entity 
labeled a class. Through defining the data members as private, you protected the 
data and enabled access only through the object’s methods and properties.

Through using read-only properties and methods, you hide the implementa-
tion details. You have experienced inheritance, especially when you designed your 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Component-Based Development | 701

1 
1

graphical user interfaces. You extended the Form class to add to the functionality 
that was already part of that class. In this chapter, you gain a deeper understanding 
of the power of inheritance and learn how to build your own polymorphic compo-
nents that can be extended.

Object-oriented development focuses on designing classes that can be reused in 
many applications. One way to ensure this reuse is through designing and building 
components that can be stored in a library and called on when needed. The following 
section describes how to accomplish this through the .NET platform.

Component-Based Development
In the past, applications were developed mainly as single, self-contained, monolithic 
programs, large programs that combined the user interface and data access code all in 
the same file. Most new applications are large systems involving development efforts 
from teams of programmers. These applications often require the packaging together 
of many different components to respond to business functions. Instead of writing 
a program that includes all the features in a single file, development today is often 
geared toward writing multitier applications similar to that shown in Figure 11-1.

FIGURE 11-1 Component-based development

©
 C

en
ga

ge
 L

ea
rn

in
g

Component-based development emphasizes a reuse-based approach to defining, 
implementing, and composing independent components into systems. The business 
layer components shown in Figure 11-1 might be used in multiple applications. They 
include the functionality of the system, the processing necessary to prepare the data 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



702 | Chapter 11: Advanced Object-Oriented Programming Features

for presentation. Components are implemented through classes in C#. Software com-
ponents, thus, often take the form of objects or collections of objects. In Chapters 9 
and 10, you learned how to design graphical user interfaces, which enable creating a 
presentation tier. Chapter 15 introduces you to Web applications that facilitate creat-
ing another type of presentation tier, which can be viewed over a browser by different 
types of platforms. In Chapters 13 and 14, you will learn how to add the data access 
tier by writing classes that access data from text files and databases such as those cre-
ated using Microsoft Access or SQL Server. All the work you have accomplished with 
previous chapters in this book has prepared you to develop the business logic for the 
center tier of components.

Object-oriented development techniques work well for constructing multitier appli-
cations. As you review Figure 11-1, think of each of the components in the diagram 
as independent classes, separate from each other. Classes can be designed and new 
subclasses created that extend the functionality of the original class. Many different 
applications can reuse these classes through extending or combining them into new 
applications. If changes are needed, you can isolate the change and not have to impact 
other classes.

In C#, in addition to creating .EXE files, you can create class library files with a 
dynamic link library (DLL) extension. These files can become the components that 
are referenced from any number of applications. To take advantage of the features 
of object-oriented programming, one of the key concepts you must understand is 
inheritance.

Inheritance
Inheritance allows you to create a general class and then define specialized 
classes that have access to the members of the general class. These new special-
ized classes can extend functionality by adding their own new unique data and 
behaviors. Inheritance is associated with an “is a” relationship. A specialized class 
“is a” form of the general class. For example, you might create a class called 
Person and include data characteristics of identification number, name, age, and 
home address. Behaviors or methods titled Eat( ), Walk( ), and Talk( ) might 
be included. After these are defined, you could create specialized classes such as 
Student, Faculty, or Staff that inherit from the Person class. Student “is a” 
Person, just as Faculty or Staff “is a” Person. Student might have unique data 
characteristics of student ID, major, and year in school. Staff might have unique 
data characteristics of employee ID, date of hire, and job title. Through using inheri-
tance, applications instantiating objects of the Student class would have not only 
the unique characteristics of the student (student ID, major, and year) but also have 
access to the characteristics of the Person (identification number, name, age, and 
address).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 703

1 
1

Inheriting from the Object Class
You have been creating your own classes since you wrote your first program in 
 Chapter 1. You learned that every object created in C# automatically inherits from 
a base class named object that is in the System namespace. Object has four 
methods that every class written in C# inherits as long as it provides a reference 
to the  System namespace. One of these, the ToString( ) method, you have used 
in many of your programs. Figure 11-2 uses IntelliSense to show the signature for 
Object.ToString( ) and the names of the other methods inherited from object.

Classes can also have a “has a” relationship in which a single class is defined to have 
instances of other class types. This is a concept called containment or aggregation. You 
experience containment in C# when you define classes that instantiate objects of the string 
or int classes. However, “has a” relationships are usually associated with  user-defined 
classes. For example, a Person “has a” medicalRecord and “has a” dentalRecord.

FIGURE 11-2 Methods inherited from an object

Inheriting from Other .NET FCL Classes
You also experienced inheritance when you developed Windows-based programs in 
Chapters 9 and 10. The Windows forms classes that you created inherited from the 
System.Windows.Forms.Form class. Extending that class enabled you to build 
on the functionality that was included as part of that .NET Framework class. Add-
ing instantiated objects from classes such as Button, Label, TextBox, and  ListBox 
enabled you to add functionality to your program with minimal programming. To 
inherit from the System.Windows.Forms.Form class, new entries were added 
to your class definition. Figure 11-3 illustrates what Visual Studio adds when you 
decide to build a Windows application by choosing the Windows Forms Application 
template from the Project Type menu.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



704 | Chapter 11: Advanced Object-Oriented Programming Features

In object-oriented terminology, the class listed after the colon in Figure 11-3 is the base 
class. The class to the left of the colon, PresentationGUI, is called the derived 
class. To inherit from a base class, a colon is used as a separator between the derived 
class and the base class, as shown in Figure 11-3. PresentationGUI is the user-
defined name. The Form class belongs to the System.Windows.Forms namespace. 
For this example, the user-defined class is inheriting from a predefined .NET class; 
however, the same concepts apply when a user-defined class is inheriting from another 
user-defined class. By using the colon, you indicate that the  PresentationGUI class 
derives from the Form class. The keyword partial was added by the code generator. 
The rest of the class is stored in the  PresentationGUI.Designer.cs file.

Creating Base Classes for Inheritance
You can define your own classes from which other classes can inherit characteristics. 
Example 11-1 creates a class named Person with four data members. This class 
is used as a base class from which other classes can inherit characteristics. The base 
class is sometimes called the super or parent class.

EXAMPLE 11-1

public class Person
{
     private string idNumber;
     private string lastName;
     private string firstName;
     private int age;

     public Person( ) // Constructor with zero arguments
     {
     }

     // Constructor with four arguments
     public Person(string id, string lname, string fname, int anAge

FIGURE 11-3 Derived class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 705

1 
1

     {
          idNumber = id;
          lastName = lname;
          firstName = fname;
          age = anAge;
     }

     // Constructor with three arguments
     public Person(string id, string lname, string fname)
     {               
          idNumber = id;
          lastName = lname;
          firstName = fname;
     }

     // Constructor with one argument
     public Person(string id)
     {                  
          idNumber = id;
     }
}

Only data members and constructor methods are shown for the Person class in 
Example 11-1. Several examples that follow will build upon Example 11-1 using the 
Person base class. Notice that the data members are defined with a private access 
modifier and constructors are defined with public access modifiers. The following 
section reviews why these choices were made.

ACCESS MODIFIERS

Access to members that have been defined with the private access modifier is 
restricted to members of the current class. The private members are not acces-
sible to other classes that derive from this class or that instantiate objects of this 
class. Using a private access modifier enables the class to protect its data and 
only allow access to the data through its methods or properties. This ensures the 
data-hiding characteristic of encapsulation.

CONSTRUCTORS USE PUBLIC ACCESS

Constructors, named the same name as the class name, are defined with public 
access. It is important to note that if you do not use a public access modifier with 
constructors, no objects can be instantiated from the class. Constructors differ from 
other methods in that they cannot have a return type. Remember that you have an 
overloaded method when you have more than one method using the same identifier. 
The requirement for an overloaded method is that each of the methods must have 
a different number and/or type of parameter from the others. Thus, by definition, 
when you have two or more constructors for a class, you have overloaded methods.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



706 | Chapter 11: Advanced Object-Oriented Programming Features

PROPERTIES OFFER PUBLIC ACCESS TO DATA FIELDS

Before creating a specialized class to inherit the characteristics of the Person class, 
properties are added to the Person class. By including properties, there is less need to 
write accessor (getter) and mutator (setter) methods. The private member fields can 
be accessed through these properties.

If you were implementing this solution, you might consider some important design 
issues. First, one or more of the constructors allows an object to be instantiated without 
 assigning values to lastName and firstName. But, no property is available to change 
that value for classes that instantiate objects from it. Thus, you would need to write a 
mutator  (SetFirstName( )) method; otherwise, the name could never be added.

Properties look like data fields but are implemented as methods that can be used to get or 
set a private data field instance.

Example 11-2 shows some of the properties added to the Person class. Due to 
space constraints, only two of the four properties are shown. The first enables the 
data field, firstName, to be a read-only property; it does not contain a set property. 
Without defining an additional mutator method, firstName can never be changed 
after it is constructed.

In Example 11-2, the FirstName property is shown as read-only to reinforce the 
idea that properties do not have to include both a get and a set. You should prob-
ably define read-only properties only for fields that should not be changed, such as 
identification numbers.

EXAMPLE 11-2

// Read-only property. First name cannot be changed.
public string FirstName
{
     get
     {
          return firstName;
     }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 707

1 
1

// Property for last name
public string LastName
{
     get
     {
          return lastName;
     }
     set
     {
          lastName = value;
     }
}

Notice how get, set, and value appear in blue code. When you began reading 
this book, you were told that keywords would be shown in blue. Visual Studio follows 
this  standard with a few exceptions. One exception is that set, value, and get are 
 displayed, by default, in Visual Studio in blue, but they are not regular keywords. They are 
contextual keywords, not as powerful as regular keywords. They have a special meaning 
only when used in a specific context. Because you see them in blue in the IDE, they are 
shown in blue in this book.

Adding properties to your solutions enables access to the private data using the 
property identifier, as opposed to writing additional methods.

Overriding Methods
Two additional methods are added to the Person class and are shown in 
Example 11-3. The first overrides the object ToString( ) method. When you 
override a method, you replace the method defined at a higher level with a new 
definition or behavior. Notice that the keyword override is added onto the 
ToString( ) method heading and virtual is added onto the GetSleepAmt( ) 
method heading. Placing virtual in the method heading allows the method to 
be overridden.

After you add the LastName property to the class, you can retrieve the current con-
tents of lastName using the LastName identifier. Notice you do not declare value. It 
can be used, almost like magic, to refer to the value that is sent in through an assign-
ment statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



708 | Chapter 11: Advanced Object-Oriented Programming Features

EXAMPLE 11-3

public override string ToString( ) // Defined in Person
{
     return firstName + " " + lastName;
}

public virtual int GetSleepAmt( )
{
     return 8;
}

FIGURE 11-4 ToString( ) signature

Overriding a method differs from overloading a method. An overridden method must have 
exactly the same signature as the method it is overriding. New functionality is normally 
defined with overridden methods. Overloaded methods must have a different signature than 
others with the same name. Overloaded methods are usually defined to perform a similar 
behavior but with different data types.

USING THE OVERRIDE KEYWORD

The override keyword allows a method to provide a new implementation of a 
method inherited from a base class. When you override a method, the signature 
of the methods must match. To override a base method, the base method must be 
defined as virtual, abstract, or override. Figure 11-4 shows the signature for 
the ToString( ) method that belongs to the object class. This is taken from the 
online documentation in Visual Studio.

VIRTUAL METHODS

Because the developers of .NET included the virtual modifier as part of the 
ToString( ) method signature, the method can be overridden by any C# class. 
Every class inherits methods from the object class. ToString( ) does not have 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 709

1 
1

In Example 11-3, the GetSleepAmt( ) method also uses the virtual modifier, 
implying that any class that derives from Person can override that method. To 
override a method, the new method must have exactly the same parameters that are 
used in the method you plan to override.

Creating Derived Classes
Classes that inherit from a base class are called derived classes. They are also 
referred to as subclasses or child classes because they inherit the characteristics of 
a parent class. Any number of classes can inherit from the Person class that 
was defined in the previous examples. Person is defined using a public access 
modifier.

PROTECTED ACCESS MODIFIERS

Although it is true that derived classes inherit all the characteristics of the base 
class, they do not have direct access to change their private members. In addition 
to private and public access, C# offers internal and protected access. Internal 
members are accessible only within files in the same assembly. Protected members 
are accessible to any subclass that is derived from them but not to any other classes. 
So if you want methods in derived classes to have access to change data in the base 
class, define the data members using a protected access, instead of a private 
access. This way, the data is still hidden from other classes, but is available for use in 
subclasses or derived classes.

To demonstrate inheritance, a new file is created in Visual Studio for a Student 
class. The Student class inherits all members of the Person class and adds two 
additional data field members. This is an “is a” relationship. Student “is a” Person. 
Example 11-4 shows some of the source code from the Student class.

The ToString( ) method is an example of polymorphism, meaning many forms. You 
will read more about polymorphism later in this chapter. Think about the meaning of 
 morphing—an object reshapes itself. In that context, the ToString( ) method can 
have many different definitions. The definition that is used when you call on the method is 
 determined by which object calls it.

to be overridden. It returns a string representing the current object. It is often over-
ridden to offer differing functionality based on which object is calling it.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



710 | Chapter 11: Advanced Object-Oriented Programming Features

EXAMPLE 11-4

public class Student : Person // Student is derived from Person
{
     private string major;
     private string studentId;

     // Default constructor
     public Student( )
          :base( ) // No arguments sent to base class constructor
     {
     }

     // Constructor sends three arguments to base class constructor
     public Student(string id, string fname, string lname,
                    string maj, string sId)
          :base (id, lname, fname) // Base constructor arguments
     {
          major = maj;
          studentId = sId;
     }

     public override int GetSleepAmt( )
     {
          return 6;
     }
}

Example 11-4 includes a number of interesting features. First, the heading for the 
class indicates that Student is derived from Person. The class heading is 
repeated in Example 11-5.

EXAMPLE 11-5

public class Student : Person // Student is derived from Person

Base classes follow the colon. Derived classes appear to the left of the colon.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 711

1 
1

CALLING THE BASE CONSTRUCTOR

To call the constructor for the base class, an extra entry is added between the con-
structor heading for the Student subclass and the opening curly brace, as shown in 
Example 11-6.

EXAMPLE 11-6

public Student( )
     :base( ) // No arguments sent to base class constructor
{ ...

This calls the default constructor for Person since no arguments appear inside 
the parentheses. To send data to the base constructor, you must have a matching 
signature.

To send data to the Person constructor at the same time you instantiate an object 
of the Student class, the keyword base is followed by arguments that match one 
of the Person constructors as follows:
public Student(string id, string fname, string lname,
               string maj, string sId)
     :base (id, lname, fname) // Base constructor arguments
{ ...

The call to the constructor, :base( ), could have been omitted on the second line. The 
default constructor would have been called automatically when an object of the derived 
class was instantiated. For readability purposes, it is best to include the call to the 
default base( ) constructor with no arguments.

The reserved word base, which is shown with a colon and set of parentheses (: 
base( )) in Example 11-6, is used to indicate which base class constructor should 
be used when an object of the derived class is created. Notice that it is placed in 
the class heading before the opening curly brace. The first call to the base con-
structor uses the default constructor without any arguments for Person.

The second constructor in Example 11-6 indicates that the Person constructor with 
three string arguments should be used when an object of the Student class 
is instantiated using that constructor. Notice that to instantiate an object of the 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



712 | Chapter 11: Advanced Object-Oriented Programming Features

Student class using that constructor, five string arguments are expected. Three 
of the string arguments are used by the base class. Thus, if an object of the 
Student class is constructed inside a class that, for example, is taking care of the 
presentation layer, the code might appear as in Example 11-7.

EXAMPLE 11-7

// Student object instantiated in a different class 
// such as a PresentationGUI class. 
Student aStudent = new
        Student ("123456789", "Maria", "Woo", "CS", "1111");

The first three arguments, "123456789", "Maria", and "Woo", are sent to the con-
structor for the Person class. Remember that this occurred because the Student 
constructor included as part of its constructor heading the following code:
:base (id, lname, fname)// Appears in Student constructor heading

The last two arguments ("CS", "1111") are used by the Student class constructor.

The order of the arguments being sent to the base constructor is extremely impor-
tant. Notice how lname is listed before fname in Example 11-7. The names selected 
for the identifier do not matter; however, their position does. There must be a con-
structor accepting three string arguments. The placement of the arguments in the 
parameter list for the constructor determines the order that must be used by derived 
classes. Review the constructors for the Person class in Example 11-1. Notice that 
the three arguments the constructor expects. The constructor expects the first argu-
ment to be an identification number, the second argument to be the last name, and 
the last argument to be the first name.

Objects created using the default constructor do not send any arguments to the 
Person constructor. Both the Person default constructor and the Student 
default constructor with no parameters are called when a Student object is instan-
tiated with no arguments, as follows:
Student anotherStudent = new Student( );

Review Example 11-6. The Person constructor is invoked because :base( ) is 
included in the heading for the default Student constructor.

USING MEMBERS OF THE BASE CLASS

After objects are instantiated from the Student class, any of the public methods 
or properties from both the Person class and the Student class can be used with 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 713

1 
1

a Student object. You do not have to do anything special to use the public access 
members of either class. If, in the class that instantiates the anotherStudent 
object, you want to set a value representing a last name, you can use the property 
for LastName defined in the Person class as follows:
anotherStudent.LastName = "Garcia";

CALLING OVERRIDDEN METHODS OF THE BASE CLASS

When you have a method that has the same name in both the base and the derived 
class, the keyword base can be used in the derived class to refer to methods in the 
base class that are overridden in the derived class. Example 11-8 shows a method 
defined in the Student class that calls an overridden method in the Person class. 
Notice that the method name was qualified with the base keyword. If base had been 
omitted, the GetSleepAmt( ) method defined in the Student class would have 
been called.

EXAMPLE 11-8

public int CallOverriddenGetSleepAmt( )
{                             
     return base.GetSleepAmt( ); // Calls method defined in Person
}

It is useful to see how the classes are related. Figure 11-5 shows the inheritance rela-
tionship between the Person and Student classes. The PresentationGUI class 
is related through instantiating an object of the Student class. In class diagrams, 
arrows with empty arrowheads are used to show the inheritance relationship between 
the Student and Person and PresentationGUI and Form classes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



714 | Chapter 11: Advanced Object-Oriented Programming Features

As shown in Figure 11-5, Student is derived from Person;  PresentationGUI is 
derived from the Form class in the System.Windows.Forms namespace. Open or 
unfilled arrows are used in the class diagram to point to the base class. Because 
Object is the base class of all classes, every class inherits the four methods 

FIGURE 11-5 Inheritance class diagram

+ToString() : string
+Equals() : bool
+GetHashCode() : int
+GetType() : object

Object

+ToString() : string
+GetSleepAmt() : int
+GetExerciseHabits() : abstract string

-idNumber : string
-firstName : string
-lastName : string
-age : int

Person

+CallOverridenGetSleepAmt() : int
+GetSleepAmt() : int
+GetExerciseHabits() : string

-major : string
-studentId : string

Student

+. . .()

-. . .

System.Windows.Forms.Form

+PresentationGUI_Load()
+btnShow_Click()

-aStudent : Student
-txtBxName : string
-txtBxAge : string
-txtBxID : string
-txtBxStudentSleep : string
-txtBxPersonSleep : string
-.. .

PresentationGUI

©
 C

en
ga

ge
 L

ea
rn

in
g

The derived class, Student, has access to the public access members of the 
base class, Person. But, the base class does not have access to the members of 
the derived Student class. The base class has no knowledge of any of the derived 
classes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 715

1 
1

shown previously in Figure 11-2. A complete solution with Person,  Student, and 
the PresentationGUI classes all stored in a single project is available in the 
 PresentationGUIWithOneProject_NoDLLs_FirstExample folder, which is part 
of the solutions downloaded for this chapter.

Making Stand-Alone Components
The two classes, Student and Person, can be used with a third class that 
includes a Main( ) method as was done with the solution appearing in the 
 PresentationGUIWithOneProject_NoDLLs_FirstExample folder. The project 
is compiled just as you have done previously to create a single assembly. By doing 
this, you associate the Student and Person with that one assembly.

Assemblies are the units that are configured and deployed in .NET.

The bytecode of an assembly can be reused in other applications, but changes to 
the PresentationGUI require the Student and Person code be recompiled. 
Additional applications reusing Person and Student must include source code 
for Person and Student inside the application as part of the project. Figure 11-1, 
on the other hand, introduced another approach to enabling component-based 
development. Each of the classes can be compiled and then stored as a dynamic 
link library (DLL) file, and any number of applications can then reference the 
classes. That is the beauty of component-based development and object-oriented 
programming.

DYNAMIC LINK LIBRARY—DLL (OPTIONAL)

Inheritance does not require the use of DLL components. You can create projects 
similarly to what you have done with all exercises written thus far. This is illustrated 
later in this chapter. C# and Visual Studio offer the option of creating library compo-
nents that can be compiled into a dynamic link library (.dll) file instead of into the .exe 
file type that you have been creating. After you have a .dll, any application that will 
use that component simply adds a reference to the DLL and that referenced file with 
the .dll extension becomes part of the application’s private assembly. Visual Studio 
creates the DLL for you. Once the file is stored as a .dll file, it is no longer readable or 
editable. You can use it in additional applications but you cannot directly modify the 
.dll file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



716 | Chapter 11: Advanced Object-Oriented Programming Features

When you first start a new solution or a new project, one of the options is to create a 
class library using the Class Library template, as shown in Figure 11-6.

FIGURE 11-6 Creating a DLL component

To illustrate creating and using DLLs, the Person class is first created. This will 
enable the Student class to extend or be derived from it. Creating Person first 
also enables you to use IntelliSense in Visual Studio. After selecting the Class Library 
template option and naming the file, you create the class in the same way you have 
created other files that produce an .exe extension when compiled. Example 11-9 lists 
the statements in the Person class.

To illustrate creating stand-alone components, a separate project was created for the 
Person class and the Student class illustrated in Example 11-10. The source 
code for these projects is stored in LibraryFiles folder, which is part of the solu-
tions downloaded for this chapter.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 717

1 
1

EXAMPLE 11-9

// Person.cs
using System;

namespace PersonNamespace
{
     public class Person
     {
          private string idNumber;
          private string lastName;
          private string firstName;
          private int age;

          // Constructor with zero arguments
          public Person( ) 
          {
          }

          // Constructor with four arguments
          public Person(string id, string lname, string fname, int anAge) 
          {
               idNumber = id;
               lastName = lname;
               firstName = fname;
               age = anAge;
          }

          // Constructor with three arguments
          public Person(string id, string lname, string fname)
          {
               idNumber = id;
               lastName = lname;
               firstName = fname;
          }

          // Constructor with one argument
          public Person(string id)
          {              
               idNumber = id;
          }

          // Read-only property. ID cannot be changed.
          public string IdNumber
          {
               get
               {
                    return idNumber;
               }
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



718 | Chapter 11: Advanced Object-Oriented Programming Features

          // Property for last name
          public string LastName
          {
               get
               {
                    return lastName;
               }
               set
               {
                    lastName = value;
               }
          }

          // Read-only property. First name cannot be changed.
          public string FirstName
          {
               get
               {
                    return firstName;
               }
          }

          public int Age
          {
               get
               {
                    return age;
               }
               set
               {
                    age = value;
               }
          }

          // Overrides ToString( ) method from the Object class
          public override string ToString( )
          {
               return firstName + " " + lastName;
          }

          // Virtual method can be overridden by classes that
          // derive from the Person class.
          public virtual int GetSleepAmt( )
          {
               return 8;
          }
     }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 719

1 
1

The namespace name selected for this example for the Person class is 
 PersonNamespace. To change the name, just highlight the old namespace name 
with your mouse and type a new name. No other changes, related to the namespace, 
need to be made.

BUILD INSTEAD OF RUN THE PROJECT (For Dynamic Link Library files)

When you create a class library file, no executable file is created. You cannot run 
the project. Instead you build a .dll file. Recall the Person class does not have a 
Main( ) method. After you finish typing the class, you do not run the application. 
If you press F5 or Ctrl+F5, an error message is generated similar to that shown in 
Figure 11-7.

FIGURE 11-7 Attempting to run a class library file

By default, Visual Studio assigns the namespace name the same name as the project 
name (Person). You should change the namespace name; otherwise, when you start 
adding a reference to a created DLL, it can become quite confusing.

To compile and create the DLL, use one of the Build Solution options under the 
Build menu bar. You can select Build, Build Solution, or select Build followed by 
the project name. After you save your work, close the project. A completely new proj-
ect should be created for the Student class. You will create a class library for the 
Student class just as you did for the Person class by using the Class Library 
template from the Visual Studio Start page.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



720 | Chapter 11: Advanced Object-Oriented Programming Features

The program statements that constitute the Student class are shown in Exa mple 
11-10. Note that a new using statement is added (using  PersonNamespace;). This 
is typed manually and matches the name of the namespace in the Person class. 
Adding references to other classes is discussed in the following section.

Also, notice that the identifier for the namespace in the Student class is 
 StudentNamespace. This identifier is different from the namespace identifier in 
the Person class because two separate projects are developed to demonstrate use 
of components.

You learned in Chapter 1 that .NET supports having an application include code from 
multiple .NET languages. This is possible because all .NET-supported and .NET-managed 
languages use the same common language runtime (CLR) and the same Framework 
class library (FCL). The Person class could be written in C#. The Student class 
could be written in C++. A graphical user interface presentation class instantiating the 
Student class that is deriving from the Person class could be written in Visual 
Basic.

The only requirement for applications with multiple languages is that within the project the 
source code must use only one language. Thus, if you had a solution file that had three 
projects, each project could be written in a different language.

The Student class includes two additional data fields, properties for those fields, 
and a GetSleepAmt( ) method that overrides the GetSleepAmt( ) method of the 
Person class. A second method is included to illustrate how a base method that 
has been overridden can be called. The Student class appears in Example 11-10.

EXAMPLE 11-10

// Student.cs
using System;
using PersonNamespace; // Added to avoid using fully qualified names

namespace StudentNamespace
{
     public class Student : Person
     {
          private string major;
          private string studentId;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 721

1 
1

          // Default constructor
          public Student( )
              : base ( ) // No arguments sent to base constructor
          {
          }

          // Constructor sends arguments to base class constructor
          public Student(string id, string fname, string lname, 
                         string maj, string sId)
              : base(id, lname, fname)// Base constructor arguments
          {
              major = maj;
              studentId = sId;
          }

          // Read-only Property for studentID
          public string StudentId
          {
               get
               {
                    return studentId;
               }
          }

         // Property for major data field
          public string Major
          {
               get
               {
                    return major;
               }
               set
               {
                    major = value;
               }
          }

          // Overrides GetSleepAmt( ) method of the Person class
          public override int GetSleepAmt( )
          {
               return 6;
          }

          // Using the base keyword, calls the overridden
          // GetSleepAmt( ) method of the Person class
          public int CallOverriddenGetSleepAmt( )
          {
               return base.GetSleepAmt( );
          }
     }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



722 | Chapter 11: Advanced Object-Oriented Programming Features

ADDING A REFERENCE TO THE BASE CLASS

Because you are deriving from the Person base class, one of the first things you 
should do in the Student class is add a reference to Person.dll. By doing this first, 
you gain access to the members of the Person class inside this newly created 
 Student class. This can be done several ways in Visual Studio. One option is to use 
the Solution Explorer window. After selecting the project name, right-click it and 
select Add Reference, as shown in Figure 11-8.

Since the identification numbers (IdNumber in Person and StudentId in Student) 
have read-only properties, mutator methods need to be defined if you want to enable their 
values to be changed.

FIGURE 11-8 Adding a reference to a DLL

The Add Reference option shown in Figure 11-8 can also be retrieved by right-click-
ing on the References node in the Solution Explorer window. A window is displayed 
similar to that shown in Figure 11-9 that enables you to select one of the .NET pre-
defined components, or you can use the Browse tab to locate Person.dll.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 723

1 
1

After you select the Browse button, navigate to the location where the project is 
located. The DLL is stored in the Debug directory under the bin folder wherever 
you created your project. For this example, the Person project was created in the  
C:\CSharpProjects\LibraryFiles folder. Thus, it was necessary to navigate into that 
directory to locate Person.dll, as shown in Figure 11-10.

FIGURE 11-9 Add Reference dialog box

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



724 | Chapter 11: Advanced Object-Oriented Programming Features

After the reference is made, you can derive new classes from the class defined in 
the component.

ADDING A USING STATEMENT

In the Student class, if you simply type:
public class Student : Person

you will receive an error message, as shown in Figure 11-11.

FIGURE 11-10 Locating the Person.dll component

FIGURE 11-11 Namespace reference error

Just adding the reference is not enough—you need to accomplish one more step. You 
have to qualify Person by adding the namespace and a dot before the class name, 
as shown in Example 11-11.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 725

1 
1

EXAMPLE 11-11

public class Student : PersonNamespace.Person

An even better option is simply to add a using directive at the top of the source 
code file. The using statement should indicate the namespace identifier for 
the Person class. In the Person class, the name typed for this example was 
 PersonNamespace; thus, by adding the using statement, you can avoid having to 
qualify all references to the Person class. Example 11-12 includes the using direc-
tive for PersonNamespace.

EXAMPLE 11-12

using PersonNamespace; // Use whatever name you typed for the
                       // namespace for Person.

After adding the using statement, your class header can now read:
public class Student : Person // No need to fully qualify now.

After typing your program statements, build the DLL from the Build option under 
the Build menu bar. Save your work and close the project.

Creating a Client Application to Use the DLL
You now have two components that can be reused with many different applications. 
All that is necessary is to add a reference to the components in your program and 
include a using statement with the appropriate namespace. To illustrate how a cli-
ent program could use the Student component, a Windows application is developed 
to instantiate an object of the Student class.

Using Visual Studio, a new solution was created by selecting the Windows Forms App-
lication template as the project type. The solution is named  PresentationGUI. 
To illustrate using these stand-alone components, a new project was created. This 
project is stored in a separate folder, PresentationGUIwithDLLs. Like the solutions 
presented earlier, this folder is one of the solutions downloaded for this chapter.

ADDING A REFERENCE TO THE DLL

A reference must be added for both the Person and Student classes. Review 
Figures 11-8 through 11-10 if you need help adding the references. Both should be 
referenced in the PresentationGUI project, as shown in Figure 11-12.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



726 | Chapter 11: Advanced Object-Oriented Programming Features

ADDING A USING STATEMENT FOR THE NAMESPACE

To avoid typing the fully qualified name, add a using directive for the Student 
namespace. In the previous example, the namespace used for the Student project 
was StudentNamespace. Thus, Example 11-13 shows how to add a using directive 
for the StudentNamespace.

EXAMPLE 11-13

using StudentNamespace;

FIGURE 11-12 DLLs referenced in the PresentationGUI class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Inheritance | 727

1 
1

Because the Student class included a using statement for PersonNamespace and 
no Person object is being instantiated, it is not necessary to add a using state-
ment for PersonNamespace here in the PresentationGUI class. No syntax error 
would be generated, however, if using PersonNamespace; is also added.

DECLARING AN OBJECT OF THE COMPONENT TYPE

You must declare a Student object. This is done inside the PresentationGUI 
class as a private data member, as shown in Example 11-14.

EXAMPLE 11-14

public partial class PresentationGUI : System.Windows.Forms.Form
{
     private Student aStudent;

The statement in Example 11-14 is declaring one Student object. Of course, you 
could define a collection of Student objects using an array.

INSTANTIATING THE OBJECT

To create or instantiate an actual object of the Student class, one of the 
 Student constructors must be used. Remember that there are two constructors 
defined for the Student class. Thus, one way to instantiate the class is to write:  
aStudent = new Student("123456789", "Maria", "Woo", "CS", "1111");

This instantiation is placed in the method that handles the form load event. It 
could have also been placed in the InitializeComponent( ) method where the 
 Windows Forms Designer generated code is placed.

USING MEMBERS OF THE DERIVED AND BASE CLASSES

A number of control objects are added to the form. TextBox objects are dragged 
to the form for displaying name, age, student ID, the amount of sleep for the stu-
dent, and the amount of sleep for others. A Button object is added for populat-
ing the TextBox objects. Example 11-15 shows the program statements that were 
typed for the PresentationGUI. Due to space constraints, the code generated by the 
 Windows Forms Designer and the extraneous using statements are not included 
in the listing.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



728 | Chapter 11: Advanced Object-Oriented Programming Features

EXAMPLE 11-15

using System;
using System.Windows.Forms;
using StudentNamespace;        // Added for Student class

namespace PresentationGUI
{
     public partial class PresentationGUI: Form
     {
          private Student aStudent;

          public PresentationGUI( )
          {
               InitializeComponent( );
          }

          private void PresentationGUI_Load (object sender,
                                             EventArgs e)
          {
               aStudent = new Student("123456789", "Maria",
                                      "Woo", "CS", "1111");
          }

          private void btnShow_Click(object sender, EventArgs e)
          {
               // Uses Age property defined in the Person class 
               aStudent.Age = 25;

               // Calls overridden ToString( ) in Person class
               txtBxName.Text = aStudent.ToString( );

               // Calls ToString( ) defined in object class
               txtBxAge.Text = aStudent.Age.ToString( );

               // Uses StudentID property in Student class 
               txtBxID.Text = aStudent.StudentId;

               // Calls GetSleepAmt( ) defined in Student class 
               txtBxStudentSleep.Text =
                    Convert.ToString(aStudent.GetSleepAmt( ));

               // Calls method defined in Student class that
               // has calls to base.GetSleepAmt( ) in Person class 
               txtBxPersonSleep.Text = Convert.ToString
                    (aStudent.CallOverriddenGetSleepAmt( ));
          }
     }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Abstract Classes | 729

1 
1

Figure 11-13 shows the output generated from running the PresentationGUI. It 
references the two DLL components.

FIGURE 11-13 PresentationGUI output referencing two DLLs

Any number of classes can use the Student and Person components by instantiat-
ing objects of their type. All that is required is that new applications reference the files 
ending in .dll. A using statement can be added for the namespace to avoid typing 
the fully qualified names of the class and its members.

Inheritance does not require the use of components. Another option, of course, is to have 
the actual source code (.cs files) included within the application, as you have been doing 
with projects you developed in previous chapters. By including the source code files (.cs 
files), you are able to modify/edit the files. You cannot edit DLLs (.dll files).

Abstract Classes
With the preceding examples, you can instantiate objects of the Person class in 
the same manner as you construct objects of the Student class. Most modern lan-
guages, including C#, allow you to add an abstract modifier to classes that prohibit 
other classes from instantiating objects of a base class. You can still inherit charac-
teristics from this base class in subclasses, which enables you to ensure a certain 
amount of identical functionality from subclasses. This base class can have data and 
method members. To create an abstract class in C#, you write

[access modifier] abstract class ClassIdentifier // Base class

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



730 | Chapter 11: Advanced Object-Oriented Programming Features

When you use the abstract modifier keyword with a class, you mark it so that the 
class can be used only as the base class from which other classes can be derived. 
No objects can then be instantiated of the base class type. To indicate that the 
 Person class is intended to be used only as a base class of other classes, you add 
the abstract keyword to the class heading, as shown in Example 11-16.

EXAMPLE 11-16

public abstract class Person

Adding the abstract keyword does not keep you from instantiating classes derived 
from the Person class, such as the Student class. However, after the abstract 
modifier is added to a class, any attempt to instantiate objects of the class results in 
an error. Figure 11-14 shows the error “Cannot create an instance of the abstract class 
or interface PresentationGUI. Person” generated when an attempt was made to 
instantiate the Person class.

FIGURE 11-14 Error generated for trying to instantiate abstract class

An abstract class may contain one or more abstract methods. Abstract methods 
are only permitted in abstract classes.

Abstract Methods
An abstract method is one that does not include the implementation details for the 
method. The method has no body. The implementation details of the method are 
left up to the classes that are derived from the base abstract class. The syntax for 
creating an abstract method is as follows:

[access modifier] abstract returnType
      MethodIdentifier([parameter list]); // No { } included

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Abstract Classes | 731

1 
1

The declaration for an abstract method ends with a semicolon following the signature. 
No braces ({ }) are used with the method. Example 11-17 illustrates defining  Person 
as an abstract class. An abstract method named  GetExerciseHabits( ) was 
added as the last method in the class. A new solution is created with an abstract class. 
The solution is stored in the  PresentationGUIWithAbstractClassAndInterface 
folder. This folder is one of the solutions downloaded for this chapter.

EXAMPLE 11-17

public abstract class Person
{
     private string idNumber;
     private string lastName;
     private string firstName;
     private int age;

     public Person( )
     {
     }

     public Person(string id, string lname, string fname, int anAge)
     {
          idNumber = id;
          lastName = lname;
          firstName = fname;
          age = anAge;
     }

     public Person(string id, string lname, string fname)
     {
          idNumber = id;
          lastName = lname;
          firstName = fname;
     }

     public Person(string id)
     {
          idNumber = id;
     }

     public string IdNumber
     {
          get
          {
               return idNumber;
          }
     }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



732 | Chapter 11: Advanced Object-Oriented Programming Features

     public string LastName
     {
          get
          {
               return lastName;
          }
          set
          {
               lastName = value;
          }
     }

     public string FirstName
     {
          get
          {
               return firstName;
          }
     }

     public int Age
     {
          get
          {
               return age;
          }
          set
          {
               age = value;
          }
     }

     public override string ToString( )
     {
          return firstName + " " + lastName;
     }

     // Virtual method can be overridden
     // by classes that derive from Person
     public virtual int GetSleepAmt( )
     {
          return 8;
     }

     // Classes that derive from Person
     // must provide implementation details
     // (the body for the method)
     public abstract string GetExerciseHabits( );

}    // End of abstract Person class definition

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Sealed Classes | 733

1 
1

Now any and every class that derives from the Person class must provide the 
implementation details for the GetExerciseHabits( ) method. That is what add-
ing the abstract keyword does. It is like signing a contract. If you derive from 
an abstract base class, you sign a contract that details how to implement its 
abstract methods.

You will receive a syntax error if you use the keyword static or virtual when defining 
an abstract method. There is an implicit assumption that the method will be overridden; 
thus, the keyword virtual is unnecessary in the base class.

If the abstract class includes more than one abstract method, derived classes 
must provide implementation details for every abstract method included in the 
base class. Abstract classes can include regular data field members, regular meth-
ods, and virtual methods in addition to abstract methods. Remember that a 
virtual method tags the method as being capable of being overridden in a derived 
class. This does not mean that all derived classes have to provide new implementa-
tion details for those tagged as virtual, just that they can.

In the derived class, all abstract methods’ headings include the special keyword 
override. Thus, the only change needed for the Student class is a new method, 
GetExerciseHabits( ), which has an override keyword added to the method head-
ing. The method body must return a string argument. You can see that new method 
if you look ahead to Example 11-21, which illustrates the completed Student class.

All .NET languages only support single inheritance, which means that a class can extend  
or derive from at most one class. One way languages such as C# and Java work around 
this is by implementing multiple interfaces, which are the topic for the following section.

C++ permits multiple inheritances. A class can extend from more than one base class 
in C++. This is not possible in C#, Java, or any of the managed .NET languages.

Sealed Classes
You learned that the abstract keyword enables you to create a class solely for the pur-
pose of inheritance. Abstract classes cannot be instantiated. Objects can only be created 
using classes derived from the abstract class. The purpose of an abstract class 
is to provide a common definition of a base class so that multiple derived classes can 
share that definition. Sealed classes provide a completely opposite type of restriction. 
They restrict the inheritance feature of object-oriented programming. When you add 
the modifier sealed to a class, the class cannot be a base class. In order to define a sealed 
class, add the keyword sealed following the access modifier as shown in Example 11-18.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



734 | Chapter 11: Advanced Object-Oriented Programming Features

EXAMPLE 11-18

public sealed class SealedClassExample
{
    // class members inserted here
}

Sealed classes are defined to prevent derivation. The SealedClassExample shown 
in Example 11-18 cannot be inherited. Objects can be instantiated from the class, but 
subclasses cannot be derived from it. There are a number of .NET classes defined 
with the sealed modifier. The Pen and Brushes classes, for example, are both defined 
with the sealed modifier. The heading for Pen reads
public sealed class Pen

Objects can be instantiated in the Pen class, but no subclasses can be defined.

If you are working on a large project that has many developers, adding the sealed 
 restriction may help keep classes from being used in the wrong way since the functionality 
cannot be extended.

Sealed Methods
You may also add the keyword sealed to class members of nonsealed classes. This 
is especially helpful when the method has been defined as virtual in a base class, 
indicating that it can be overridden in subclasses. If you do not want subclasses to 
be able to provide new implementation details, add the keyword sealed. Doing so 
keeps derived classes from being able to override the method.

You should not seal a method unless that method is itself an override of another 
method in some base class. If it is a new method and you do not want subclasses to 
override it, do not declare it as virtual in the first place. If however, you have over-
ridden a base class method, the sealed keyword provides a way of ensuring that the 
override supplied to a method is a “final” override. No subclasses can override it again.

Partial Classes
One of the added features of C# is partial classes. When you created a Windows 
application, you may recall that the heading automatically generated by Visual Studio 
read partial class Form1. This was illustrated in Figure 11-3. You also saw the 
partial keyword listed in Examples 11-14 and 11-15. The definition for the class is 
split into two files. These two source code files are combined when the application is 
compiled and run.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Interfaces | 735

1 
1

When you drag a control onto a Windows form, code is automatically added to ini-
tialize the control and set its properties. This code is placed in a somewhat hidden 
file in a region labeled “Windows Form Designer generated code.” A special comment 
surrounds the code warning the developer to not modify this code. The file is cre-
ated following a naming convention of “FormName.Designer.cs” or “xxx.Designer.cs.” 
It is stored out of sight and is only visible when you expand the folder or container 
representing the class file. This is done so that most of the designer-generated code 
is separated from user code. The intent is to keep the developer from changing the 
auto-generated code. Although this does somewhat protect the code, the use of par-
tial classes in this instance also shields you from many useful details.

Creating Partial Classes
You can take advantage of this new feature and spread the definition of your classes 
over multiple files. At compile time, the files are merged together. This might be use-
ful if you were working on a large project and wanted to spread the work among 
multiple programmers. The requirement for defining a partial class is that all the files 
must use the partial keyword and all of the partial class definitions must be 
defined in the same assembly (.exe or .dll file). Class name and accessibility modifiers, 
such as private or public, must also match. Example 11-19 illustrates adding the 
partial keyword to the heading of a class, indicating that other parts of the class 
are defined in another file.

EXAMPLE 11-19

// class definition split into two or more source files
public partial class ClassIdentifier

Interfaces
When you use the abstract modifier with a class, you are indicating that it is 
intended to be used only as a base class. Normally the class is incomplete, in that 
one or more of its methods are declared as abstract. No objects can be constructed 
from an abstract class, but it can still perform a number of functions. In addition 
to having data members, an abstract class can have methods that have full imple-
mentation details (bodies).

You can think of an interface as a class that is totally abstract. Interfaces contain 
no implementation details for any of their members; all their members are consid-
ered abstract. Even more of a contract is required to use an interface than was 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



736 | Chapter 11: Advanced Object-Oriented Programming Features

required for the abstract method. By implementing the interface, the class 
agrees to define details for all of the interface’s methods.

One advantage of using interfaces is the fact that a class can implement any number 
of interfaces. But, you can only inherit from one class, abstract, or nonabstract. 
An interface may even implement multiple interfaces itself. The syntax for defin-
ing an interface is as follows:

You could also define the interface inside the file that implements it, like the example first 
presented with the PresentationGUI project. However, you lose out on the advantages of 
component-based development. To do this, right-click the project, select Add, then New Item 
from the submenu from the Solution Explorer window, and then use the Interface template.

[modifier] interface InterfaceIdentifier
{
      // Members - no access modifiers are used.
}

The members of an interface can be methods, properties, or events. No implemen-
tation details are provided by the interface for any of its members. The definition 
of the interface simply specifies a signature for the members that must be sup-
plied by classes implementing it. Interfaces are usually named using an uppercase I  
as the first character, such as IComparable, ISearchable, or IPayable.

Interfaces are useful for forcing functionality in classes that implement them. Interfaces 
are especially good in multiprogrammer environments. They help to guarantee that 
classes conform to certain set standards and contain required methods. If a class 
implements the interface, it must provide the details for all of the interface’s mem-
bers. Whereas abstract classes are used with classes that are closely related, interfaces 
are often best suited for providing some common functionality to unrelated classes. 
Because the abstract class is used as the base class, the “is a” relationship must 
exist. Any class derived from that base abstract class “is a” subtype of the abstract class.

Defining an Interface
Interfaces can be defined as members of a namespace or class or by compiling to 
a DLL. You do this in much the same way that you created the dynamic link library 
components for Person and Student.

An easy approach is to put the interface in a separate project. In Visual Studio, use 
the Class Library template to start, and after you go into the Code Editor, replace the 
class definition with your interface definition.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Interfaces | 737

1 
1

Figure 11-15 shows an interface that is implemented by the Student class. It 
contains three abstract methods. Unlike an abstract class, it is not necessary 
to use the abstract keyword because all methods are abstract. The ITraveler 
interface in Figure 11-15 includes three member methods. Notice that the identi-
fier for the namespace is different from the interface name.

FIGURE 11-15 ITraveler interface

After you type the statements, build the interface DLL by using a Build Solution option 
from the Build menu bar. You can select Build, Build Solution, or Build followed by 
the name of the project. Close the project and get ready to use the interface.

Implementing the Interface
If you stored the interface as a separate project and created the DLL, to use the 
interface, you follow the same steps as with the Person and Student DLLs. A 
separate Interface project was stored in the LibraryFiles folder for this chapter. From 
the Solution Explorer window, add a reference to the file ending in .dll. Type a using 
statement identifying the namespace for the interface.

Be sure to change the name of the namespace in the interface file also. Otherwise, 
you experience problems when you try to reference the file and add your using statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



738 | Chapter 11: Advanced Object-Oriented Programming Features

The heading for the class definition can specify not only a base class following the 
colon but also one or more interfaces as follows:

[modifier] class ClassIdentifier : identifier [, identifier]

To indicate that the Student class derives from the base class Person and imple-
ments the ITraveler interface, Example 11-20 shows that you add ITraveler 
to the class definition line.

EXAMPLE 11-20

public class Student : Person, ITraveler // Base class comes first.

If a class implements more than one interface, they all appear on the class 
definition line separated by commas. The base class is listed first if the class is 
inheriting from a base class.

If the interface is part of a project, the namespace for the interface should be 
the same name as other classes’ namespaces in the project. Otherwise, a using state-
ment is needed in classes that implements the interface to reference the interface.

Reviewing Figure 11-15, you see that ITraveler has three abstract methods as 
part of its definition. Because the Student class is implementing the ITraveler 
interface, it must define the implementation details for all three methods. Example 
11-21 shows the revised Student class. It includes bodies for those methods and 
the GetExerciseHabits( ) method, which was defined as an abstract method in 
the Person class. This satisfies the implementation requirements for the methods.

EXAMPLE 11-21

public class Student : Person, ITraveler
{
     private string major;
     private string studentId;

     public Student( )
         : base( )
     {
     }

     // Constructor which sends 3 arguments to base class
     public Student(string id, string fname, string lname,
                    string maj, string sId)
          : base(id, lname, fname)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Interfaces | 739

1 
1

     {
          major = maj;
          studentId = sId;
     }

     // Read only Property for studentID
     public string StudentId
     {
          get
          {
               return studentId;
          }
     }

     // Property for major data field
     public string Major
     {
          get
          {
               return major;
          }
          set
          {
               major = value;
          }
     }

     // Overrides GetSleepAmt( )
     // method of the Person class
     public override int GetSleepAmt( )
     {
          return 6;
     }

     // Using the base keyword, calls the overridden
     // GetSleepAmt( ) method of the Person class
     public int CallOverriddenGetSleepAmt( )
     {
          return base.GetSleepAmt( );
     }

     // Abstract method in Person
     public override string GetExerciseHabits( )
     {
          return "Exercises daily";
     }

     // Abstract method in Itraveler Interface
     public string GetDestination( )
    {
          return "Home";
    }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



740 | Chapter 11: Advanced Object-Oriented Programming Features

     // Abstract method in Itraveler Interface
     public string GetStartLocation( )
     {
          return "School";
     }

     // Abstract method in Itraveler Interface
     public double DetermineMiles( )
     {
          return 75.0;
     }
}

No other changes need to be made to the Student class. Of course, the body of 
these methods could be as sophisticated as is needed to support the business func-
tion. That is all there is to implementing an interface. No special changes have to 
occur to the Person or PresentationGUI component. They are separate, stand-
alone components. For testing purposes, the PresentationGUI class in the 
 PresentationGUIAbtractClassAndInterface folder is modified to include calls 
to the three methods defined in the interface. Figure 11-16 shows the output gen-
erated when the new methods are called. They return the travel details.

FIGURE 11-16 PresentationGUI output using interface methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Interfaces | 741

1 
1

Additional Label and TextBox objects are added to the  PresentationGUI class. 
The visibility property for each of these objects is initially set to  false. When the 
Show Travel Details button is clicked, the text boxes are populated with data returned 
from the new interface methods that were implemented in the Student class. 
Then, the Visible property for each of these new controls is set to true. The event-
handler method for the button click event, where this code is placed, is shown in 
 Example 11-22 along with the other event-handler methods in the  PresentationGUI 
class. Due to space constraints, the rest of the partial PresentationGUI class, 
stored in the  PresentationGUI.Designer.cs file, is not shown.

EXAMPLE 11-22

public partial class PresentationGUI : Form
{
     private Student aStudent;

     public PresentationGUI( )
     {
          InitializeComponent( );
     }

     private void btnShow_Click(object sender, EventArgs e)
     {
          aStudent.Age = 25;

          // Calls overridden ToString( ) in Person
          // Returns the first name, a space, and
          // the last name
          txtBxName.Text = aStudent.ToString( );

          // Calls ToString( ) from Object
          // Returns a number representing age
          // in string format
          txtBxAge.Text = aStudent.Age.ToString( );
          txtBxID.Text = aStudent.StudentId;
          txtBxStudentSleep.Text =
          Convert.ToString(aStudent.GetSleepAmt( ));
          txtBxPersonSleep.Text =
                    Convert.ToString
                       (aStudent.CallOverriddenGetSleepAmt( ));

          // GetExerciseHabits( ) method defined as
          // abstract method in Person
          txtBxExercise.Text =
                    aStudent.GetExerciseHabits( );
          btnTravel.Visible = true;
     }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



742 | Chapter 11: Advanced Object-Oriented Programming Features

     private void PresentationGUI_Load(object sender, EventArgs e)
     {
          aStudent = new
                Student("123456789", "Maria", "Woo", "CS", "1111");
     }
     private void btnTravel_Click(object sender, EventArgs e)
     {
          // GetStartLocation( ), GetDestination( ) and
          // DetermineMiles( ) methods all defined as
          // abstract methods in ITraveler interface
          txtBxFrom.Text =
               aStudent.GetStartLocation( );
          txtBxTo.Text =
               aStudent.GetDestination( );
          txtBxMiles.Text =
               aStudent.DetermineMiles( ).ToString( );
          txtBxFrom.Visible = true;
          txtBxTo.Visible = true;
          txtBxMiles.Visible = true;
          lblHeading.Visible = true;
          lblMiles.Visible = true;
          lblFrom.Visible = true;
          lblTo.Visible = true;
     }
}

GetStartLocation( ), GetDestination( ), and DetermineMiles( ) are the 
members of the ITraveler interface. When the Student class implements this 
interface, the body of these methods has to be written. Notice that a call to these 
methods resembles any other call. The class instantiating objects of the Student 
class do not make a distinction between those methods, methods inherited from 
another class, or methods that are originally defined in the Student class.

.NET Framework Interfaces
Interfaces play an important role in the .NET Framework. Collection classes such as 
the Array class, ArrayList class, Hashtable class, Stack class, and Queue 
class implement a number of interfaces. .NET includes these classes to enable you 
to manage collections of data. Designing the classes to implement interfaces pro-
vides common functionality among them. The .NET Array class, for example, is 
an abstract class, used as a base class for language implementations that sup-
port arrays. If you explore the .NET documentation, you find that the signature for 
the Array class shows that it implements several interfaces (ICloneable, IList, 
ICollection, and IEnumerable).

C# and other .NET languages must extend this base Array class to add constructs 
for individual arrays in their languages. This includes a requirement for defining the 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Interfaces | 743

1 
1

implementation details for the interface methods. For a developer, such as you, all 
this is happening behind the scenes. But, this base class, Array, provides methods 
for manipulating arrays, such as iterating through the elements, searching, adding 
elements to the array, copying, cloning, clearing, removing elements from the array, 
reversing elements, and sorting. If you examine this functionality closely, you find 
that much of it is in place because of the contracts the interfaces are enforcing. The 
cloning functionality is contracted as part of implementing ICloneable. The IList 
interface requires implementation details for Add( ), Clear( ), Remove( ), 
Insert( ), plus other methods. The ICollection interface has a method for 
CopyTo( ). The IEnumerable interface has a method titled GetEnumerator( ) 
that returns an enumerator that can iterate through a collection.

The signatures for some of the collection classes are shown in Example 11-23.

EXAMPLE 11-23

public abstract class Array : ICloneable, IList, ICollection,
          IEnumerable
public class ArrayList : IList, ICollection, IEnumerable,
          ICloneable
public class Queue : ICollection, IEnumerable, ICloneable
public class Stack : ICollection, IEnumerable, ICloneable
public class Hashtable : IDictionary, ICollection, IEnumerable,
          ISerializable, IDeserializationCallback, ICloneable

One of the most powerful features of the .NET Framework class library and Visual Studio is 
the extensive library of documentation available. In addition to syntax grammar, it includes 
tutorials and examples of feature use.

Notice that each of the collection classes implements ICloneable. The Array class 
is the only one in the collection that is an abstract class. The Hashtable class 
is the only one that implements the IDeserializationCallback interface. You 
are encouraged to explore the documentation for these classes and interfaces. By 
doing so, you can see some of the real power of object-oriented development. As you 
explore the documentation, you will notice that it includes not only the members that 
must be implemented but it also gives a description of the class and shows examples 
in multiple languages.

The documentation provides links to the classes so that you can drill down and 
uncover additional information.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



744 | Chapter 11: Advanced Object-Oriented Programming Features

The Hashtable class implements Add( ) by adding an element with the speci-
fied key and value pair into a collection. The ArrayList class implements Add( ) 
by adding an object to the end of a collection. Can Add( ) mean something dif-
ferent based on what type of object it is being used with? That is the idea behind 
 polymorphism—the topic of the following section.

Polymorphism
Polymorphism is the ability for classes to provide different implementations of meth-
ods that are called by the same name. You already understand and use polymorphism 
in your everyday life when you determine what situation or object is being used with 
a verb to determine the verb’s true behavior. For example, by itself the meaning of the 
verb “drive” is vague. Driving a car differs from driving a nail, driving a boat, or driv-
ing someone crazy. Only when you put “drive” in context do you know what behavior 
or activity is associated with it.

You have also experienced the use of polymorphism in your programs a number of 
times. One quick example is with the ToString( ) method. Remember that this 
method is defined as one of the four methods of the Object class. This means 
that for every class in .NET, both user-defined and Framework classes have a 
ToString( ) method. Based on what kind of object calls the ToString( ) method, 
it performs a different function. The end result is to convert some object in to its 
string representation. Converting an integer into a string is a different activity 
than converting a single character into a string. You can think of it as having a num-
ber of different implementations, and the implementation is determined by the type 
of object that calls it. Example 11-24 shows two calls to the ToString( ) method, 
which were included in the PresentationGUI class.

EXAMPLE 11-24

// Calls overridden ToString( ) defined in Person class
// Returns the first name, a space, and the last name
txtBxName.Text = aStudent.ToString( );

// Calls ToString( ) defined in object class
// Returns a number representing age in string format
txtBxAge.Text = aStudent.Age.ToString( );

As is noted in the comment, the first call to the ToString( ) method calls the method 
defined in the Person class. Remember that the method overrides the object’s 
ToString( ). This implementation of ToString( ) (included in Example 11-9) was 
to concatenate the first and last name with a space between them. The CLR recognized 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Polymorphism | 745

1 
1

that it should use this method because it was called with a Student object.  Student 
did not contain an implementation of the ToString( ) method; thus, the CLR looked 
next to the class from which it had been derived, the Person class.

The second call to the ToString( ) method does not use the Person class’s imple-
mentation. Notice that this call is made with an int object. The Age property returns 
an int. Thus, based on the object making the call, the ToString( ) method from 
the Object class is called.

Polymorphism allows a method of a class to be called without regard to what 
specific implementation it provides. Thus, in .NET, polymorphism is implemented 
through interfaces, inheritance, and the use of abstract classes.

Polymorphic Programming in .NET
As you saw, multiple classes can implement the same interface or implement 
more than one interface. The interface describes the methods and the types of 
parameters each method member needs to receive and return, but it leaves the actual 
details of the body of the method up to the classes that implement the interface. 
Every class that implements the interface may have a completely different behav-
ior. The method name is the same in all the classes implementing the interface, but 
the functionality can be much different from one class to another.

The black box concept of object-oriented development comes into play here. You do not 
have to know how the method goes about doing its work. All you need to know is that the 
method has accomplished its work. This may be to return a value or just an indication that 
the method is complete.

Through inheritance, polymorphism is made possible by allowing classes to override 
base class members. This makes dynamic binding possible. The CLR determines 
which method to call at run time based on which object calls the method. Marking 
the method with the virtual keyword enables derived classes to write their own 
functionality for the method.

Remember that a class does not have to override a virtual method. The class 
can choose to use the base class’s implementation.

Because an abstract class cannot be instantiated, the features of both interfaces 
and inheritance come into play with polymorphic programming. Through the use of 
abstract classes, classes that derive from them are forced to include implementation 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



746 | Chapter 11: Advanced Object-Oriented Programming Features

details for any abstract method. Unlike interfaces, which simply provide the head-
ing for the methods that have to be implemented, some or all of the members of an 
abstract class can be implemented. Abstract classes can also include data mem-
bers, properties, events, and methods. The methods can be marked as virtual or 
as abstract or be completely implemented. The determination of which method to 
use is based on the object that makes the call.

Inheritance is very useful for adding to the functionality of an existing class with-
out having to reinvent the wheel with each new application. With .NET, you have to 
remember that you only have single inheritance. A class can implement multiple 
interfaces, but it must provide the implementation details for all of the interface’s 
methods. Component programming is probably the way of the future for develop-
ment. It is a powerful technique that enables you to implement the multiple interfaces 
of an object easily. The common goal of all these advanced object-oriented features 
is to enable polymorphic programming.

Another programming technique, generics, reduces duplication of code by writing 
common functions or types that differ only in the set of types on which they operate. 
Generics enables algorithms to be written where a number of details, including the 
data type can be “specified-later.” Generics is the topic of the following section.

Generics
Generics reduces the need to rewrite algorithms for each data type. You can create 
generic classes, delegates, interfaces, and methods. With each of these, you identify 
where data will change in the code segment by putting a placeholder in the code for 
the type parameters. A generic class might use placeholder(s) for the data type of its 
instance data members or placeholders for return types of one or more of its meth-
ods. After the generic class is defined, it could be instantiated using several different 
types of data.

A generic method might use a generic type for one of its formal parameters and/or 
use a generic type as the type of its return value. Generic methods can be defined 
both as part of generic and other classes. First examine what is involved in defining a 
generic class.

Generic Classes
Prior to the introduction of generics, one way to write reusable code was to use 
the object data type for instance data members. You will recall that object is the 
base class from which all other classes are derived. After the data type is defined 
as an object, then through casting and unboxing the data type can be temporarily 
made to act like any of the other types. Example 11-25 illustrates defining a Stack 
class that could be used to store any type of data items. A stack represents a simple 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Generics | 747

1 
1

last-in-first-out (LIFO) collection. You can think of stacks as analogous to a pile of 
trays. The Push( ) method places a tray on the top of the others; the Pop( ) method 
retrieves the one on top. One way stacks are used by applications during execution is 
to store the address of calling methods so the application will know where to return 
when it finishes the called method.

Stack is one of the .NET Framework classes. It includes a number of public methods and 
properties. You should explore the MSDN documentation to learn more about this class.

Example 11-25 contains a simplified programmer-defined Stack class. The instance 
data member is an array of object items.

EXAMPLE 11-25

public class Stack
{
     private object [ ] items;
     private int stackPointer = 0;

     public Stack(int size)
     {
          items = new object[size];
     }

     public object Pop( )
     {
          return items[--stackPointer];
     }

     public void Push(object anItem)
     {
          items[stackPointer] = anItem; stackPointer++;
     }
}

The Push( ) method is used to place items in the stack. You will notice that the 
class is implemented as an array. The first item added is placed at index location 0. 
The stackPointer is incremented by one after each item is placed in the stack. The 
Pop( ) method retrieves the last one placed in the array. Neither of these methods 
includes any testing to ensure that reference is not made beyond the array boundar-
ies. Example 11-26 illustrates an application that instantiates an object of the Stack 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



748 | Chapter 11: Advanced Object-Oriented Programming Features

class and then pushes data of differing types onto the data structure. Finally, the 
items are retrieved using the Pop( ) method.

EXAMPLE 11-26

using System;
using static System.Console;

namespace Stack
{
     public class TestOfStack
     {
          static void Main(string[] args)
          {
               Stack stack = new Stack(5);
               stack.Push("test");
               stack.Push(100);
               stack.Push(200);
               stack.Push(3.6);
               WriteLine("Values in the Stack are: " +
                         (double)stack.Pop( ) + ", " +
                         (int)stack.Pop( ) + ", " +
                         (int)stack.Pop( ) + ", " +
                         (string)stack.Pop( ));
               ReadKey( );
     }
}

FIGURE 11-17 Output from TestOfStack example

As illustrated in Examples 11-25 and 11-26, without generics, you could define the 
data type as an object because it can hold any type. To retrieve the items, the last four 
lines in Example 11-26 show that casts had to be performed to unbox or extract the 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Generics | 749

1 
1

values from the object type. In Example 11-26, because the last item placed on the 
Stack was a string, the first call to Pop( ) retrieved the string. The program would 
have terminated abnormally if the order of the casting was changed.

This object-based approach illustrated is not type-safe. Data of string type could be 
pushed onto the same stack that also holds integers. When the data is retrieved, if an 
attempt is made to do arithmetic with the string items, the program will terminate 
abnormally. To avoid this problem, you could define three separate stack classes: one 
for integers, another for doubles, and a third one for strings. This could be done by 
copying and pasting the code. But, if a simple modification is needed, corrections 
would need to be made to all three classes. This is where generics come into play. They 
allow you to define type-safe, compiler-generated code that can be defined and con-
sumed with any type. The internal algorithms remain the same, but the class can be 
defined once and reused. Example 11-27 illustrates defining a simple generic class.

EXAMPLE 11-27

public class GenericClass<T>
{
     public T dataMember;
}

Notice that a generic class is defined by inserting an identifier between left and 
right brackets on the class definition line. In Example 11-27, T is used as the identi-
fier. T is the standard identifier used to define a generic type in most of Microsoft’s 
documentation; however, you could use any valid identifier as long as you adhered to 
the rules for creating an identifier. In the body of the method, the identifier is placed 
where the data type should be inserted. It can be as a return type in a method, in the 
parameter list of a method, or as shown in Example 11-27 as the data type for instance 
data members.

When you create an instance of the class, you specify the actual type to substitute 
for the type parameters. If the dataMember was defined as public (or if a public 
property was available for the dataMember), the class could be used as shown in 
Example 11-28.

EXAMPLE 11-28

GenericClass<string> anIdentifer = new GenericClass<string>( ); 
anIdentifer.dataMember = "A string";

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



750 | Chapter 11: Advanced Object-Oriented Programming Features

You can take advantage of this new feature and redefine the Stack class as a generic 
class. This is illustrated in Example 11-29.

EXAMPLE 11-29

public class Stack<T>
{
     private T[ ] items; 
     private int stackPointer = 0;

     public Stack(int size)
     { 
          items = new T[size]; 
     }

     public T Pop( )
     { 
          return items[--stackPointer]; 
     }

     public void Push(T anItem)
     { 
          items[stackPointer] = anItem; 
          stackPointer++;
     }
}

Example 11-30 illustrates the changes needed to implement the class. Notice that 
three separate objects are instantiated. The only values that can be placed in the int 
Stack are integers. Thus, a type-safe data structure has been created.

EXAMPLE 11-30

public class TestOfGenericStack
{ 
     static void Main(string[ ] args) 
     {
          Stack<int> intStack = new Stack<int>(5); 
          Stack<double> doubleStack = new Stack<double>(5); 
          Stack<string> stringStack = new Stack<string>(5);

          stringStack.Push("test");
          intStack.Push(100); 
          intStack.Push(200);
          doubleStack.Push(3.6);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Generics | 751

1 
1

          WriteLine("Values in the 3 Stacks are: " + 
                     doubleStack.Pop( ) + ", " +
                     intStack.Pop( ) + ", " +
                     intStack.Pop( ) + ", " +
                     stringStack.Pop( ) );
          ReadKey( ); 
     }
}

Notice that no casting was necessary in Example 11-30. The output produced from 
Examples 11-29 and 11-30 is the same as what was shown in Figure 11-17.

Generic Methods
You can define generic methods that are not part of a generic class. This way, the 
method defers the specification of one or more types until the method is declared and 
instantiated by client code. Defining a generic method is similar to defining a generic 
class. You insert an identifier between the left and right brackets on the method defi-
nition line to indicate that it is a generic method. Then place that identifier either in the 
parameter list or as a return type or in both places. This is illustrated in Example 11-31.

EXAMPLE 11-31

public static void SwapData<T> (ref T first, ref T second) 
{
     T temp; 

     temp = first; 
     first = second; 
     second = temp; 
}

A call to the SwapData( ) method is shown in Example 11-32.

EXAMPLE 11-32

public static void TestSwap( )
{
     string firstValue = "Programming"; 
     string secondValue = "C#"; 

     SwapData<string>(ref firstValue, ref secondValue);
     WriteLine(firstValue + " " + secondValue); 
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



752 | Chapter 11: Advanced Object-Oriented Programming Features

As illustrated in Example 11-32, calls to the generic method require that the actual 
type be specified between the method name and the argument list. For this example, 
the string type was used.

Recall that the ref keyword is added to the argument and parameter list to enable the 
arguments to be passed by reference. The effect is that changes made to the parameter in 
the SwapData( ) method will be reflected in that variable when control passes back to 
the calling method. In C#, the ref keyword must be added to the parameter list both in the 
method heading and in the calling argument list.

Dynamic
C# was originally characterized as being a strongly typed language, requiring all bits 
of data stored to be associated with a defined type at compile time. This enables the 
compiler to check to ensure that only compatible values are attempting to be stored. 
Potential errors can be caught early—before the program actually runs. It also enables 
the compiler to use the static data type to optimize storage needs and choice of algo-
rithms for operations on the value. Using the static type, explicit casting can occur. 
Variables can still be defined as objects and then cast as different data types during 
runtime. But this requires additional boxing/unboxing of the data. With C# 4.0, a new 
data type of dynamic was added to the list of keywords.

Dynamic data type
You first read about the dynamic data type in Chapter 2. An object defined using 
the dynamic keyword can store anything. In most cases, it behaves like an object. 
At compile time, an element that is typed as dynamic is assumed to support any 
operation. Example 11-33 declares several variables of type dynamic. No unboxing 
or casting is necessary prior to their use. As shown in Example 11-33, four variables 
are defined as dynamic. Each is initialized with very different data. No special casting 
is necessary in order to print the contents.

EXAMPLE 11-33

dynamic intValue = 1000;
dynamic stringValue = "C#";
dynamic decimalValue = 23.45m;
dynamic aDate = System.DateTime.Today;
WriteLine("{0} {1} {2} {3}" , intValue, stringValue, decimalValue,
           aDate);

With dynamic data types the type checking occurs at runtime. The output produced 
from the above-mentioned program statements is:
1000  C#  23.45  6/16/2015  12:00:00  AM

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Dynamic | 753

1 
1

Of even more interest is the fact that once defined as dynamic, the memory location can 
hold any value. Notice in Example 11-34, a single dynamic memory location is defined, 
but then values of four different data types are assigned to the memory location.

EXAMPLE 11-34

dynamic aValue;

aValue = 1001;
aValue++;
WriteLine("aValue - int: " + aValue); 
aValue = "C#";
WriteLine("aValue - string: " + aValue); 
aValue = 23.45m;
WriteLine("aValue - decimal: " + aValue);
aValue = System.DateTime.Today;
WriteLine("aValue - Date/Time: " + aValue);

The output produced from the above program statements is

aValue - int: 1002
aValue - string: C#
aValue - decimal: 23.45
aValue - Date/Time: 6/16/2015 12:00:00 AM

As you review Example 11-34, notice that arithmetic was able to be performed using 
the dynamic memory location. aValue was incremented. The memory location 
stored both integral values and floating point values and was able to reference both 
string and object types. All this was done without any casting or boxing/unboxing. 
Dynamic types can be used for method parameters or method return types. They 
offer freedom and speed of coding but should still be used with caution. One of the 
major advantages of strongly typed languages versus dynamic languages is extensive 
compile type error checking occurs so that bugs can be found early. With dynamic 
typing, this is delayed until runtime.

var data type
Another keyword, var, may be mistaken as a dynamic type. At first glance, it appears 
to be doing the same thing that dynamic is doing. It enables developers to not associ-
ate a specific data type to a group of bits. But var is different. It is used to implicitly 
type variables. Variables that are declared inside a method can be declared using the 
var keyword. The following declarations are functionally equivalent.
int someValue = 1000;
var someValue = 1000;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



754 | Chapter 11: Advanced Object-Oriented Programming Features

The first declaration, int someValue = 1000; is explicitly typed by the programmer. 
The second declaration, var someValue = 1000;, is implicitly typed by the compiler. 
It is said to be an implicitly typed local variable because the compiler determines the 
type. The keyword instructs the compiler to infer the type of the variable from the 
expression on the right side of the initialization statement. Instead of writing
dynamic aValue = System.DateTime.Today,

you would write
var aValue = System.DateTime.Today;

One of the primary differences between dynamic and var is that var data items must 
be initialized when they are declared. The compiler determines the memory location’s 
type from the initialized value. If you attempt to declare a var type without an initialized 
value, you will get a compile error: “Implicitly-typed local variables must be initialized”. 
This is not the case with dynamic. As illustrated in Example 11-34, using dynamic, you 
can declare a dynamic memory location and later associate values with it.

Dynamic type and the dynamic keyword are tied into Microsoft’s dynamic language 
 runtime (DLR) environment—a feature of the .NET Framework. The DLR is built on top of 
the CLR. The DLR adds to the platform a set of services designed explicitly for the needs of 
dynamic languages, including support to make it easy to generate fast dynamic code.

You will see var used again in Chapter 14. It is often used with LINQ query operations.

This example demonstrates developing an application using a number of 
advanced concepts. An abstract base class is created to include data mem-
bers and properties. An interface is designed. Three classes are derived from 
the base abstract class; two of those classes implement the interface. 
After these components are stored in a class library, they are available for use 
by any number of applications. To test the design, a Windows application pre-
sentation class is created. An application is written for the Student Govern-
ment Association. The problem specification is shown in Figure 11-18.

PROGRAMMING EXAMPLE: StudentGov Application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

Programming Example: StudentGov Application | 755

You should review the problem specification in Figure 11-18 to ensure that you 
understand the problem definition. Objects should be able to be instantiated for 
the following types of groups:

• Club

• Fraternity and sorority

• Intramural

These groups share some common characteristics. Each has a unique name and a 
contact person. Two of the groups (clubs, fraternities and sororities) may receive 
funding from the Student Government Association. Fraternities and sororities that 
are chartered receive funding; others cannot.

ANALYZE THE 
PROBLEM

FIGURE 11-18 Problem specification for StudentGov example

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



756 | Chapter 11: Advanced Object-Oriented Programming Features

Unique information regarding clubs include the date, time, and place they hold 
their meetings. The type of sport associated with the intramural group is unique to 
the Intramural classification. Distinctive characteristics for the fraternity or soror-
ity classification include whether the group is chartered and their house address. 
After you understand the problem definition, you can begin to abstract out the 
characteristics for each of the classes. Table 11-1 gives the data fields organized by 
group. The common data is included with the Organization category.

DESIGN A 
SOLUTION

DATA

It should not be possible to create a group in this application unless it is associated 
with a club, fraternity, sorority, or intramural team.

Class Identifier Data type

Organization orgName string

Organization primaryContact string

Organization fundedAmt decimal

Club meetingDay string

Club meetingTime string

Club meetingLocation string

FratSorority chartered bool

FratSorority houseAddress string

Intramural sportType string

TABLE 11-1 Data fields organized by class

The desired output is to display data on a Windows form about the different organi-
zations. An application is created using the Windows Form class to test the design. 
It should ensure that objects can be instantiated from the Club,  FratSorority, 
and Intramural classes but not from the Organization class. It should make 
sure that derived classes have access to base class members. Figure 11-19 shows 
a prototype for the form.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

The business logic is separated into several classes to include an  Organization 
class that serves as a base class. No objects should be instantiated from 
this class, so it is defined as an abstract class. Derived classes of Club, 
 Intramural, and FratSorority are defined to inherit from the  Organization 
class. The IFunding interface is defined to force functionality of setting the 
funding amount. FratSorority and Club both implement this interface. Class 
diagrams are used to help design and document these characteristics. Figure 11-20 
shows the class diagrams for the StudentGov example.

FIGURE 11-19 Prototype for StudentGov example

©
 C

en
ga

ge
 L

ea
rn

in
g

FIGURE 11-20 Class diagrams for StudentGov example

+SetFundingAmt() : void

-meetingLocation : string
-meetingDay : string
-meetingTime : string

Club

+SetFundingAmt() : void

-chartered : bool
-houseAddress : string

FratSorority

-orgName : string
-primaryContact : string
-fundedAmt : decimal

Organization

+PresentationGUI_Load()
+radBtnClub_CheckedChanged() : void
+radBtnFratSor_CheckedChanged() : void
+radBtnIntr_CheckedChanged() : void
+ShowDetails() : void

-aClub : Club
-aFratSorority : FratSorority
-aTeam : Intramural

PresentationGUI

+SetFundingAmt() : void

«interface»
IFunding

+SetFundingAmt() : void

-sportType : string

Intramural

End1

©
 C

en
ga

ge
 L

ea
rn

in
g

Programming Example: StudentGov Application | 757

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



758 | Chapter 11: Advanced Object-Oriented Programming Features

UML is the industry-standard modeling language for specifying and documenting both 
data and processes. Class diagrams are one of the modeling diagrams used with 
object-oriented applications. To find out more about UML, visit www.uml.org, the Object 
Management Group’s website responsible for the release.

The dotted arrows in Figure 11-20 represent the interface link. Notice that the 
Unified Modeling Language (UML) notation for the interfaces includes the name 
of the methods in italic, indicating that implementation details must be defined.

CODE THE 
SOLUTION

The interface object cannot have member data, just methods. The class 
diagrams do not show the properties. No accessor or mutator methods are defined 
for accessing or changing the private data members of the classes. However, dur-
ing design, it is decided that properties are defined with get and set behaviors for 
most data members. Minimal business logic is needed for this application; thus, no 
pseudo code or additional design tool is constructed.

After you complete the design, it is time to translate the design into source code. 
For this application, six projects are created inside one solution. It is not necessary 
to put the files under a single solution umbrella. This was done for ease of dem-
onstration. All of the classes could be defined as stand-alone components. The 
interface and all classes except the PresentationGUI could be stored in your 
library with other DLL files. The PresentationGUI generates an EXE file; all other 
projects generate files ending with a .dll extension.

For this example, a new Project was first created in Visual Studio called  StudentGov. 
The Create directory for solution checkbox was selected. The Organization 
class is created first. As you review the Visual Studio Solution Explorer window 
after creating the new project, the name of the solution, StudentGov, is displayed 
at the top level in the Solution Explorer window. Projects names are displayed 
below the solution name. When a new solution was created, a project by that same 
name, StudentGov, was created. By default, the project name is the same name as 
the solution name (StudentGov).

Since this solution will store the C# files for a number of projects and a sepa-
rate StudentGov project is not needed, this project (StudentGov) was deleted. 
A right-click on the project (under the solution) in the Solution Explorer window 
reveals the Remove option.

A right-click on the Solution StudentGov (name at the top of the list) in the 
 Solution Explorer window displays a menu that includes an option to Add > New 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

Project. After the program statements are typed, the DLL is built from the Build 
menu. The shortcut for this option is Shift+F6. The DLL is built so that other 
classes can reference it during their design. The source code for the  Organization 
class is shown first:
// Organization.cs 
// Abstract class used as a base class. 
using System;

namespace OrganizationNamespace
{ 
     public abstract class Organization 
     {
          private string orgName; 
          private string primaryContact; 
          private decimal fundedAmt;

          public Organization(string name, string contact) 
          {
               orgName = name; 
               primaryContact = contact;
          }

          public Organization( ) 
          {
          }

          // Properties for each private data member follows. 
          public decimal FundedAmt
          {
               set
               {
                    fundedAmt = value;
               }
               get
               {
                    return fundedAmt; 
               }
          }

          public string OrgName
          {
               set
               {
                    orgName = value;
               }

Programming Example: StudentGov Application | 759

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



760 | Chapter 11: Advanced Object-Oriented Programming Features

               get
               {
                    return orgName; 
               }
          }

          private string PrimaryContact
          {
               set
               {
                    primaryContact = value; 
               }
               get
               {
                    return primaryContact; 
               }
          }
     }
}

The namespace was changed to OrganizationNamespace for this class. With 
the exception of the fact that the Organization class is defined as abstract, 
nothing else differs in this class from previous exercises. The namespace was 
changed to OrganizationNamespace. A number of properties are defined.

A new project for the interface can be added to the solution from the Solution Explorer 
window. Right-click on the solution icon and then select Add > New Project. Use the 
Class Library template.

The file containing the interface is created next. Like the Organization class, 
it is a stand-alone component. Using the Class Library template in Visual Studio, 
the following source code is added to the solution:
// IFunding.cs     interface 
using System; 
namespace IFundingNamespace
{
     public interface IFunding
     {
          // No implementation details for SetFundingAmt ( )
          // Method must be defined by classes 
          // that implement the interface.  
          void SetFundingAmt( );
     }
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

The default class name was changed to IFunding.cs. The interface includes 
one method. Classes that implement it must provide the body for the method. 
After this DLL is built, the subclasses can reference it.

The Intramural class is defined next. Like the IFunding interface, a new 
project is created after building and closing the interface. Again by right- clicking 
on the solution (StudentGov) in the Solution Explorer window, selecting Add 
reveals the New Project option. The Class Library template is selected as the 
project type. The default class name was changed to Intramural.cs by right-
clicking on the class name. This also enables the default class name (Class1) 
in the source code file to be changed to Intramural.

Intramural inherits from the Organization class but does not implement the 
interface. To use the Organization component in the Intramural project, a 
reference had to be made to that DLL before typing the program statements.

Recall that one way to add the reference to the Organization.dll is to right-click 
on the project icon in the Solution Explorer window and then choose Add Reference 
from that menu. Because each of the components is stored as a separate project, be 
sure to browse the project subdirectory to locate the DLL in the bin\Debug directory.

The using OrganizationNamespace; statement is also added to eliminate the 
need to fully qualify references to the Organization class. The source code for 
the Intramural class is shown in the following:
// Intramural.cs 
using System;
// OrganizationNamespace added to avoid fully qualifying 
// references
using OrganizationNamespace;

namespace IntramuralNamespace
{
     public class Intramural : Organization 
     {
          private string sportType;

          public Intramural(string name, string pContact, 
                            string sport)
               // Call to Organization (base) class constructor 
               : base (name, pContact)
          {
               sportType = sport; 
          }

Programming Example: StudentGov Application | 761

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



762 | Chapter 11: Advanced Object-Oriented Programming Features

          // Default constructor 
          public Intramural( )
          {
               sportType = "unknown"; 
          }

          // Property for sportType 
          public string SportType
          {
               get
               {
                    return sportType; 
               }
               set
               {
                    sportType = value; 
               }
          }
     }
}

A number of references were added during design to build the application. With 
the latest version of Visual Studio, once you browse and locate the .DLL for the 
first project, the .DLL is available from the list of Recent .DLLs added. Each of the 
classes, with the exception of the PresentationGUI, were added using the Class 
Library template. Figure 11-21 shows which references are needed for the six proj-
ects in the StudentGov solution. In addition to the six projects,  PresentationGUI 
is also shown in Figure 11-21. It is discussed in the following. It is best to add the 
references when you first create the project.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

FIGURE 11-21 References added to StudentGov example (continued )

Programming Example: StudentGov Application | 763

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



764 | Chapter 11: Advanced Object-Oriented Programming Features

Notice that IFunding and Organization contain no additional references 
beyond those automatically added by Visual Studio.

Both the Club and FratSorority classes must add references to Organization 
and IFunding. Remember that placing the using directive at the beginning of the 
file allows you to use the unqualified class names to reference methods during 
design. The source code for the Club class follows:

FIGURE 11-21 References added to StudentGov example

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

// Club.cs 
using System;
// OrganizationNamespace added to avoid fully qualifying  references 
using OrganizationNamespace;
using IFundingNamespace;

namespace ClubNamespace
{
     public class Club : Organization, IFunding 
     {
          // Private member data 
          private string meetingLocation; 
          private string meetingDay; 
          private string meetingTime;

          public Club(string name, string pContact, string mLoc,
                      string mDay, string mTime)
               // Call to base constructor 
               : base(name, pContact)
          {
               meetingLocation = mLoc; 
               meetingDay = mDay; 
               meetingTime = mTime;
          }

          // Required method - because of interface 
          public void SetFundingAmt( )
          {
               FundedAmt = 600M; 
          }
     }
}

As you review the code for the Club, FratSorority, and Intramural classes, 
notice that each one has one constructor that calls the base constructor in the 
Organization class. They send values for the organization name (orgName) 
and the primary contact person for the group (primaryContact).

The SetFundingAmt( ) method from the IFunding interface is implemented 
in the Club and FratSorority classes. The source code for the FratSorority 
class follows:
// FratSorority.cs
using System; 
using OrganizationNamespace; 
using IFundingNamespace;

namespace FratSororityNamespace
{
     public class FratSorority : Organization, IFunding 

Programming Example: StudentGov Application | 765

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



766 | Chapter 11: Advanced Object-Oriented Programming Features

     {
          private bool chartered; 
          // Private member data 
          private string houseAddress;

          public FratSorority( )
          { 
               houseAddress = "unknown"; 
               chartered = false; 
          }

          public FratSorority(string name, string pContact, bool 
                          isChartered, string address)
               : base(name, pContact) 
               // Call to base constructor 
          {
               houseAddress = address; 
               chartered = isChartered;
          }

          // Required method - because of interface 
          public void SetFundingAmt( )
          {
               if(chartered)
               {
                    FundedAmt = 500M; 
               }
               else
               {
                    FundedAmt = 0M; 
               }
          }

          // Properties 
          private bool Chartered
          {
               get
               {
                    return chartered;
               }
               set
               {
                    chartered = value; }
               }
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

          private string HouseAddress
          {
               get
               {
                    return houseAddress; 
               }
               set
               { 
                    houseAddress = value; 
               }
          }
     }
}

The last class, PresentationGUI, is used to test the components. It is a GUI 
Windows application. Notice that Figure 11-21 shows that a reference is added to 
each of the components for the PresentationGUI class. In this class, objects 
are constructed of the Club, FratSorority, and Intramural classes. The 
 PresentationGUI class includes three RadioButton objects inside a  GroupBox 
object. The radio buttons correspond to the three different types of organization 
objects being constructed. The PresentationGUI is created similarly to the other 
classes, except instead of using the Class Library template when the New Project 
is added to the solution, the Windows Forms Application template is selected. 
The source listing for this class follows. Due to space constraints, some of the 
Windows Forms Designer generated code is omitted. Table 11-2 presents what 
properties are set for the Form and control objects, and extra comments are added 
to the source code to aid you in following the example.

Name Object type Property Property value

Form1 Form Name PresentationGUI

PresentationGUI Form BackColor Teal

PresentationGUI Form Font 12F

PresentationGUI Form ForeColor Yellow

PresentationGUI Form Text Student Government

TABLE 11-2 PresentationGUI property values

(continues)

Programming Example: StudentGov Application | 767

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



768 | Chapter 11: Advanced Object-Oriented Programming Features

Name Object type Property Property value

groupBox1 GroupBox Text Select 
organization type

radioButton1 RadioButton Name radBtnIntr

radBtnIntr RadioButton Checked false

radioButton2 RadioButton Name radBtnFratSor

radBtnFratSor RadioButton Checked false

radioButton3 RadioButton Name radBtnClub

radBtnClub RadioButton Checked false

radBtnIntr RadioButton Text Intramural team

radBtnFratSor RadioButton Text Fraternity/
Sorority

radBtnClub RadioButton Text Club

label1 Label Name lblName

label2 Label Name lblFundedAmt

lblName Label Text Name:

lblName Label Visible false

lblFundedAmt Label Text Funding Amt:

lblFundedAmt Label Visible false

TABLE 11-2 PresentationGUI property values (continued )

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

Name Object type Property Property value

textBox1 TextBox Name txtBxName

textBox2 TextBox Name txtBxFund

txtBxFund TextBox TextAlign Right

txtBxName TextBox Visible false

txtBxFund TextBox Visible False

TABLE 11-2 PresentationGUI property values (continued )

The final project source code listing is shown in the following. You will notice that 
the listing shows the partial class representing the PresentationGUI.cs 
file. It does not show the contents of the PresentationGUI.Designer.cs file. 
The.Designer.cs file contains the auto-generated code and is available like all 
the other examples in the book from the publisher.
// PresentationGUI.cs
using System;
using System.Windows.Forms;

using ClubNamespace;          // Namespace for Club class 
using IntramuralNamespace;    // Namespace for Intramural class 
using FratSororityNamespace;  // Namespace for FratSorority class

namespace PresentationGUI
{
     public partial class PresentationGUI : Form
     {
          // Object of Club class declared 
          private Club aClub; 
          // Object of Intramural class declared
          private Intramural aTeam; 
          // Object of FratSorority class declared 
          private FratSorority aFratSorority;

          public PresentationGUI( ) 
          {
               InitializeComponent( ); 
          }

Programming Example: StudentGov Application | 769

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



770 | Chapter 11: Advanced Object-Oriented Programming Features

          // Objects are instantiated when the form is loaded.
          // Another GUI could be designed for entering data. 
          private void PresentationGUI_Load(object sender,
                                            EventArgs e) 
          {
               aClub = new Club ("ACM", "Jones", "Davis 203",
                                 "Tues", "12:30"); 
               aFratSorority = new FratSorority
                    ("Delta PI", "Brenda Wynn", true, 
                     "86 SmithField");
               aTeam = new Intramural
                    ("Winners", "Joe Kitchen", "VolleyBall");
          }

          // Three CheckedChanged event-handler methods included.
          // Double-clicking on the RadioButton adds the method 
          // heading and registers the event.  
          private void radBtnClub_CheckedChanged(object sender,
                                                 EventArgs e)
          {
               txtBxName.Text = aClub.OrgName;
               aClub.SetFundingAmt( );
               txtBxFund.Text = aClub.FundedAmt.ToString("C"); 
               ShowDetails( );
          }

          private void radBtnFratSor_CheckedChanged(object sender, 
                                                    EventArgs e)
          {
             txtBxName.Text = aFratSorority.OrgName;
             aFratSorority.SetFundingAmt();
             txtBxFund.Text = 
                 aFratSorority.FundedAmt.ToString("C");
             ShowDetails();
          }

          private void radBtnIntr_CheckedChanged(object sender, 
                                                 EventArgs e)
          {
             txtBxName.Text = aTeam.OrgName;
             txtBxFund.Text = aTeam.FundedAmt.ToString("C");
             ShowDetails();
          }

          // Area at the bottom of the form initally set to 
          // Visible = false using the Properties window. 
          // Because each RadioButton objects needed to reset 
          // the objects to Visible = true, a method is used. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

          public void ShowDetails( )
          {
               txtBxName.Visible = true;
               lblName.Visible = true;
               txtBxFund.Visible = true;
               lblFundedAmount.Visible = true;
          }
     }
}

When you complete the PresentationGUI, it should be set as the startup project 
because it is the only project in the solution that contains a Main( ) method. One 
way to do this, as illustrated in Figure 11-22, is to right click the  PresentationGUI 
project in the Solution Explorer window. When you right-click, you see the fol-
lowing option: Set as StartUp Project. This is necessary because you have mul-
tiple projects in a single solution.

FIGURE 11-22 Setting the StartUp Project

Programming Example: StudentGov Application | 771

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



772 | Chapter 11: Advanced Object-Oriented Programming Features

The PresentationGUI is considered by many developers an example of a client 
application. It is considered a client because it is using the components that you 
created. Other client applications can make use of these same components. When 
you build the solution and run the application, Visual Studio copies the DLL from 
each of the references that were added into the application’s private subdirectory. 
If you explore the files that are created, you notice you have multiple copies of the 
DLLs. Actually, each project has its own copy of any referenced DLLs. Figure 11-23 
shows the directory listing for the PresentationGUI folder. Some files were hid-
den, but notice that it contains copies of all of the .dlls and the  PresentationGUI.
exe. This makes up the PresentationGUI assembly.

FIGURE 11-23 Part of the PresentationGUI assembly

The application can be run by double-clicking on the .EXE file here in the folder 
containing the .EXE file, or it can be run from within Visual Studio as you have done 
with all the applications you have developed previously. The original user interface 
as it appears when the application is launched is shown in Figure 11-24. The figure 
contains an overlapping window produced by clicking one of the RadioButton 
objects.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Coding Standards | 773

1 
1

FIGURE 11-24 Output from StudentGov example

Coding Standards
When projects adhere to common standards, others can go into the code and read or 
modify it. Thus, coding standards make the project go smoother.

The following are a list of standards as they relate to creating multiclass solutions:

 ? Declare members of a class of the same security level together. Place 
all the private members first, followed by protected members and 
then public members.

 ? When declaring methods that have too many arguments to fit on the 
same line, the leading parenthesis and the first argument should be 
written on the same line as the method identifier. Additional arguments 
are written on the following line and indented to the opening parenthesis.

 ? Data members should never be specified with public access.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



774 | Chapter 11: Advanced Object-Oriented Programming Features

 ? Abstract classes should be named descriptively. The suffix “Abstract” 
may be added to the identifier so as to distinguish it as abstract.

 ? Use T or K as the identifier for a generic class.

 ? Avoid putting multiple classes in the same file.

Resources
Additional sites you might want to explore:

 ? Comparison of Unified Modeling Language Tools— 
http://en.wikipedia.org/wiki/List_of_UML_tools

 ? Code Project for those who code— 
http://www.codeproject.com/

 ? Generic Classes (C# Programming Guide)— 
http://msdn.microsoft.com/en-us/library/sz6zd40f.aspx

 ? C# Station Tutorial: Interfaces— 
http://www.csharp-station.com/Tutorials/Lesson13.aspx

QUICK REVIEW
 1. For a language to be considered a true object-oriented programming 

(OOP) language, it must support abstraction, encapsulation, inheri-
tance, and polymorphism.

 2. Abstraction enables you to think about something in a certain way and 
represent only essential features appropriate to the problem. It is used to 
identify and determine the objects needed for the design.

 3. Encapsulation is used to package together common characteristics into 
a class consisting of behaviors and data.

 4. Inheritance allows you to create a general class and then define spe-
cialized classes that have access to the members of the general class.

 5. Polymorphism is the ability for classes to provide different implementa-
tions of methods that are called by the same name.

 6. Instead of writing a program that includes all the features in a single file, 
development today is often geared toward writing multitier applications 
consisting of a number of components.

 7. Components are implemented through classes in C#.
 8. A colon is used as a separator between the derived class and the base 

class.
 9. The base class is sometimes called the super or parent class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

Quick Review | 775

 10. Classes that inherit from a base class are called derived classes or 
subclasses.

 11. Constructors, named the same name as the class name, are defined 
with public access.

 12. Overridden methods must have exactly the same signature as the 
 methods they override. New functionality is normally defined with 
overridden methods.

 13. Overloaded methods must have a different signature. Overloaded meth-
ods are often defined to perform a similar behavior but with different 
data types.

 14. The override keyword allows a method to provide a new implementa-
tion of a method inherited from a base class.

 15. Base methods are normally defined as virtual if they are to be 
overridden.

 16. If you want members of the derived classes to have access to members 
in the base class, define the members using protected access.

 17. The private access modifier restricts access to class members only. 
Public opens access to any class. Classes defined with the internal 
access modifier are accessible only within files in the same assembly.

 18. To call the base class constructor, base( ), precede it with a colon and 
place it in the heading before the opening curly brace. Arguments can 
be sent inside the parentheses if constructors other than the default are 
used.

 19. Classes can be compiled and stored as a dynamic link library (DLL) file 
and then referenced by any other applications. To do this in Visual Stu-
dio, select the Class Library template option from the Start page.

 20. .NET enables multiple languages such as Visual Basic, C++, and C# to 
be used to create a single application. The only requirement for doing 
this is that a project must include source code files from only one 
language.

 21. After you create your own DLL file, to use it in an application, one of 
the first things you should do is add a reference to the DLL. Just adding 
the reference is not enough. You have to either add a using statement 
at the top of the source code file indicating which namespace is used 
or qualify the class and members by using the namespace and a dot 
before each use of the class and its members.

 22. Add the abstract modifier to classes to prohibit other classes from 
instantiating objects of a base class. Add the sealed modifier to 
classes to prohibit subclasses from being derived from the class. Meth-
ods having the sealed modifier cannot be overridden in subclasses.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



776 | Chapter 11: Advanced Object-Oriented Programming Features

 23. Abstract classes can include regular data field members, regular meth-
ods, and virtual methods in addition to abstract methods. Derived 
classes must provide implementation details for every abstract 
method included in the base class.

 24. Think of an interface as a class that is totally abstract. All of its 
members are considered abstract. No implementation details are pro-
vided by the interface for any of its members.

 25. One advantage of using interfaces is the fact that a class can imple-
ment any number of interfaces. But, inheritance can only be from one 
class, abstract, or nonabstract.

 26. Designer-generated code is separated from user code when a Windows 
application is created through the use of partial classes.

 27. Spread the definition of your classes over multiple files by using the 
 partial keyword as part of the heading for the class. All of the 
 partial class definitions must be defined in the same assembly.

 28. To create an interface in C#, you use the Class Library template from 
the Start page. Interfaces can be compiled to a DLL. Instead of using the 
keyword class, you use interface in the heading.

 29. If a class implements more than one interface, they all appear on 
the class definition line separated by commas. The base class is listed 
first.

 30. Interfaces play an important role in the .NET Framework. Collection 
classes such as the Array class, ArrayList class, Hashtable class, 
Stack class, and Queue class implement a number of interfaces.

 31. One of the most powerful features of the .NET Framework class library 
and Visual Studio is the extensive library of documentation available. 
In addition to syntax and grammar, the library includes tutorials and 
examples of how features are used. You are strongly encouraged to 
explore this material.

 32. Through inheritance and marking the method with the virtual key-
word, polymorphism is made possible by allowing classes to override 
base class members.

 33. Through the use of abstract classes, polymorphic programming 
is possible. Classes that derive from abstract classes are forced to 
include implementation details for any abstract method. Polymorphic 
programming is encouraged with interfaces because interfaces provide 
the heading for the methods. Classes that implement the interface 
must provide implementation details.

 34. Generics enables algorithms to be written where a number of details, 
including the data type, can be “specified-later.”

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

 35. Generics are defined using left and right brackets. An identifier is 
inserted between them: <T>. The T is a user-supplied identifier or name 
that acts as a placeholder for the type that is going to be used.

 36. Once a variable is defined as dynamic, the memory location can hold 
any value. Dynamic types can also be used for method parameters or 
method return types.

 37. var is used to implicitly type variables. The compiler determines the 
type from the expression on the right side of the initialization statement.

EXERCISES
 1. Packaging data attributes and behaviors into a single unit so that the 

implementation details can be hidden describes an object-oriented 
 feature called:
a. abstraction
b. inheritance
c. objects
d. encapsulation
e. polymorphism

 2. To be considered a true object-oriented language, designers of the 
 language must provide support for:
a. properties
b. objects
c. inheritance
d. IDEs
e. command-line tools

 3. Components are normally compiled and stored with a file extension of:
a. .exe
b. .sno
c. .proj
d. .dll
e. .csc

Exercises | 777

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



778 | Chapter 11: Advanced Object-Oriented Programming Features

 4. Polymorphism is useful in languages because it facilitates ______________ 
methods:
a. overriding
b. overloading
c. overstriking
d. interfacing
e. inheriting

 5. The “is a” relationship is associated with:
a. inheritance
b. interfaces
c. polymorphism
d. encapsulation
e. all of the above

 6. In C#, the super class, or base class of all others, is:
a. super
b. base

c. value
d. class

e. object

 7. Using the following declaration, which of the following statements is 
true?

public class aClass : bClass, IClass
a. IClass is an interface.
b. aClass is the derived class.
c. bClass is the base class.
d. all of the above
e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

 8. If you want to keep classes that instantiate objects of a class from 
changing their data members, but enable derived classes to change base 
class data members, the data members in the base class should be 
defined with a ______________ access modifier.
a. private

b. public

c. internal

d. static

e. protected

 9. Constructors are normally defined with a ______________ access 
 modifier; data members with a ______________ access modifier; and 
properties with a ______________ access modifier.
a. public, public, public
b. private, private, private
c. public, public, private
d. public, private, public
e. private, public, public

 10. To enable derived classes to override methods defined in a base class, 
methods of the base class should be defined using a(an) ______________ 
keyword:
a. virtual

b. override

c. static

d. public

e. none of the above

 11. In .NET, applications are deployed in terms of:
a. .dll’s
b. .exe’s
c. solutions
d. assemblies
e. applications

Exercises | 779

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



780 | Chapter 11: Advanced Object-Oriented Programming Features

 12. The one constraint for having a solution include code from more than 
one programming language is the requirement that:
a. Each project must consist of code in one language only.
b. Each project must reference all the other projects.
c. A using directive must be placed in the source code files for each 

project.
d. The solution can have no more than 10 projects.
e. Both b and c are correct.

 13. To avoid having to use fully qualified referenced classes, you could:
a. Add a reference to the class.
b. Add an import statement for the class.
c. Add a using directive.
d. Inherit from the class.
e. Package the classes in the same solution.

 14. A class from which an object cannot be instantiated could be a(n):
a. base class
b. derived class
c. implemented class
d. virtual class

e. abstract class

 15. Classes can extend or derive from ______________ class(es) and 
 implement ______________ interface(s).
a. one, one
b. many, one
c. many, many
d. one, many
e. one, twelve

 16. Abstract classes can include:
a. data members
b. abstract methods
c. nonabstract methods
d. properties
e. all of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

 17. Interfaces can include:
a. data members
b. abstract methods
c. nonabstract methods
d. properties
e. all of the above

 18. _____ allows a method of a class to be called without regard to what 
specific implementation it provides.
a. Polymorphism
b. Abstraction
c. Assemblies
d. Versioning
e. Class libraries

 19. The feature that enables you to split source code between two or more 
files is:
a. generics
b. base class
c. dynamic link library
d. partial classes

e. package

 20. A multitier application would probably have:
a. a class defined to interact with the user
b. one or more classes defined to handle the business logic
c. a class defined to deal with the data
d. a client class
e. all of the above

Exercises | 781

 21. Explain the difference between an overloaded and an overridden 
method. Give an example of each.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



782 | Chapter 11: Advanced Object-Oriented Programming Features

 22. How does an abstract class differ from an interface?
public class Employee
{ 
   private int empNumber; 
   private decimal pay;
}

  Given the above program segment, answer Questions 23 through 30.

 23. Define a read-only property for the pay data member.

 24. Define a default constructor for Employee.

 25. Define a more useful constructor that could be used to instantiate 
objects of the class.

 26. Define a subclass named HourlyEmployee with additional members of 
hours and payrate.

 27. Define a constructor for HourlyEmployee that sends the employee 
number to the Employee class when an object is instantiated. Are 
there any changes needed in the Employee class? If so, what?

 28. Create a method in the Employee class to determine the pay amount. 
It should be capable of being overridden in subclasses.

 29. Provide new implementation details in the HourlyEmployee class for 
the method you defined in the preceding question (28).

 30. Define the heading for a generic method ProcessData that has one 
generic parameter as part of its signature.

PROGRAMMING EXERCISES

 1. Create a ticket reservation class for issuing tickets to on-campus events 
such as plays, musicals, and home basketball games. Design the ticket 
class so that it cannot be instantiated. Create subclasses for at least 
three different types of events. The subclasses should extend the ticket 
class. Determine unique characteristics for each of the events. Define a 
client application to test your class designs.

 2. Create a base class to store characteristics about a loan. Include cus-
tomer details in the Loan base class such as name, loan number, and 
amount of loan. Define subclasses of auto loan and home loan. Include 
unique characteristics in the derived classes. For example, you might 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
1

Programming Exercises | 783

include details about the specific auto in the auto loan class and details 
about the home in the home loan class. Create a presentation class to 
test your design by displaying information about both types of loans.

 3. Create a base class to hold information about sporting teams on cam-
pus. If you are using Visual Studio to develop your solution, use the class 
library template. Design the base class so that it is not possible to instan-
tiate the class. Include characteristics you would find with all sports, 
such as primary coach’s name and the name of the sport. Define prop-
erties, a ToString( ) method, and a minimum of one  virtual method 
that can be redefined for specific sports. The ToString( ) method should 
return the name of the sport and coach. Since no class is required to test 
your base class, be sure to build the solution to ensure that no syntax 
errors exist.

 4. Select two types of sporting teams and define subclasses for them. If you 
are using Visual Studio to develop your solution, use the class library 
template. These classes should inherit from a base team class such 
as that created in Exercise 3. Include unique characteristics about the 
sport. For example, for a sporting team such as a tennis team, the field 
location and/or the person to contact to restring rackets may be of inter-
est. Be sure to implement any virtual methods included in the base 
class. Provide ToString( ) methods in both subclasses that invokes the 
ToString( ) method in the base class and adds unique character-
istics about the individual team to the return value. Since no class is 
required to test your subclasses, be sure to build the solution to ensure 
that no syntax errors exist.

 5. Provide a test class to demonstrate that your design of a base team 
class and individual sporting team subclasses works. If you completed 
Exercise 4, provide a reference in your project to the DLLs you designed 
for Exercise 4; otherwise create the classes for this exercise. Your test 
class can be a console or Windows application. One approach to 
validate your design would be to instantiate objects of your individual 
sporting team subclasses when the program launches and then invoke 
methods and properties to retrieve and display data about the teams. 
From your test class, be sure to retrieve data from the base class as well 
as the subclasses.

 6. Modify your solution for Exercise 5 so that the source code files for each 
of the classes you designed are available for edit within the solution proj-
ect. Enhance the solution by defining an interface for the sporting 
teams relating to budgeting. Any teams that implement the interface 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



784 | Chapter 11: Advanced Object-Oriented Programming Features

must provide details about how they are budgeted. Modify your test 
class to verify the interface functions properly.

 7. Create a base class for a banking account. Decide what characteristics 
are common for checking and saving accounts and include these charac-
teristics in the base class. Define subclasses for checking and savings. In 
your design, do not allow the banking base account to be instantiated—
only the checking and saving subclasses. Include a presentation class 
to test your design.

 8. Create a base class titled ReadingMaterial. Include subclasses of 
Online, Book, and Magazine. Design your classes so that common 
characteristics are placed in the ReadingMaterial class. Provide the 
unique characteristics of the subclasses in the derived classes. Define an 
 interface called IPrintable that has a method that returns as a string 
how it is available in hard copy form (i.e., printable PDF, from a publisher 
or from a bookstore). Include a presentation class to test your design.

 9. Define an application to include classes for Student, GraduateStudent, 
and UndergraduateStudent. Create .DLL files for the three classes. Include 
characteristics in the Student class that are common to GraduateStudent 
and UndergraduateStudent students. All three classes should override the 
ToString( ) method. GraduateStudent should include a data field for the 
type of undergraduate degree awarded, such as B.A. or B.S., and the loca-
tion of the institution that awarded the degree. UndergraduateStudent 
should include classification (for example, freshman, sophomore), and 
parent or guardian name and address. Create a presentation class that 
instantiates student objects and enables details to be displayed on the 
form about individual students to test your design.

 10. Create a housing application for a property manager. Include a base 
class named Housing. Include data characteristics such as address and 
year built. Include a virtual method that returns the total projected 
rental amount. Define an interface named IUnits that has a method 
that returns the number of units. The MultiUnit class should implement 
this interface. Create subclasses of MultiUnit and SingleFamily. Single-
Family should include characteristics such as size in square feet and 
availability of garage. MultiUnit might include characteristics such as 
the number of units. Create .DLL components for the housing classes. 
Define a presentation class to test your design.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

Debugging and Handling 
Exceptions

IN THIS CHAPTER, YOU WILL:

 ? Gain an understanding of the different types of errors that are found in programs

 ? Look at debugging methods available in Visual Studio

 ? Discover how the Debugger can be used to find run-time errors

 ? Learn about exceptions, including how they are thrown and caught and filtered

 ? Become aware of and use exception-handling techniques to include 
try. . .catch. . .finally clauses

 ? Explore the many exception classes and learn how to write and order multiple catch 
clauses

12CHAPTER

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



786 | Chapter 12: Debugging and Handling Exceptions

Errors in code will happen. It does not matter how good of a programmer you are or 
how careful you are when you design your solutions. At some point, your program 
will not function properly. This chapter introduces you to one of the tools available in 
Visual Studio, the Debugger, which can be used to observe the run-time environment 
and locate logic errors. Using the Debugger, you can stop program execution and 
inspect the values stored in memory. You will explore how the Debugger enables you 
to take an up-close look at the code.

This chapter also introduces you to a special type of error called an exception. 
 Exceptions, as the name implies, are unexpected conditions that happen  (hopefully) 
infrequently. They are usually associated with error conditions or unexpected behav-
iors that cause abnormal terminations if they are not handled. This chapter introduces 
you to structured exception-handling techniques. It examines how your program can 
recover from some of these conditions and which conditions are fatal. You will inves-
tigate how the try. . .catch. . .finally statements, which are available in C# and 
other languages, are used to separate the program code from the exception-handling 
code. You will also learn that not all program errors should be treated as exceptions. 
Exception-handling techniques should be reserved for error conditions from which 
your program cannot recover.

Errors
The Visual Studio integrated development environment (IDE) reports errors in your 
program as soon as it is able to detect a problem. You read in Chapter 1 about two 
major types of errors: compiler or syntax errors and run-time errors. Compiler errors 
are the easiest to discover and eliminate. A compiler error is associated with a lan-
guage rule violation. C# has about 90 keywords, uses a curly brace notation, and 
requires that statements end with a semicolon. C# adheres to a fairly sophisticated set 
of rules known as C# Language Specifications, which are the authoritative source 
for C# grammar and syntax. The specifications detail information on all aspects of 
the language. As long as you do not violate any rules, no syntax errors are issued. At 
the time of writing, the specifications are available for download, in Word format, 
at the MSDN online site: http://msdn.microsoft.com/en-us/library/ms228593.aspx. 
After you install Visual Studio, the specifications are placed on your hard drive. The 
document is named C# Language Specification. The Language Specifications docu-
ment is loaded by default under VC#\Specifications under your Visual Studio instal-
lation directory.

If you fail to follow the grammar of the language as outlined in the specifications, 
for example, by misspelling a keyword, failing to place a semicolon at the end of a 
statement or carelessly placing a semicolon where it shouldn’t be placed, Visual Stu-
dio places a squiggly line near the location where the error is encountered. This is 
 illustrated in Figure 12-1.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Errors | 787

1 
2

As shown in the figure, the Error List window is displayed when an error is reported. 
Additional documentation about the error can be retrieved by selecting the error 
number in the Error List window and pressing the F1 key. If you move the cursor 
over the problem area, a pop-up box called the Quick Info window displays informa-
tion about the error. Sometimes, as shown in Figure 12-1, the message does not state 
exactly what the real problem is. Clicking on the light bulb or the link labeled “Show 
potential fixes” lists a number of possible remedies. None are correct for this example. 
Sometimes, you have to look beyond what the error message states. In Figure 12-1, 
for example, an extra semicolon was placed at the end of the foreach statement.

Run-Time Errors
Just because your program reports no syntax errors does not necessarily mean that it 
is running correctly. Sometimes, a program stops during execution. Other times, out-
put is produced, but the output might not be correct. To further complicate matters, 
a program may sometimes work properly with some data, but crash when a certain 
value is entered. If a program stops during execution, this is a type of run-time error. 
For example, if you attempt to divide by zero, your program will crash. If you attempt 
to access an item outside of your array boundaries, convert an alphabetic character 
into an int using the Parse( ) method, or try to find the square root of a negative 

FIGURE 12-1 Syntax error—extraneous semicolon

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



788 | Chapter 12: Debugging and Handling Exceptions

number, your program will crash. Later in this chapter, you learn to catch exceptions 
such as these, so that the program does not halt when these special types of problems 
occur.

One form of run-time error is a logic error. Logic errors are normally associated 
with programs that run but produce incorrect results. If the application involves a 
loop, the loop could be performing one too many or one too few times, producing 
an incorrect result. It might be that the algorithm you devised to solve the problem 
is not correct. This produces a logic error. Sometimes variables do not have correct 
values, either from the user entering acceptable but incorrect values or from incor-
rectly initialized variables. Finding the types of problems that cause a logic error can 
sometimes be challenging. As you repeatedly look at the code, you might find yourself 
saying “This should work! Everything looks OK. There are no errors. . .why doesn’t 
it work properly?” To fix these kinds of problems, you must resort to debugging the 
application.

Wikipedia (http://wikipedia.org/) defines debugging as a methodical process of find-
ing and reducing bugs or defects in a computer program. Most IDEs, including Visual 
Studio, have sophisticated debugging tools available. This chapter explores some of 
these features.

Debugging in C#
When an application is developed—both during the design and also when the code is 
implemented—it is extremely important to desk check the solutions to make sure the 
program is producing consistently accurate results. When problems are discovered, 
you can use the Visual Studio Debugger to observe the run-time behavior of your 
program and help locate logic errors. The Debugger lets you break, or halt, the execu-
tion of the program to examine the code, evaluate variables in the program, and view 
the memory space used by your application. You can step through an application, 
checking the values of variables as each line is executed. Visual Studio lets you also 
set breakpoints in your program code. A breakpoint is a line in your program that 
you select and when it is reached, the program is suspended or placed in break mode. 
While in break mode, you have an opportunity to examine, and even change, the 
value of variables. The Visual Studio Debugger provides a Debug menu with access 
to the Debugger tools.

EXECUTION CONTROL

The Debugger provides commands for controlling the execution of your applica-
tion. Using the Debugger, you can start or continue execution, break execution, step 
through an application, or run to a specific point in your program. You can examine 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Errors | 789

1 
2

the code while it is running to validate that the execution path is what you had 
intended.

Previously, to run your program, you used the Debug menu and selected Start With-
out Debugging or Start Debugging or used their shortcuts (Ctrl+F5 or F5). As 
shown in Figure 12-2, the Debug menu offers additional choices.

FIGURE 12-2 Debug menu options

As soon as you run your program by selecting the Start Debugging option, the Debug 
menu changes. The number of options available to you almost doubles. Figure 12-3 
shows the options available when a program is running. Several of the options refer 
to a breakpoint.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



790 | Chapter 12: Debugging and Handling Exceptions

BREAKPOINTS

Breakpoints are markers that are placed in an application, indicating that the pro-
gram should halt execution when it reaches that point. When the break occurs, the 
program and the Debugger are said to be in break mode. While in break mode, you 
can examine expressions to see what values are being generated. If your program is 
not consistently producing correct results, this enables you to check intermediate 
values.

FIGURE 12-3 Debug menu options during debugging mode

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Errors | 791

1 
2

You can use several methods to add or set a breakpoint. The simplest method is to 
click anywhere on a line of executable code where you want to set a breakpoint and 
select Toggle Breakpoint from the Debug menu or use the F9 keyboard shortcut. As 
the menu option name implies, pressing F9 or selecting Toggle Breakpoint a second 
time turns off the breakpoint. The line of code is also automatically selected, as shown 
in Figure 12-4. You can place any number of breakpoints in your program following 
these methods.

FIGURE 12-4 Breakpoint set

It can be useful to know how many times a breakpoint has been set. When you right-click 
the selected breakpoint glyph, you can then choose the Hit Count option from the shortcut 
menu.

After a breakpoint is set and you run your program by selecting the Start Debugging 
(F5) option, it runs completely as before until it reaches the breakpoint. At that line, 
the program halts, or pauses, before it executes the line. While the program is paused, 
you can move the mouse over any variable and see what its current value is. You can 
also select conditional expressions associated with if statements or loop expressions 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



792 | Chapter 12: Debugging and Handling Exceptions

and see whether they have produced a true or false result at the time the program is 
halted. In addition to being able to hover over the variable to see its value, the  Debugger 
will also display a Locals window near the bottom of the screen. This window auto-
matically shows all variables and their values. This is illustrated in Figure 12-5.

If you are in debugging mode and do not see the Locals window at the bottom of the 
screen, use the Windows option from the Debug menu to display the window.

FIGURE 12-5 Locals window at the breakpoint

In Chapter 5, an application was developed to calculate a speeding fine. The user 
was asked to input the speed limit, the speed they were traveling, and the student’s 
classification. A breakpoint was set on the line that calculated the fine. Prior to the 
breakpoint, in the constructor of the Ticket class, the speed for the fine was cal-
culated. As you review the Locals window shown in Figure 12-5, you see values for 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Errors | 793

1 
2

speed, speedLimit, and classif. At that breakpoint, Fine and fine values have 
not been set. You can see that execution halts prior to the program statements on that 
line being executed.

CONTINUE

After reviewing the variables and expressions, pressing F5 or selecting Continue 
from the Debug menu takes the program out of break mode and restores it to a run-
time mode. If only one breakpoint is set, the Locals window closes and the execution 
continues until the end of the Main( ) method is reached. At that point, the program 
terminates. However, if more than one breakpoint is set, selecting Continue causes 
the program to execute from the halted line until it reaches the second breakpoint. At 
that point, the Locals window is updated and the program is again paused. To illus-
trate the changes made to the Locals window, a second breakpoint was set on the last 
line in the SetFine( ) method of the Ticket class. As shown in Figure 12-6, the 
fine variable and Fine property were changed from 0 to 712.5. The Debugger high-
lights the line where the program halts. The process of stopping at each breakpoint 
would continue until the end of the program was encountered.

FIGURE 12-6 Next breakpoint

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



794 | Chapter 12: Debugging and Handling Exceptions

STEPPING THROUGH CODE

Instead of just setting specific breakpoints in your source code, you could step through 
your code line by line, see the execution path, and examine variable and expression 
values as they change. The Debug menu, which was shown in Figures 12-2 and 12-3, 
offers three commands for stepping through code while you are in break mode. These 
commands and their keyboard shortcuts are:

Step Into (F11)
Step Over (F10)
Step Out (Shift+F11)

Both the Step Into and Step Over commands tell the Debugger to execute the 
next line of code. The functionality of these two commands differs when a method 
is invoked. When the Step Into command encounters a line that contains a call 
to a method, the call is executed—then the program halts at the first line of code 
inside the called method. The Step Over command differs in that it executes the 
entire method called before it halts. It pauses at the first line of code outside the 
method.

Step Into is useful for allowing you to look inside a method and examine the method’s 
program statements. Step Over completes all the program statements in the method 
before it halts—giving you no opportunity to examine the variables, expressions, or 
flow of program statements.

Review Figure 12-2 and note that the Step Out option is not shown. It does not 
appear until you are in debugging mode. When debugging, as shown in Figure 12-3, 
you can see this added option. If you are executing statements inside a method and 
want to return to the calling method, this third command, Step Out, is useful. Step 
Out causes the rest of the program statements in the method to be executed and then 
returns control to the method that called it. At that point, it halts the program so that 
you can examine the code.

When you use these step commands, the values are automatically updated in the 
Locals window with each new line of code. You can see the live changes made to vari-
able values as you step through the program. You can also follow the flow of control 
and see the order of execution of program statements for the application. This can be 
especially helpful when the application has complex selection statements or nested 
loops. As illustrated in Figure 12-7, the line of code executed next is highlighted in 
yellow.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Errors | 795

1 
2WATCHES

You also have the capability of setting Watch windows during debugging sessions. 
The Watch window lets you type in one or more variables or expressions that you 
want to observe while the program is running. Unlike the Locals window, which 
shows all variables currently in scope, you selectively identify the variables or expres-
sions for the Watch window. A QuickWatch option on the Debug menu lets you 
type in a single variable or expression and have the Debugger show its value. From 
the QuickWatch dialog box, you can add the identifier to a Watch window. This is 
illustrated in Figure 12-8.

FIGURE 12-7 Breakpoint location

You can use the keyboard shortcuts F11, F10, and Shift+F11—representing Step Into, 
Step Over, and Step Out—when you are stepping through an application.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



796 | Chapter 12: Debugging and Handling Exceptions

Exceptions
For most of the programs you have developed to this point, you have assumed nothing 
unusual would occur. Given perfect situations for running applications, your programs 
might perform beautifully. However, errors do occur. You can take several actions to 
keep your program from crashing. You can include if statements that check values 
used as input to ensure that the value is numeric prior to parsing or converting the 
string value into its numeric equivalent. After string values are entered for con-
sole applications or retrieved from Windows controls, you can use the IsNumber( ) 
method of the char class to test each character in the string, as shown here.
string aValue = "1334";
if (char.IsNumber(aValue[0])) // Tests the first character

FIGURE 12-8 QuickWatch window

You can also do an instant watch of variable values. Hover over any variable while in break 
mode to see its current value.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exceptions | 797

1 
2

Recall that one of the members of the string class is Length. Used with a string vari-
able, the Length property returns the number of characters for that specific instance of 
the string. Length would return 4 for the aValue variable declared previously. You 
can use aValue.Length to create a loop that traverses through the string data, one 
character at a time, checking to see if each character making up the string is numeric.
You can also use if statements to test numeric values for valid ranges prior to using the 
number in arithmetic. You can use an if statement to test numeric values that will be 
used as divisors in arithmetic expressions to make sure the divisor is not zero prior to 
doing the division. You can also test subscript or index values used with arrays to make 
sure they are valid (that is nonnegative and one less than the dimensioned size). With 
Windows applications, an if statement can be included in your event-handling methods 
to test input controls, such as text boxes, for empty string input. You can also disable 
and make controls invisible by setting the Enable and Visible properties to false until 
valid entries are entered into other controls. When working with file applications, you 
can use if statements to make sure the file exists prior to attempting to retrieve values 
from the file. All of these suggestions can be incorporated into your solutions to reduce 
the likelihood of your program terminating abnormally. Some circumstances are beyond 
the control of the programmer, and unless provisions are made for handling exceptions, 
your program might crash or produce erroneous results. It is now time to take your 
programming skills to the next level and learn how to prevent abnormal terminations.
You have probably experienced unhandled exceptions being thrown while you browsed 
web pages or during your development of C# programs. Were you ever asked if you 
wanted to debug some application while you were on the Internet? Have you seen a screen 
similar to Figure 12-9 while you were developing your C# applications in Visual Studio?

FIGURE 12-9 Microsoft error reporting

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



798 | Chapter 12: Debugging and Handling Exceptions

The message shown in Figure 12-9 was generated when a console application was run 
using Start Without Debugging. This dialog box asks you whether you want to close 
the program. You will notice that a button titled Debug is another option on this type 
of error message. If you select the Debug button, a Just-In-Time Debugger dialog box 
opens. This is illustrated in Figure 12-10. You normally do not want to try to debug 
the application while it is running.

FIGURE 12-10 Just-In-Time Debugger

Clicking the Close program button, which is shown in Figure 12-9, when you are 
creating a console application in Visual Studio, often causes a message to be displayed 
that is similar to that shown in Figure 12-11. This output indicates that an unhandled 
exception has occurred. It also identifies what caused the exception (“Attempted to 
divide by zero.”).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exceptions | 799

1 
2

The messages from Figures 12-9 through 12-11 were generated during run-time, and 
the entire application halted. No error had been detected when the program was 
compiled. It was only when the application ran that the program crashed and the 
message was displayed.

FIGURE 12-11 Unhandled exception in a console application

Remember that during the compilation stage, the errors that are detected are those in 
which specific statements violate the syntax or grammar of the language, such as omission 
of a semicolon at the end of a statement.

Another type of message you might have seen is shown in Figure 12-12. You learned 
earlier that you can run applications in Visual Studio by selecting either Debug, Start 
Debugging or Debug, Start Without Debugging. If you run this same program 
and select Debug, Start Debugging, it generates a message similar to that shown in 
 Figure 12-12.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



800 | Chapter 12: Debugging and Handling Exceptions

Notice in Figure 12-12 that the line of the code where the error was found is high-
lighted in yellow.

The exact message from Figure 12-12 is also generated within a Windows application 
during run-time when an attempt to divide by zero is reached. The Windows applica-
tion had a statement in a button event-handler method that tried to divide by zero. 
Like the console application that generated the messages for Figures 12-9 and 12-11, 
the divide by zero in the Windows application error was not detected during compi-
lation; the exception was not thrown until the user selected the button wired to the 
event-handler method that included the division statement. If that button had never 
been clicked, the application would have run smoothly.

Raising an Exception
If a program encounters an error such as division by zero during run-time, and the 
program cannot recover from the error, it raises or throws an exception. When this 
happens, execution halts in the current method and the common language runtime 
(CLR) attempts to locate an exception handler to handle the exception. An exception 
handler is a block of code that is executed when an exception occurs. You will learn 
how to write exception handlers in the following section.

If the CLR finds an exception handler in the current method, control is transferred to 
that code. If the current method does not contain an exception handler, that method 

FIGURE 12-12 Unhandled exception thrown—dividing by zero

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exceptions | 801

1 
2

is halted, and the parent method that called the method that threw the exception 
attempts to handle the exception. The exception is said to be thrown back to the call-
ing method. If more than two methods are used, the exception continues to be thrown 
backward until it reaches the topmost method. If none of the methods includes code 
to handle the error, the CLR handles the exception—by halting the entire applica-
tion. This can be very abrupt, as you saw with the messages displayed in Figures 12-9 
through 12-12. Because data can be lost, you want to try to avoid such an experience 
with your programs. If the CLR handles the exception by halting your application, it 
is called an unhandled exception.

Bugs, Errors, and Exceptions
You learned that, in some instances, you can use selection statements, such as 
if. . .else, to programmatically prevent your programs from crashing. By checking 
for conditions that are likely to occur and writing statements to manage those situa-
tions, you prevent abnormal terminations. You could have avoided the problem pre-
sented for Figures 12-9 through 12-12. As you learned in Chapter 5, you can write 
program statements to test your divisors to make sure they are not zero before using 
them in division. Example 12-1 shows a statement that would have prevented those 
unhandled exceptions from being thrown.

EXAMPLE 12-1

int countOfScores = 0;
if (countOfScores > 0)
{
     averageTestScore = (examScore1 + examScore2 + examScore3)/
                         countOfScores;
}
else
{
     messageLabel.Text = "Problem with scores—" +
                         "unable to compute average";
}

The previous example is easy enough to fix. The problem identified may even be 
more appropriately labeled a bug instead of an exception. Bugs differ from exceptions 
in that they are normally labeled “programmer mistakes” that should be caught and 
fixed before an application is released. The problem that created the exception gener-
ated for Figures 12-9 through 12-12 was this: countOfScores was originally initial-
ized to zero with no provisions made to change it from zero. This oversight caused an 
unhandled exception to be thrown.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



802 | Chapter 12: Debugging and Handling Exceptions

In addition to bugs, programs can experience errors because of user actions. These 
actions can cause exceptions to be thrown. Entering the wrong type of data from the 
keyboard is an example of a common user mistake. When an application requests 
numeric data be entered as the program is running, C# initially stores the value entered 
in a string variable. But, as you are aware, to perform calculations with the value, it 
must be converted from the string to a number. If the user types nonnumeric char-
acters when requested to enter numeric values, an exception is thrown. This happens 
as soon as the statement that has the call to the Parse( ) method or methods in the 
Convert class is executed with the nonnumeric data. With a Windows application, 
if no instructions are found in the application for handling the exception, an unhan-
dled exception message similar to that shown in Figure 12-13 is generated.

Figures 12-9 through 12-13 are all examples of messages that are displayed when unhan-
dled exceptions are thrown from a .NET application. They look different because of differ-
ences in the programs executed and the type of applications.

FIGURE 12-13 Unhandled exception raised by incorrect input string

When an unhandled exception message is displayed as shown in Figure 12-13, you 
click on the Details button in Visual Studio to view a stack trace of methods with 
the method that raised the exception listed first. A stack trace is a listing of all the 
 methods that are in the execution chain when the exception is thrown.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exception-Handling Techniques | 803

1 
2

As you are already aware, when a program first starts, it begins execution in the 
Main( ) method. From Main( ), it calls on or executes other methods, which can 
also call on other methods, and so on. When execution reaches the bottom of a given 
method, control is returned to the method that called it. This continues until control 
eventually returns to the end of the Main( ) method, where the program finishes 
its execution. A stack is used to keep up with the execution chain. Unlike other types 
of memory, a stack can hold multiple entries. The stack is used as follows: When a 
method calls on another method, the calling method’s identifier is placed on a stack. 
If another method is called, that calling method’s name is placed on the stack. Thus, 
the first one placed on the stack is always Main( )—as the calling method of other 
methods. This puts Main( ) on the bottom of the stack execution chain. After a 
method finishes its execution, the top method name is used (popped off the stack) 
and control is returned to it. This is the method that previously called the method 
that just finished. The first one placed on the stack is Main( ) and the last one that 
eventually gets popped off the stack is Main( ). The stack is used to determine to 
which method along the execution chain control returns after a method finishes.

The stack used for the execution chain works exactly like the stack of trays at a cafeteria. 
The top one comes off first. The first one added to the stack is on the bottom. You created 
a stack in Chapter 11 when you were introduced to generic classes.

The StringToNumber( ) method threw the exception to the ParseInt32( ) 
method. ParseInt32( ) is the .NET equivalent to the C# int.Parse( ) method. 
No exception-handler method was found there, so the exception then bubbled up to 
the parent method, Calculate_Click( ). The CLR again looked for an exception 
handler in this Calculate_Click( ) method. Because none was found, it contin-
ued bubbling the exception up through the Windows.Forms.Control.OnClick( ) 
method, and so on. The stack trace includes all the methods that are still active at the 
time the exception is raised. Because none of the methods listed in the stack trace 
included code to handle that type of exception, the unhandled exception message is 
displayed. So, how do you handle the exception?

Exception-Handling Techniques
First remember that there are bugs, errors, and exceptions. If an event that creates a 
problem happens frequently, it is best to write program statements, using conditional 
expressions, to check for the potential error and provide program instructions for what 
to do when that problem is encountered. This is what you saw listed in Example 12-1.  
If the CLR has to halt a method and find an appropriate event handler, execution is 
slowed down. Thus, if a situation that might crash your program occurs frequently, 
write program statements using conditional expressions to deal with that situation.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



804 | Chapter 12: Debugging and Handling Exceptions

Exception-handling techniques are for serious errors that occur infrequently. As stated 
previously, exceptions are those events from which your program would not be able 
to recover, such as attempting to read from a data file that does not exist. Included 
as part of .NET are a number of classes that can be used with your applications to 
enable them to be less prone to crashing. These exception classes are part of the original 
design of .NET and, thus, are integrated within the Framework class library (FCL). They 
facilitate managing exceptions in a consistent, efficient way. They are used with the 
try. . .catch. . .finally program constructs to handle unexpected types of conditions.

Realizing the importance of handling exceptions using an object-oriented approach, the 
developers of C# included provisions for handling exceptions as part of the original design 
of the FCL. The classes were not just added on as an afterthought as in some languages.

The colon (:) is used in the examples in this book to indicate that additional statements may 
 be added to the program listing. Here, the colon would have to be replaced by additional 
catch clauses.

Try. . .Catch. . .Finally Blocks
C#, such as C++, Java, and other languages, handles exceptions through 
try. . .catch. . .finally blocks. The code that might create a problem is placed in 
the try block. The code to deal with the problem (the exception handler) is placed in 
catch blocks, which are also called catch clauses. The code that you want executed 
regardless of whether an exception is thrown is placed in the finally block. The 
syntax for a try. . .catch. . .finally block is as follows:

try
{
     // Statements that might create a problem
}
catch [(ExceptionClassName exceptionIdentifier)]
{
     // Exception handler statements 
}
:    // [additional catch clauses]
[finally
{
     // Statements to be performed no matter what happens 
}]

More than one catch clause can be included. A try block must include at least one 
catch clause. Notice that a square bracket follows the keyword catch to indicate that 
the parentheses and the argument list are optional. Omitting the argument list makes 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exception-Handling Techniques | 805

1 
2

the catch generic—meaning any exception that is thrown is handled by executing 
the code within that catch block. If you include an exception type as part of the argu-
ment list, only exceptions that match the type listed are handled by that catch clause. 
You will see examples using multiple catch clauses later in this chapter.

The finally clause is also optional. It can be included if there is a segment of code that 
needs to be executed, no matter what. If, for example, you have an open file or database 
connection, you can put the close statements in the finally block to make sure the 
file or connection is closed properly. When code is included in all three blocks for the 
try. . .catch. . .finally construct, the statements inside the try block are attempted 
first. If no problem exists and the try block code is finished, the catch clause(s) is (are) 
skipped, and control transfers into the finally block where that code is executed.

If an unexpected error occurs in the try block that throws an exception, the code in the 
try block is halted at the line that caused the problem. The CLR tries to find a match-
ing exception handler within the current method. If one is found, control transfers to 
the first listed catch clause that can handle the type of execution thrown. The catch 
clause statements are executed, and control transfers to the finally block where its 
code is executed. Notice with both situations (exception thrown and no exception 
thrown) that if a finally block is included, the statements in it are executed.

Another important point to make sure you understand is the fact that control is never 
returned to the try block after an exception is thrown. The statement that creates a 
problem in the try block is the last one tried in the try clause. After control is trans-
ferred out of the try block, no other statements inside the try block are ever executed.

Example 12-2 uses a try. . .catch block to keep the program from terminating abnor-
mally. The example includes a generic catch clause—no specific exception type is listed.

EXAMPLE 12-2

// ExceptionExample.cs
// Uses a generic catch block to catch any
// type of exception that is thrown.
using System;
using static System.Console;

namespace ExceptionExample
{
     class ExceptionExample
     {
         static void Main(string[] args)
         {
             int [ ] examScore;
             int totalScores = 0;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



806 | Chapter 12: Debugging and Handling Exceptions

             int countOfScores = 0;
             string inValue;
             double averageTestScore;
             try
             {
                 Write("How many scores will you enter? "); 
                 inValue = ReadLine( );
                 countOfScores = int.Parse(inValue);
                 examScore = new int[countOfScores];
                 for (int i = 0; i < countOfScores; i++)
                 {
                      Write("Enter score {0}: ",i+1);
                      inValue = ReadLine( ); 
                      examScore[i] = int.Parse(inValue);
                      totalScores += examScore[i];
                 }
                 averageTestScore = totalScores / countOfScores;
                 WriteLine("Average is {0}", averageTestScore);
             }
             catch
             {
                 WriteLine("Problem with scores − " + 
                           "Cannot compute average");
             }
             ReadKey( );
         }
     }
}

If the application is run and the user types a nonnumeric character, such as the value 
9U (shown entered for score 3 in Figure 12-14), the program does not crash. Instead, 
the exception-handler code found in the catch block is executed and alerts the user 
of the error.

FIGURE 12-14 Generic catch block handles the exception

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exception-Handling Techniques | 807

1 
2

GENERIC CATCHES

The problem with using a generic catch to avoid abnormal termination is that 
because any type of exception is handled by the catch code, you are never quite sure 
what caused the exception to be thrown. Take, for example, the two output listings 
shown in Figure 12-15.

FIGURE 12-15 Exceptions thrown because of division by zero and programmer error

What caused these exceptions to be thrown? The first output in Figure 12-15 is gener-
ated because of an attempt to divide by zero. The second one threw an “Index outside 
the bounds of the array” exception. No message of “Index outside the bounds of the 
array” is displayed in response to a bug in the program. The exception was thrown 
when the statement that computes the average from Example 12-2 was changed to 
the statement shown in Example 12-3.

EXAMPLE 12-3

averageTestScore = totalScores / examScore [10]; // Invalid

There is no examScore[10]. Example 12-2 had the correct arithmetic statement; 
the divisor should be countOfScores.
averageTestScore = totalScores / countOfScores; // Correct

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



808 | Chapter 12: Debugging and Handling Exceptions

Although you can keep the program from terminating abnormally by using a generic 
catch clause, you can debug more easily if you know what caused the exception to be 
thrown. Just displaying a message saying there is a problem does not help a lot.

Exception Object
When an exception is raised with .NET languages, an object is created to repre-
sent the exception. All exception objects inherit from the base class for exceptions, 
named Exception. It is part of the System namespace. An exception object, like 
other objects, has properties and behaviors (methods). The catch clause may list an 
exception class name, and an object identifier inside parentheses following the 
catch keyword as shown in Example 12-4. Actually to use any of the properties of 
the exception object that is created, you must have an object name. Using the 
catch { } without an exception type does not give you access to an object.

One of the properties of the Exception base class is Message. Message returns a 
string describing the exception. Because it is a property of the base class, it can 
be used with any exception object. Example 12-4 includes the Exception class 
in the argument list for the catch clause. The object identifier e is used to name an 
object of that class. The object e can now be used with any of the properties or 
methods of the Exception class. The Message property, associated with object 
e, is used inside the catch clause to display a message describing the exception.

You cannot use the Message property or any of the other members of the class without 
an object. This is one reason the argument list (System.Exception e) needs to be 
included.

The computation was modified to illustrate that programmer mistakes (bugs) can lead to 
exceptions being thrown.

EXAMPLE 12-4

catch (System.Exception e)
{
     Error.WriteLine("Problem with scores − " +
                     "Cannot compute average");
     Error.WriteLine(e.Message);
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exception-Handling Techniques | 809

1 
2

No filtering of exceptions occurs by adding the (Exception e) for the argument 
list. Any exception that is thrown in this method is caught because all exceptions 
are derived from this base System.Exception class. The advantage of typing the 
argument list following the catch is that you have an object identifier, such as e, 
to use with properties. In Example 12-4, in addition to displaying the programmer- 
supplied message indicating that there is a problem, an additional string, “Index 
was outside the bounds of the array,” is displayed. That is the current value of the 
Message property for object e. Both of these strings are displayed on the Console.
Error output device. Now if the application is run again and it still contains the pro-
grammer error previously entered, the output window lists what caused the excep-
tion to be thrown, as shown in Figure 12-16.

Since the using System; namespace is automatically added when you create an 
application, you do not have to fully qualify references to the Exception class or other 
classes in the System namespace in order to reference them.

FIGURE 12-16 Use of Message property with the exception object

Calls were made to the System.Console.Error.WriteLine( ) method to 
illustrate that it is probably more appropriate to display error messages to an Error 
 output device. By default, its output goes to the console screen, just as it does with other 
 Console class output. However, the Error output device can be changed to display 
to a different device. Like other examples illustrated for this edition, since the using 
static System.Console; directive was added, it is not necessary to precede 
Error with the Console class name.

The argument list is normally included to filter the exceptions. By specifying more 
than one exception filter, you can write code in the catch clauses that is specific 
to the particular exception thrown. To do that, you have to know more about the 
different exception classes that make up the .NET Framework class library, and the 
 following section discusses some of them.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



810 | Chapter 12: Debugging and Handling Exceptions

Exception Classes
When an error occurs, it is reported by creating and throwing an object that corre-
sponds to the specific type of exception that is thrown. The object contains information 
about the error. There are a number of different types of exceptions that can be thrown.

Derived Classes of the Base Exception Class
Table 12-1 presents some of the derived classes of the base Exception class. The 
ApplicationException and SystemException classes form the basis for run-
time exceptions and are discussed following Table 12-1.

Classes that inherit from Exception

Microsoft.Build.BuildEngine.InvalidProjectFileException

Microsoft.WindowsMobile.DirectX.DirectXException

System.ApplicationException

System.ComponentModel.Design.ExceptionCollection

System.Configuration.SettingsPropertyIsReadOnlyException

System.IO.IsolatedStorage.IsolatedStorageException

System.Runtime.Remoting.MetadataServices.SUDSGeneratorException

System.Runtime.Remoting.MetadataServices.SUDSParserException

System.SystemException

System.Windows.Forms.AxHost.InvalidActiveXStateException

© Cengage Learning

TABLE 12-1 Derived classes of the base System.Exception class

From Table 12-1, the two exception classes of interest are the  ApplicationException 
and SystemException classes. The other classes listed in the table are not discussed 
in this chapter; however, you are encouraged to explore the MSDN documentation to learn 
more about them.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exception Classes | 811

1 
2

ApplicationException Class
You can write your own exception classes or use one of the many supplied .NET 
exception classes. The ApplicationException class was included by the design-
ers of .NET to enable a distinction to be made between user-defined exceptions and 
exceptions defined by the system. If you write your own exceptions, they should derive 
from ApplicationException. The ApplicationException class is thrown by 
a user program, not the CLR.

SystemException Class
The system-supplied exception classes for run-time exceptions derive mainly from 
the SystemException class. SystemException adds no functionality to classes. 
Except for its constructor, the SystemException class has no additional properties 
or methods other than those derived from the Exception and Object classes. The 
Exception class has several properties. You have already seen the results of two of 
them—Message and StackTrace. StackTrace returns a string that contains the 
called trace of methods. The Message property provides details about the cause of the 
exception. Another property of the Exception class, HelpLink, can contain a URL 
to a Help file that can provide additional information about the cause of the exception. 
The Source property gets or sets the name of the application or the object that caused 
the error, and the TargetSite property gets the method that threw the exception.

Over 70 classes derive from the SystemException class. Table 12-2 lists a few of 
the more common exceptions that are thrown. You might want to consider adding 
handlers to catch many of these.

Exception classes derived from the 
SystemException class

Description of circumstances causing 
an exception to be thrown

System.ArgumentException One of the arguments provided to a method 
is invalid

System.ArithmeticException There are errors in an arithmetic, casting, or 
conversion operation. Has derived members of  
System.DivideByZeroException  
and System.OverflowException

System.ArrayTypeMismatchException An attempt is made to store an element of the 
wrong type within an array

TABLE 12-2 Derived classes of SystemException

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



812 | Chapter 12: Debugging and Handling Exceptions

Because implicit type conversion occurs when you have a floating-point operand with an 
integer, if either operand is of type double or float, no exception is thrown when you 
divide by zero.

Exception classes derived from the 
SystemException class

Description of circumstances causing 
an exception to be thrown

System.FormatException The format of an argument does not meet the 
parameter specifications

System.IndexOutOfRangeException An attempt is made to access an element 
of an array with an index that is outside the 
bounds of the array

System.InvalidCastException There is invalid casting or explicit conversion

System.IO.IOException An I/O error occurs

System.NullReferenceException There is an attempt to dereference a null 
object reference

System.OutOfMemoryException There is not enough memory to continue the 
execution of a program

System.RankException An array with the wrong number of 
dimensions is passed to a method

© Cengage Learning

TABLE 12-2 Derived classes of SystemException (continued )

Many of the exception classes included in Table 12-2 have additional classes that 
are derived from them. You will want to explore the documentation to learn about 
those derived class members. As given in Table 12-2, one derived class of the 
 ArithmeticException class is the DivideByZeroException class. This is the 
exception thrown previously in this chapter.

You should be aware that division by zero involving floating-point operands does not 
throw an exception. Exceptions are only thrown for integral or integer data types. 
The result of division by zero is reported as positive infinity, negative infinity, or Not-
a-Number (NaN). This follows the rules from IEEE 754 arithmetic. .NET languages 
were designed to implement these rules.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exception Classes | 813

1 
2

Filtering Multiple Exceptions
Following a single try block, you can include multiple catch clauses. This enables 
you to write code specific to the thrown exception. When you do this, the order of 
placement of these clauses is important. They should be placed from the most specific 
to the most generic. Because all exception classes derive from the Exception class, 
if you are including the Exception class, it should always be placed last. Because 
the DivideByZeroException class derives from the  ArithmeticException 
class, if both are included, DivideByZeroException should be listed first.   
Example 12-5 illustrates using several catch clauses to filter the exceptions. A 
finally clause is also included.

EXAMPLE 12-5

// MultipleCatches.cs
// Demonstrates the use of multiple catch
// clauses and a finally clause.
using System;
using static System.Console;

namespace MultipleCatches
{
    class MultipleCatches
    {
       static void Main(string[] args)
       {
           int [ ] examScore;
           int totalScores = 0;
           int countOfScores = 0;
           string inValue;
           double averageTestScore;
           try
           {
                Write("How many scores will you enter? ");
                inValue = ReadLine( );
                countOfScores = int.Parse(inValue);
                examScore = new int[countOfScores];
                for (int i = 0; i < countOfScores; i++)
                {
                    Write("Enter score {0}: ", i+1);
                    inValue = ReadLine( );
                    examScore[i] = int.Parse(inValue);
                    totalScores += examScore[i];
                }
                averageTestScore = totalScores / countOfScores;
                WriteLine("Average is {0}", averageTestScore);
           }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



814 | Chapter 12: Debugging and Handling Exceptions

           catch (FormatException e) 
           {
                Error.WriteLine("Problem with one of " + 
                     "the operands − Cannot compute average!");
                Error.WriteLine("Exception type: {0}", e.Message);
           }
           catch (DivideByZeroException e) 
           {
                Error.WriteLine("No scores were " +
                     "entered − Cannot compute average!");
                Error.WriteLine("Exception type: {0}", e.Message);
           }
           catch (ArithmeticException e) 
           {
                Error.WriteLine("Error in your " +
                     "arithmetic or casting.");
                Error.WriteLine("Exception type: {0}", e.Message);
           }
           catch (Exception e) 
           {
                Error.WriteLine("Any other problem" +
                                "Cannot compute average!");
                Error.WriteLine("Exception type: {0}", e.Message);
           }
           finally
           {
                WriteLine("...\n...\n...\n" +
                          "Terminated Normally!!!");
           }
           ReadKey( );
       }
    }
}

The application in Example 12-5 is poised to avoid terminating abnormally. Because 
Exception is the base exception class, any exceptions not caught from the previ-
ous catch clauses would be caught. It is basically the same as writing the catch with-
out the parenthesized arguments.

In Example 12-5, you cannot just remove the (Exception e) from the last catch. 
If you do, a syntax error is generated. The error is not generated because of removal 
of the type; it is because the catch block uses the identifier e to display the excep-
tion type. If you remove "(Exception e)", be sure to modify the code in the catch 
clause so that it does not refer to the e object.

You cannot write a catch unless you include it within a try block.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exception Classes | 815

1 
2

Now, when the user enters nonnumeric characters, such as the 9U entered during the 
running of the application shown in Figure 12-14, the output shown in Figure 12-17 
is produced.

FIGURE 12-17 Number FormatException thrown

FIGURE 12-18 DivisionByZero exception thrown

After the statements in the catch clause are executed, the finally clause is exe-
cuted as shown in Figure 12-17. Figure 12-18 shows the output produced when no 
scores are entered.

When no scores are entered, a different exception is thrown; a different catch clause 
is executed. Normally, division by zero in an application such as this should not be 
caught by an exception. Instead, it should be dealt with programmatically by checking 
to ensure that scores are entered before the division occurs. If division by zero errors 
rarely occur in your programs, you can write an exception-handling technique to deal 
with those extreme cases.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



816 | Chapter 12: Debugging and Handling Exceptions

Integer division was performed for the calculation of the average. No exception would 
have been thrown when no scores were entered if one of the operands had been cast 
to a double as follows:

averageTestScore = totalScores / (double) countOfScores;

The application terminates normally. The floating-point division by zero produced 
the result of NaN, as shown in Figure 12-19.

FIGURE 12-19 Floating-point division by zero

No control was transferred into any of the catch clauses for this run. The division 
occurred (division by zero), followed by execution of the last statement in the try 
block, which printed “Average is NaN.” The NaN was the result of the floating-point 
division. From the finally clause, “Terminated Normally!!!” is printed.

The catch clauses for Example 12-5 simply displayed messages indicating what type 
of error occurred. You would expect that real-world applications would do much 
more. Corrective action to ensure that the program not only terminates normally but 
also produces correct results every time the application is run should be your goal 
when you are writing programs. If an exception error is caught, you should fix the 
problem and keep the application running.

Exception Filters
One of the new features available with C# 6.0 are exception filters. Exception filters 
allow you to do another layer of testing before the segment of code included with 
the catch clause is executed. To add the filter, use an if statement to specify the 
conditional expression you want tested. When the exception is thrown and the asso-
ciated catch clause is identified, additional testing occurs before the block of code 
is executed. When the conditional expression evaluates to true, the body of the cor-
responding catch is executed. When the conditional expression associated with the 
if statement evaluates to false, the body of the catch clause is not executed, but 
instead it looks at subsequent listed catch clause to handle the exception. To add a 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exception Classes | 817

1 
2

filter, place the if statement on the heading line before the opening curly braces for 
the catch clause, as is illustrated in Example 12-6.

EXAMPLE 12-6

catch (Exception e)  if (countOfScores == 0)
{
     WriteLine("No scores entered – division by zero avoided!"); 
}
catch (Exception e)
{
     WriteLine("A problem other than division by zero occurred. " +
               "Cannot compute average!");
     WriteLine("Exception type: {0}", e.Message);
}

As illustrated in Example 12-6, the Exception class can appear in more than one 
catch clause. Only one of the catch bodies will be executed.

As was shown with the multiple catch clause example, Example 12-5, if a 
 DivideByZeroException catch clause appeared in the code before the 
 Exception class catch clause, the DivideByZeroException catch clause  
would be executed. Only one catch clause is ever executed.

When defining your own exception classes, it is a good idea to use the word “Exception” as 
part of the identifier. This adds to the readability and maintainability of the code.

CUSTOM EXCEPTIONS

There are many more exception classes derived from the  System. SystemException 
class than you will ever use; however, you also have the opportunity to write your 
own exception classes. The only requirement is that custom exception classes must 
derive from the ApplicationException class.

Creating an exception class is no different from creating any other class.  
Example 12-7 shows a customized (programmer-defined) exception class that can be 
thrown when floating-point division by zero is attempted. Using the word  “Exception” 
as part of its identifier name, it is named FloatingPtDivisionException.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



818 | Chapter 12: Debugging and Handling Exceptions

EXAMPLE 12-7

public class FloatingPtDivisionException : ApplicationException
{
     public FloatingPtDivisionException(string exceptionType)
 
          : base (exceptionType) 
     {
          // Empty body 
     }
}

No additional functionality is added by the FloatingPtDivisionException 
class—beyond what is available from the parent classes. The constructor for the 
FloatingPtDivisionException class has one argument. It is sent to the base 
constructor using the keyword base. This argument is a string indicating the excep-
tion type. The FloatingPtDivisionException exception class could be saved as 
a DLL and referenced by numerous applications.

To test the exception, a new class is created to include a try. . .catch block. For sim-
plicity, both classes are included in the same file but only  TestOfCustomException 
is shown. TestOfCustomException is written as shown in Example 12-8.

EXAMPLE 12-8

public class TestOfCustomException 
{
     static void Main(string[] args) 
     {
          double value1 = 0, 
                 value2 = 0,
                 answer;
          try
          {
               // Could include code to enter new values.
               answer = GetResults(value1, value2);
          }
          catch (FloatingPtDivisionException excepObj)
          {
               Error.WriteLine(excepObj.Message);
          }
          catch 
          {
               Error.WriteLine("Something else  happened!"); 
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exception Classes | 819

1 
2

          ReadKey( );
     }

     static double GetResults(double value1, double value2)
     {
          if (value2 < 0.0000001) // Be careful comparing floating-
                                  // point values for equality.
          {
                FloatingPtDivisionException excepObj = new
                     FloatingPtDivisionException("Exception type: " +
                              "Floating-point division by zero");
                throw excepObj;
          }
          return value1 / value2;
     }
}

The result of one test run of Example 12-8 is shown in Figure 12-20.

FIGURE 12-20 TestOfCustomException threw FloatingPtDivisionException exception

To learn more about the IEEE Standard for Binary Floating-Point Arithmetic, explore the 
 website www.ieee.org.

In the GetResults( ) method of Example 12-8, the conditional expression of 
(value2 < 0.0000001) was used to determine when value2 was zero. Notice 
that a relational test was performed, instead of using an equality expression such as 
(value2 == 0). Using the equality operator with floating-point variables produces 
inconsistent results because the value is not stored as a finite value.

In Example 12-8, two catch clauses are included. The first listed is the most specific. 
Listing the most specific to the most generic is a requirement when you include mul-
tiple catches; otherwise, the most specific would never be reached. As soon as one of 
the filters matches, its block of code is executed and then control either transfers to 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



820 | Chapter 12: Debugging and Handling Exceptions

the bottom of the entire try. . .catch statement or transfers to a finally statement 
if one is present.

Also, had the last catch clause (catch (Exception)) been listed first, C# would 
issue a syntax error for the second catch clause indicating “A previous catch clause 
already catches all exceptions of this or a super type.”

Remember that writing the catch clause without an argument list is the 
same as writ ing catch (Exception), which is the base of all exceptions. The 
last catch clause catches all other exceptions. If any exceptions other than 
 FloatingPtDivisionException are encountered, Exception is thrown.

Throwing an Exception
In the GetResults( ) method that tested the programmer-defined custom excep-
tion, an exception object is instantiated when “an exceptional condition occurs.” 
This exceptional condition is (value2 < 0.0000001). It could be any condition, 
but it should be one that happens very infrequently. After an object (excepObj) of 
the FloatingPtDivisionException class is instantiated with a string value of 
“Exception type: Floating-point division by zero,” the excepObj object is thrown. 
The GetResults( ) method is presented again in Example 12-9 for your review.

EXAMPLE 12-9

static double GetResults(double value1, double value2)
{
     if (value2 < 0.0000001)// Be careful comparing floating-
                            // point values for equality.
     {
          FloatingPtDivisionException excepObj = new
               FloatingPtDivisionException
                    ("Exception type: " +
                        "Floating-point division by zero");
          throw excepObj;
     }
     return value1 / value2;
}

The CLR is not throwing the exception here. Instead, the exception is thrown by the 
program using the throw keyword. When the object excepObj is thrown in the 
GetResults( ) method, the exception object propagates back up the call chain, 
first stopping at the method that called it to see if a catch is available to handle it. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Exception Classes | 821

1 
2

As you examine Example 12-8, notice that the GetResults( ) method was called 
from within the try block in the Main( ) method. When the object excepObj is 
thrown in GetResults( ), it is thrown back to the Main( ) method’s catch clause 
because that is the position from which it was called.

From inside the catch clause, excepObj.Message is printed. Observe that the value 
displayed in Figure 12-20 is exactly the same value as that used to instantiate the 
object in the GetResults( ) method. The string argument, "Exception type: 
 Floating-point division by zero", which is used to construct the object in this 
case, is sent to the base constructor. You can also retrieve the error message, excep-
tion type, and the line and method name where the exception occurred by calling the 
ToString( ) method with the exception object. This invokes the System.Object base 
class ToString( ) method. The heading for the  FloatingPtDivisionException 
class defined in Example 12-7 is shown again as follows:
public FloatingPtDivisionException(string exceptionType)
     : base (exceptionType)

The argument exceptionType sets the Message property for the base Exception 
class. This is why "Exception type: Floating-point division by zero" is 
printed when excepObj.Message is displayed in the catch clause found in the 
Main( ) method.

The identifier e is used by the system as a name for an exception object in the 
catch clause. With Windows applications, e is also used by the system as the name of 
the object representing the EventArgs class used for event handling. To avoid 
 confusion and potential syntax errors, you are encouraged to select a different identifier, 
other than e, with your user-defined exception classes.

It is important to write code that can be reused. The  FloatingPtDivisionException 
class might be stored as a class library and referenced in many different applications. It could 
be used by Web, console, or Windows applications. Thus, you should always throw the error 
back to the calling class and enable that class to decide what type of error reporting to perform.

When no exceptions are thrown in the GetResults( ) method, the result of divid-
ing value1 by value2 is returned back to Main( ).

Input Output (IO) Exceptions
Exceptions are extremely useful for applications that process or create stored data. Thus 
far, your programs have processed only data that was interactively typed while the pro-
gram was running. All of the output from your programs has been displayed on the 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



822 | Chapter 12: Debugging and Handling Exceptions

console screen. In some situations, it is more appropriate to place the data in a file or use 
a file for input as opposed to having the user type entries. In other situations, it is best to 
store the output to a file, as when the input would overflow a single screen or when the 
output produced by one application is used as input for another application. A lot of sup-
port is available in C# for dealing with files. Chapter 13 details how a file is created and 
processed. First examine the predefined exception classes available for dealing with files.

The primary exception class for files is System.IO.IOException. It derives 
from the SystemException class, which, as you learned, is a direct descendent 
of Exception. An IO.IOException exception is thrown for the following types of 
unexpected errors: a specified file or directory is not found, your program attempts to 
read beyond the end of a file, or there are problems loading or accessing the contents 
of a file. Table 12-3 presents the classes derived from the IO.IOException class 
and briefly describes the reasons for throwing the exceptions.

Exception classes derived from the 
IO.IOException class

Description of circumstances causing an 
exception to be thrown

DirectoryNotFoundException A directory cannot be found

EndOfStreamException You read past the end of the file

FileNotFoundException A disk fails or you try to access a file that does not exist

FileLoadException The file is found, but it cannot be loaded

PathTooLongException A pathname or filename is longer than the   
system-defined maximum length

© Cengage Learning

TABLE 12-3 Derived classes of IO.IOException

You will experience writing IO.IOException exception handlers in Chapter 13 
when you work with file streams.

In C#, there are none of the checked exceptions that you find in languages such as Java. 
Java distinguishes between checked and unchecked exceptions. A checked exception is 
one that must be included if you use a specific construct. If you do not include exception-
handling techniques for that construct, a syntax error is generated. All file interactions in 
Java are treated as checked exceptions—meaning you must include your file processing 
inside try. . .catch blocks in Java. Although you are also encouraged to do this in C#, 
you do not receive a syntax error if you do not place your file-handling statements in a 
try. . .catch block. There are no checked exceptions in C#!

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
2

Programming Example: ICw waterDepth Application | 823

This example demonstrates exception-handling techniques. Three classes are con-
structed for the application. One of the classes is a programmer-defined custom excep-
tion class. It inherits methods and properties from the  ApplicationException 
class and is included to illustrate throwing an exception using program statements.

Two additional classes are defined. The business logic for the application is sepa-
rated from the presentation details. The class that defines the graphical user inter-
face makes use of a try…catch block with multiple catch clauses. This class is 
used to input the data. After the data is retrieved, it is used to instantiate an object 
of the third class, the ShoalArea class. Output from the application is displayed 
in a Windows dialog box. The problem specification for the WaterDepth applica-
tion is shown in Figure 12-21.

PROGRAMMING EXAMPLE: ICW WaterDepth Application

FIGURE 12-21 Problem specification for WaterDepth application

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



824 | Chapter 12: Debugging and Handling Exceptions

ANALYZE THE 
PROBLEM

Review the problem specification in Figure 12-21 to ensure that you understand 
the problem definition. Values for the location, including location name, state, 
and mile marker number, are entered. The depths at low and high tide are also 
input into the application. Four separate days of low and high tidal water values are 
entered by the user. The FrmWaterDepth class is created as the user interface. It 
displays a number of text boxes that are used to enter values into the application. 
These values are used to instantiate the ShoalArea class.

Output consists of displaying the location entered and the calculated averages for 
the water depths at low and high tide. An overall average is calculated using all of 
the water values entered. The data members for the ShoalArea class are given 
in Table 12-4.

DATA

Data description Type Identifier

Location (town) string location

State string state

Mile number double mileMarker

Low tide depth double[ ] lowTideDepth

High tide depth double[ ] hiTideDepth

© Cengage Learning

TABLE 12-4 ShoalArea class data fields

DESIGN A 
SOLUTION

The desired output is to produce a message showing the location of the shoal area 
and data describing the current condition of the reported problem. In  Chapter 13, 
you will be introduced to file-handling techniques. This application will be 
revisited to illustrate how the records could be stored in a file for later retrieval.  
Figure 12-22 shows a prototype of the form that will be used for input. As the pro-
totype shows, four different days of water depths are entered by the user along with 
information relating to the location.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
2

FIGURE 12-22 Prototype for WaterDepth input form

©
 C

en
ga

ge
 L

ea
rn

in
g

When the Submit button is clicked, the data is retrieved and validated for accurate 
input and then used to instantiate the ShoalArea object. Finally, the results are 
displayed. Figure 12-23 shows a prototype for the projected output.

Programming Example: ICw waterDepth Application | 825

The ShoalArea class has both data and behavior characteristics. The class dia-
gram in Figure 12-24 illustrates its private data members and public methods. 
The class diagram does not show its constructors or properties. Figure 12-24 also 
includes class diagrams for the two other classes, TestOfStateException and 
FrmWaterDepth GUI.

FIGURE 12-23 Prototype for WaterDepth final output

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



826 | Chapter 12: Debugging and Handling Exceptions

During design, algorithms for the object’s behaviors are developed. Figure 12-25 
illustrates the event-handler methods. The form Load( ) and button Click( ) events 
are included.

FIGURE 12-24 Class diagrams for WaterDepth application

+CalculateAverageDepth() : double
+CheckStateOk()
+ToString() : string

-location : string
-state : string
-mileMarker : double
-lowTideDepth : double[ ]
-hiTideDepth : double[ ]

ShoalArea

+ FrmWaterDepth_Load()
+btnSubmit_Click()

-anArea : ShoalArea
FrmWaterDepth (GUI)

TestOfStateException

©
 C

en
ga

ge
 L

ea
rn

in
g

As shown in Figure 12-25, the btnSubmit_Click( ) method uses exception-
handling techniques to make sure valid numeric values are entered. A number of 
exception classes are included in the catch clause since the solution is using arrays 
to store the values.

Figure 12-26 shows the steps that should be included in several of the instance 
methods of ShoalArea class.

FIGURE 12-25 Behavior for the FrmWaterDepth class

FrmWaterDepth_Load( )
{Raised when the form is loaded}

Display the form
Create an instance of the ShoalArea object

btnSubmit_Click( )
{Raised when the Submit button is clicked}

Retrieve string values from textbox (using Text property)
try
{

Convert mile marker from string to double
Convert water depths from string to double

}
catch TestOfStateException,

FormatException,
ArithmeticException
ArrayTypeMismatchException
IndexOutOfRangeException
Exception

©
 C

en
ga

ge
 L

ea
rn

in
g

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
2

FIGURE 12-26 Behavior of the ShoalArea class

CalculateAverageDepth(double[ ] depthArray ) : avg
sum = 0
try
{

loop while (double val in depthArray)
        sum = sum + val

avg = sum / depthArray.Length
}
catch (DivideByZeroException e)
{

Write “Division by zero” message
}
return avg

CheckStateOk(string st )
Convert st to uppercase
switch (st)

Test for valid states using case statement
default
    Create TestOfStateException object
    throw exception

©
 C

en
ga

ge
 L

ea
rn

in
g

Programming Example: ICw waterDepth Application | 827

After completing the design and verifying the algorithm’s correctness, you trans-
late the design into source code. Using Visual Studio, you can drag and drop many 
of the controls from the Toolbox to the form when you create the user interface 
class. When you drag and drop controls, code is auto-generated by Visual Stu-
dio and placed in the FrmWaterDepth.Designer.cs source code file. This is the 
semi-hidden file that belongs to the application; it includes the statement “. . . do 
not modify. . .with the code editor.” Because this file is lengthy and auto-generated, 
it is not shown with the program statements that follow. Instead, Table 12-5 illus-
trates which property values were set in the design window.

CODE THE 
SOLUTION

Name Object type Property Value

Form1 Form Name Typed “FrmWaterDepth”

FrmWaterDepth Form Text Typed “ICW Shoal Reporter”

FrmWaterDepth Form BackgroundImage Located and selected waterWay.jpg

FrmWaterDepth Form AcceptButton btnSubmit

TABLE 12-5 WaterDepth property values

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



828 | Chapter 12: Debugging and Handling Exceptions

Name Object type Property Value

FrmWaterDepth Form Size 315, 342

txtBxLocation TextBox TabIndex 0

txtBxState TextBox TabIndex 1

txtBxMile TextBox TabIndex 2

txtBxLow1 TextBox TabIndex 3

txtBxLow2 TextBox TabIndex 5

txtBxLow3 TextBox TabIndex 7

txtBxLow4 TextBox TabIndex 9

txtBxHi1 TextBox TabIndex 4

txtBxHi2 TextBox TabIndex 6

txtBxHi3 TextBox TabIndex 8

txtBxHi4 TextBox TabIndex 10

btnSubmit Button TabIndex 11

btnSubmit Button Text Typed “Submit”

lblError Label Text Typed “”

label1 Label Text Typed “Location”

label2 Label Text Typed “State”

label3 Label Text Typed “Mile Marker”

label4 Label Text Typed “Low Tide”

label5 Label Text Typed “High Tide”

© Cengage Learning

TABLE 12-5 WaterDepth property values (continued )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
2

As you review Table 12-5, you will notice that each of the TextBox objects was 
named. The Name property was used for this. After the algorithms are designed, 
they should always be desk checked to ensure that correct output is produced. 
As with other applications you have developed, you should also devise a plan for 
testing the application. Walk through your logic, reread the problem specification, 
and ensure you are fulfilling the problem requirements. Think about the types of 
exceptions that could be thrown and make sure you have procedures written to 
handle these types of problems.

The FrmWaterDepth.Designer.cs file includes program statements that instan-
tiate the control objects that are placed on the form. The file includes assignment 
statements that set the controls’ sizes and initial locations. It also includes state-
ments that set the background image for the form as well as program statements 
that register events of interest such as the Submit button click event.

The program statements for the ShoalArea class follow. A reference to the 
 System.Diagnostics namespace was added so debugging information could be 
sent to the Output window. This namespace includes two classes: Debug and Trace. 
Both classes have WriteLine( ) methods that work similarly to the  Console.
WriteLine( ) method. They differ in that the output is sent to the Output win-
dow when programs are run in debug mode. The  CalculateAverageDepth( ) 
method in the ShoalArea class calls Trace.WriteLine( ) if an attempt is 
made to divide by zero.
// ShoalArea.cs
// Class representing shoaled area 
using System;
using System.Diagnostics;

namespace WaterDepth
{
     public class ShoalArea
     {
          private string location;
          private string state;
          private double mileMarker;
          private double[ ] lowTideDepth;
          private double[ ] hiTideDepth;

          public ShoalArea( )
          {
               lowTideDepth = new double[4];
               hiTideDepth = new double[4]; 
          }

Programming Example: ICw waterDepth Application | 829

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



830 | Chapter 12: Debugging and Handling Exceptions

          public ShoalArea(string loc, string st, double mile,
                           double[ ] low, double[ ] hi)
          {
               location = loc;
               CheckStateOk(st);
               mileMarker = mile;
               lowTideDepth = low;
               hiTideDepth = hi;
          }

          public ShoalArea(string loc, string st, double mile) 
          {
               location = loc;
               state = st;
               mileMarker = mile;
          }

          //Properties
          public string Location
          {
               get { return location;}
               set { location = value;}
          }
          public string State
          {
               get { return state; }
               set { CheckStateOk(value ); }
          }
          public double MileMarker
          {
               get { return mileMarker; }
               set { mileMarker = value; }
          }
          public double[ ] LoTideDepth
          {
               get { return lowTideDepth; }
               set { lowTideDepth = value; }
          }
          public double[ ] HiTideDepth
          {
               get { return hiTideDepth; }
               set { hiTideDepth = value; }
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
2

          public double CalculateAverageDepth(double [ ]
                                                  depthArray) 
          {
               double sum = 0;
               double avg;
               try
               {
                    foreach (double val in depthArray)
                             sum += val;
                    avg = sum / depthArray.Length;
               }
               catch (DivideByZeroException e)
               {
                    avg = 0;
                      Trace.WriteLine("Attempted to Divide by Zero" +
                                   "\nException Type: " +
                                   e.Message);
               }
               return avg;
          }

          public void CheckStateOk(string st) 
          {
               switch (st.ToUpper( ))
               {
                    case "FL":
                    case "GA":
                    case "NC":
                    case "SC":
                    case "VA":
                          state = st.ToUpper( );
                          break;
                    default:
                          TestOfStateException ex =
                               new TestOfStateException
                                        ("State not Part" +
                                         " of Atlantic ICW");
                          throw ex; 
               }
          }

          public override string ToString( )
          {
               return "Location: " + location +
                      "\nState: " + state +
                      "\nMile: " + mileMarker +
                      "\nAverage Low Water Depth: " +

Programming Example: ICw waterDepth Application | 831

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



832 | Chapter 12: Debugging and Handling Exceptions

                      CalculateAverageDepth
                              (lowTideDepth).ToString("F2") + 
                      "\nAverage High Water Depth: " + 
                      CalculateAverageDepth
                              (hiTideDepth).ToString ("F2") + 
                      "\n\nOverall Average Water Depth: " + 
                         ((CalculateAverageDepth(lowTideDepth) + 
                      CalculateAverageDepth
                              (hiTideDepth)) / 2.0).ToString("F2");
          }
     }
}

The source code listing for the programmer-defined custom exception class 
is shown in the following. The constructor for this class has one parameter. It 
accepts a string argument representing the type of exception. Notice that value 
 (exceptionType) is sent to the base class as part of the constructor’s heading. 
The TestOfStateException class has access to all of the methods and proper-
ties of the ApplicationException and Exception classes. No additional func-
tionality was added to the class. An instance of the TestOfStateException class 
is created in the ShoalArea class when states other than Florida (FL), Georgia 
(GA), North Carolina (NC), South Carolina (SC), or Virginia (VA) are entered. The 
switch statement in the CheckStateOk( ) method throws the exception.

// TestOfStateException.cs
// Custom-defined Exception class
using System;

namespace WaterDepth
{
     public class TestOfStateException : ApplicationException 
     {
          public TestOfStateException(string exceptionType)
               : base(exceptionType)
          {
          }
     }
}

The source code for the partial class that defines the graphical user interface 
is shown last. Remember that the FrmWaterDepth.Designer.cs file contains 
the code that is auto-generated by Visual Studio. Much of the application’s func-
tionality is written into the btnSubmit_Click ( ) method. The try statement 
includes multiple catch clauses. As with the ShoalArea class, a reference to the 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
2

System.Diagnostics namespace was added. If an exception is thrown, a mes-
sage is sent to the Output window and also to an invisible label on the form.
// FrmWaterDepth.cs
// Graphical User Interface class
using System;
using System.Windows.Forms;
using System.Diagnostics;

namespace WaterDepth
{
     public partial class FrmWaterDepth : Form
     {
          private ShoalArea anArea;

          public FrmWaterDepth( )
          {
               InitializeComponent( );
          }

          private void btnSubmit_Click(object sender, EventArgs e)
          {
               double[ ] lowTides = new double[4];
               double[ ] hiTides = new double[4];
               anArea.Location = txtBxLocation.Text;
               try
               {
                    lowTides[0] = double.Parse(txtBxLow1.Text);
                    lowTides[1] = double.Parse(txtBxLow2.Text);
                    lowTides[2] = double.Parse(txtBxLow3.Text);
                    lowTides[3] = double.Parse(txtBxLow4.Text);
                    hiTides[0] = double.Parse(txtBxHi1.Text);
                    hiTides[1] = double.Parse(txtBxHi2.Text);
                    hiTides[2] = double.Parse(txtBxHi3.Text);
                    hiTides[3] = double.Parse(txtBxHi4.Text);
                    anArea.State = txtBxState.Text;
                    anArea.MileMarker= 
                         double.Parse(txtBxMile.Text);
                    anArea.LoTideDepth = lowTides;
                    anArea.HiTideDepth = hiTides;
                    MessageBox.Show(anArea.ToString( ), 
                                    "ICW Problem Area");
               }
               catch (TestOfStateException ex)
               {
                    Trace.WriteLine("\nException: " + ex.Message);
                    lblError.Text += "\nException: " + ex.Message;
               }
               catch (FormatException ex)

Programming Example: ICw waterDepth Application | 833

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



834 | Chapter 12: Debugging and Handling Exceptions

               {
                    Trace.WriteLine("Method\'s actual argument " +
                                    "does not match formal " +
                                    "parameter.\nException: " +
                                    ex.Message);
                    lblError.Text += "\nException: " + ex.Message; 
               }
               catch (ArithmeticException ex)
               {
                    Debug.WriteLine("Errors in an arithmetic, " +
                                    "casting, " +
                                    "or conversion." + 
                                     "\nException: " + ex.Message);
                    lblError.Text += "\nException: " + ex.Message;
               }
               catch (ArrayTypeMismatchException ex)
               {
                     Trace.WriteLine("Trying to store an element " +
                                   "of wrong type in an array." + 
                                   "\nException: " + ex.Message);
                    lblError.Text += "\nException: " + ex.Message; 
               }
               catch (IndexOutOfRangeException ex)
               {
                    Trace.WriteLine("Trying to access element " +
                                    "of an array with index " + 
                                           "outside bounds of the array." + 
                                      "\nException: " + ex.Message);
                    lblError.Text += "\nException: " + ex.Message; 
               }
               catch (Exception ex)
               {
                    lblError.Text += "\nException: " + ex.Message;
                    Trace.WriteLine("Exception: " + ex.Message);
               }
          }

          private void FrmWaterDepth_Load(object sender, 
                                                  EventArgs e)
          {
               anArea = new ShoalArea( );
          }
     }
}

In addition to the FrmWaterDepth.Designer.cs partial class (which is 
not shown), the Program.cs file is also part of the application. This is where 
the Main( ) method is located. No programmer statements are added to this 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
2

file. Recall that the Main( ) method is the entry point into the application. With 
 Windows applications, the method calls the Application.Run( ) method, 
which places the program in a process loop.

Figure 12-27 shows the original user interface prior to values being entered. If the 
user enters correct values, no exception is thrown and the program terminates 
normally.

Programming Example: ICw waterDepth Application | 835

FIGURE 12-27 FrmWaterDepth form

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



836 | Chapter 12: Debugging and Handling Exceptions

Figure 12-28 illustrates what the output is when the program works correctly. No 
exceptions are thrown. The output is displayed in a MessageBox.

FIGURE 12-28 WaterDepth application output

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
2

The problem specification indicates that only valid states along the Atlantic ICW 
should be entered into the application. An object of the  TestOfStateException 
class is thrown if the ShoalArea objects’ state data member is assigned an 
invalid value for the state. The message property of the Exception class is dis-
played in a label named lblError on the form object. These points are shown in  
Figure 12-29.

Programming Example: ICw waterDepth Application | 837

FIGURE 12-29 State exception thrown in WaterDepth application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



838 | Chapter 12: Debugging and Handling Exceptions

As you review the program statements, notice that several catch clauses were 
included. Figure 12-30 shows the message displayed in the lblError when the 
user attempts to enter a nonnumeric value for the mile marker.

FIGURE 12-30 Invalid input exception thrown in WaterDepth application

Each of the catch clauses displays a message on the form in the lblError and 
also sends the same message as an argument to either Debug.WriteLine( ) or 
Trace.WriteLine( ). The WriteLine( ) method of the Debug or Trace class 
differs from the Console class method in that it only works with single-string 
arguments. No variable values can be inserted inside the parentheses. Both the 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Coding Standards | 839

1 
2

Trace and Debug classes can be used to help you debug your program. Debug only 
works in debug builds. Trace can also be used in release builds. They send output 
to the Output window, as shown in Figure 12-31.

The last two lines in the Debug Ouput window, shown in Figure 12-31, were gen-
erated by the FormatException catch clause in the FrmWaterDepth.cs class. 
Additional lines, which are not shown, were automatically generated when the 
form was loaded. As noted previously, a reference to the System. Diagnostics 
namespace was added. This enabled debugging information to be sent to the 
 Output window.

FIGURE 12-31 Debug information sent to Output window

Coding Standards
Do not use exception-handling techniques to deal with problems that can be han-
dled with reasonable coding effort. Make a clear difference between an error and an 
exception.

Wrong input data should be an expected situation. Do not handle wrong input data 
with exception-handling techniques. Use if. . .else statements.

Not all methods throw an exception. Encapsulating all methods in a try. . .catch 
block will hamper performance.

Always order exceptions from the most specific to the least specific. Putting the gen-
eral catch clause first will cause all exceptions to be caught by that catch clause.

When creating custom classes, add Exception onto the end of the name for the 
identifier.

Use meaningful messages with exceptions and avoid grammatical mistakes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



840 | Chapter 12: Debugging and Handling Exceptions

Resources
Additional sites you might want to explore:

 ? The C# Corner - Exception - Handling articles— 
http://www.c-sharpcorner.com/1/64/exception-handling-C-Sharp.aspx

 ? msdn Exceptions and Exception Handling (C# Programming Guide)— 
http://msdn.microsoft.com/en-us/library/ms173160.aspx

 ? CodeProject - Exception Handling in C#— 
http://www.codeproject.com/Articles/125470/ 
Exception-Handling-for-C-Beginners

 ? C# Exception— 
http://www.dotnetperls.com/exception

QUICK REVIEW
 1. Two major types of program errors are compiler or syntax errors and 

run-time errors.
 2. Compiler errors are associated with a violation in one of the rules of the 

language.
 3. C# Language Specifications are the authoritative source for C# gram-

mar and syntax. These specifications detail information on all aspects 
of the language.

 4. Programs with run-time errors may stop during execution or produce 
output that is not correct.

 5. Logic errors are normally associated with programs that run but pro-
duce incorrect results.

 6. The Debugger lets you break, or halt, the execution of your program to 
examine your code, and evaluate or change variables in your program.

 7. A breakpoint is a line in your program that you select, and when it is 
reached, the program is suspended or placed in break mode. When the 
break occurs, the program and the Debugger are said to be in break mode.

 8. The Locals window shows variables in scope and their values.
 9. You could step through your code line by line, see the execution path, 

and examine variable and expression values as they change using the 
Step Into, Step Over, and Step Out commands of the Debugger.

 10. The Step Over command differs from the Step Into command in that it 
executes the entire method called before it halts. Step Into halts after each 
line is executed. Step Out returns control back to the calling method.

 11. The Watch window lets you type one or more variables or expressions 
that you want to observe while the program is running.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
2

Exercises | 841

 12. Exceptions are unexpected conditions that happen very infrequently. 
They are usually associated with some type of error condition that 
causes an abnormal termination if they are not handled.

 13. If a program encounters an error during run-time from which it is unable 
to recover, such as division by zero, it raises or throws an exception.

 14. If none of the methods along the call chain include code to handle the 
error, the CLR handles the exception by halting the entire application.

 15. Bugs are programmer mistakes that should be caught and fixed before 
an application is released.

 16. In addition to bugs, programs can experience errors because of user 
actions. These actions can cause exceptions to be thrown.

 17. A stack trace is a listing of all the methods that are executing when an 
exception is thrown.

 18. Exception-handling techniques are for serious errors that occur infre-
quently. Exceptions are those events from which a program is not able to 
recover, such as attempting to read from a data file that does not exist.

 19. For exception handling in C#, try. . .catch blocks are used. Code that 
might be a problem is placed in a try block. The code to deal with the 
problem, the exception handler, is placed in catch blocks, which are 
also called catch clauses. The code found in the finally block is exe-
cuted regardless of whether an exception is thrown.

 20. When an exception is raised, an object is created to represent the 
exception. All exception objects inherit from the base class named 
Exception, which is part of the System namespace.

 21. If you create your own exception classes, they should derive from the 
ApplicationException class. Other system exception classes 
derive from the SystemException class. It is a good idea to use the 
word “Exception” as part of the identifier.

 22. When you include filters for multiple exceptions in your class, the 
order of placement of these clauses is very important. They should be 
placed from most specific to most generic.

EXERCISES
 1. _____ are unexpected conditions that happen very infrequently.

a. Bugs
b. Conditions
c. Streams
d. Exceptions
e. Objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



842 | Chapter 12: Debugging and Handling Exceptions

 2. Raising an exception is the same as:
a. catching an exception
b. trying a block of code that might create an exception
c. throwing an exception
d. defining a new exception class
e. rolling back an exception

 3. A Just-In-Time Debugging window is displayed when a(an):
a. application is executed
b. unhandled exception is thrown
c. handled exception is thrown
d. unhandled exception is caught
e. handled exception is caught

 4. The segment of code that might create an unexpected problem should be:
a. placed in a try block
b. placed in a catch block
c. placed in a finally block
d. placed on the outside of the try. . .catch. . .finally block
e. included in the Main( ) method

 5. What type of exception would be thrown if the user enters the wrong 
type of data when requested from the keyboard?
a. FormatException

b. Invalid.CastException

c. NullReferenceException

d. IndexOutOfRangeException

e. ArithmeticException

 6. What type of exception would be thrown if a program statement 
attempted to access location 0 in an array defined to hold 20 elements?
a. FormatException

b. Invalid.CastException

c. NullReferenceException

d. IndexOutOfRangeException

e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
2

 7. What type of exception would be thrown if the following arithmetic 
were performed?
double aValue = 0,
       bValue = 0;
int result = (int) aValue / (int) bValue;

a. FormatException

b. Invalid.CastException

c. ArgumentException

d. DivideByZeroException

e. none of the above
 8. If an application is written to filter several exceptions including 

 Exception, DivideByZeroException, and ArithmeticException, 
in what order should they be listed?
a. Exception, DivideByZeroException, then 

ArithmeticException

b. Exception, ArithmeticException, then 
DivideByZeroException

c. DivideByZeroException, Exception, then 
ArithmeticException

d. DivideByZeroException, ArithmeticException, then 
Exception

e. It does not matter.
 9. To avoid an exception with files, you can use a try. . .catch block and 

include which exception class in your catch clause?
a. File.ExistsException

b. IOException

c. FileException

d. ExceptionFile

e. none of the above
 10. Writing a catch clause without including the parentheses and an argu-

ment list such as catch { }:
a. generates a syntax error
b. requires a finally clause
c. has the same effect as catch (Exception) { }
d. throws an exception
e. none of the above

Exercises | 843

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



844 | Chapter 12: Debugging and Handling Exceptions

 11. Two major types of errors found in programs are:
a. compiler and syntax
b. compiler and exceptions
c. logic and grammar
d. compiler and run-time
e. exceptions and logic

 12. _____ errors are the easiest to discover and correct.
a. Exception
b. Compiler
c. Run-time
d. Logic
e. Omission

 13. C# Language Specifications are:
a. the authoritative source for C# grammar
b. the specifications that detail information on all aspects of the 

language
c. the authoritative source for C# syntax
d. available for a free download
e. all of the above

 14. The Debugger can be used to:
a. observe syntax errors
b. rewrite the grammar for the program
c. review what the output should be
d. step through an application
e. none of the above

 15. A marker that is placed in an application, indicating the program should 
halt execution when it reaches that point, is called a(n):
a. exception
b. debugger
c. watch
d. pause
e. breakpoint

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
2

 16. If a method throws an exception and the exception is not caught inside 
the method:
a. The program automatically crashes.
b. The rest of the program is executed, but the program statement(s) 

that caused the problem is skipped.
c. An exception is thrown.
d. The method execution returns to the first line in the method.
e. none of the above

 17. Which of the following lines contains information regarding a thrown 
exception named e?
a. e.Message

b. e.ExceptionType

c. e.ExceptionInfo

d. e.ExceptionMessage

e. e.Information

 18. The Debugger in Visual Studio offers all of the following options for 
stepping, except:
a. Step Into
b. Step Over
c. Step Out
d. Step Through
e. none of the above

 19. The primary difference between using Step Into and Step Over is:
a. Step Into halts at the last line of code inside a called method.
b. Step Over halts at the first line of code inside a called method.
c. Step Over steps into the most deeply nested method.
d. Step Over executes the called method and halts at the first line of 

code after the method.
e. Minimal. They provide the same functionality.

Exercises | 845

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



846 | Chapter 12: Debugging and Handling Exceptions

 20. The ApplicationException class is derived from:
a. System

b. SystemException

c. System.Exceptions

d. ExceptionApplication

e. Exception

 21. The result of division by zero is undefined for both integral and floating-
point values. Describe how avoiding floating-point division by zero dif-
fers from integral division by zero.

 22. Give one example of what would cause an ArithmeticException 
exception to be thrown.

 23. Give one example of what would cause a FormatException exception 
to be thrown.

 24. Give one example of what would cause an  IndexOutOfRangeException 
exception to be thrown.

 25. If an application is written to filter Exception, ArgumentException, 
IndexOutOfRangeException, and ArithmeticException, does it matter 
which order they should be listed? If so, what is the order?

PROGRAMMING EXERCISES
 1. Write an exception tester application that enables you to see the impact 

of exceptions being thrown. Include multiple catch clauses. Include 
in our investigation the ArithmeticException, FormatException, 
IndexOutOfRangeException, and Exception classes. For each 
exception, write a try block containing errors to throw the exceptions. 
As you test the application, include an error that throws the exception 
and then comment it out and program an error that throws the next 
exception and so on. Your final solution should include at least one 
statement per exception that throws each exception. The statements 
should all be commented out by the time you finish testing. Be sure to 
include documenting comments with each statement.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
2

Programming Exercises | 847

 2. Design an application that enables users to enter two values of type 
int. Write a method that retrieves the values and stores them and their 
products in separate structures. If you are designing a Windows appli-
cation, you might allow the user to input the values in a TextBox and 
then retrieve and store the values in a ListBox. Their product could be 
stored in a separate ListBox. Your solution should include exception-
handling techniques with a minimum of two catch clauses and a finally 
clause. Consider using your finally clause to prepare the GUI for the 
next set of values.

 3. Create a multi-class solution that can be used to calculate body mass 
index (BMI). The BodyMassIndexCalculator class should have 
data members of weight and height. Write an application that lets users 
enter their weight and height in feet and inches. Calculate their BMI. 
Include appropriate exception-handling techniques.

 4. Include exception-handling techniques with the traditional averaging 
program. Allow the user to input multiple sets of scores. Ensure that 
only numeric values are entered and that values fall between 0 and 100. 
Calculate the average for each set of values. Test the result to determine 
whether an A, B, C, D, or F should be recorded. The scoring rubric is as 
follows: A—90–100; B—80–89; C—70–79; D—60–69; F < 60. Your solu-
tion should include exception-handling techniques with a minimum of 
three appropriate catch clauses.

 5. Create a multi-class solution that includes a Fraction class. Fraction 
should have data members of numerator and denominator and be used 
to represent the ratio of the two integer values. Include appropriate con-
structors, properties, methods, and a ToString( ) method that returns 
a fraction using the original integers. Include a method that reduces 
the fraction to its lowest terms. Include appropriate exception handling 
techniques. If the denominator is assigned zero, throw and handle an 
exception. Create an application class to test the Fraction class. Be 
sure to test your exception-handling code.

 6. Create a multi-class solution that includes a WeightConverter class. 
The WeightConverter class should be used to convert standard 
weight measurements. In your list of options, include as a minimum 
grams, kilograms, pounds, and ounces. Create an application class to 
test the WeightConverter class. If the user enters a negative number 
or a nonnumeric value, throw and handle an exception.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



848 | Chapter 12: Debugging and Handling Exceptions

 7. Create a Windows application that has the functionality of a calculator 
and works with integral values. Allow the user to select buttons repre-
senting numeric values. If the user attempts to divide by zero, throw and 
handle an exception.

 8. Revise the calculator application created in Exercise #7 to enable deci-
mal values to be entered. Recall that an exception is not automatically 
thrown by the CLR when the divisor operand is a non-integral value. 
Create a custom exception class that can be thrown if division by zero 
is attempted. If the divisor becomes zero, instead of doing the division, 
display a message indicating that division by zero is not possible.

 9. Write an application that can be used to count the frequency of char-
acters in a paragraph. Allow the user to input several sentences using 
a graphical user interface. Display the count for nonzero characters. 
Use an array as part of your solution. Include appropriate exception- 
handling techniques so that if the program attempts to access an ele-
ment outside of the bounds of the array, the exception is handled.

 10. Create a BankAccount class that can be used to maintain a bank account 
balance. Include appropriate constructors, properties, and methods to 
enable the account to be originally created and for amounts to be depos-
ited and withdrawn for the account. Write the  NegativeException 
class to extend the ApplicationException class to include the 
additional functionality of a new message detailing the error being 
sent when the exception is thrown. Throw the  NegativeException 
when a negative value is entered to initially create the account or if a 
negative value is entered for a deposit or withdrawal. Include additional 
 exception-handling techniques. Write an application class and test the 
exception-handling techniques.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

Working With Files
IN THIS CHAPTER, YOU WILL:

 ? Learn about the System.IO namespace

 ? Explore the File and Directory classes

 ? Contrast the FileInfo and DirectoryInfo classes to the File and Directory classes

 ? Discover how stream classes are used

 ? Read data from text files

 ? Write data to text files

 ? Explore appending data to text files

 ? Use exception-handling techniques to process text files

 ? Read from and write to binary files

13CHAPTER

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



850 | Chapter 13: Working with Files

In this chapter, you will discover how to use data from sources other than the key-
board for your applications. You will learn about the major classes used to work with 
file and directory systems. You will write programs that access stored data and pro-
grams that store results in a file. You will also extend your knowledge of handling 
exceptions as they relate to input and output. In this chapter, you are presented with 
the basics of creating, opening, closing, reading, and writing files.

System.IO Namespace
A data file is a computer file that can be processed, manipulated, or used as input by 
a computer program. Computer programs also create data files as output. A data file 
is considered a named collection of bytes having persistent or lasting storage. When 
working with data files, you think in terms of directory paths, disk storage, and file 
and directory names. The .NET Framework includes the System.IO namespace, 
which provides basic file and directory support classes. It also contains types that 
enable you to read and write files and data streams.

When you consider a stream, you think of something flowing in a single direction. 
A data stream is the flow of data from a source to a single receiver. C#, like many other 
programming languages, uses streams as a way to write and read bytes to and from 
a backing medium, such as disk storage. Many types of classes defined as part of the 
System.IO namespace are designed around streams. Table 13-1 lists the types that 
are explored in this chapter.

Class Description

BinaryReader Reads primitive data types as binary values

BinaryWriter Writes primitive types in binary to a stream

Directory Exposes static methods for creating and moving 
through directories and subdirectories

DirectoryInfo Exposes instance methods for creating and moving through 
directories and subdirectories

DirectoryNotFoundException The exception that is thrown when part of a file or directory 
cannot be found

EndOfStreamException The exception that is thrown when reading is attempted 
past the end of a stream

TABLE 13-1 System. IO classes

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



System.IO Namespace | 851

1 
3

Class Description

File Provides static methods for creating, copying, deleting, 
moving, and opening files, and aids in the creation of 
FileStream objects

FileInfo Provides instance methods for creating, copying, deleting, 
moving, and opening files, and aids in the creation of 
FileStream objects

FileLoadException The exception that is thrown when a file is found but cannot 
be loaded

FileNotFoundException The exception that is thrown when an attempt to access a 
file that does not exist on disk fails

FileStream Exposes a stream around a file, supporting both 
synchronous and asynchronous read and write operations

InvalidDataException The exception that is thrown when a data stream is in an 
invalid format

IOException The exception that is thrown when an I/O error occurs

Stream Provides a generic view of a sequence of bytes

StreamReader Implements a TextReader that reads characters from 
a byte stream

StreamWriter Implements a TextWriter for writing characters to a 
stream

TextReader Represents a reader that can read a sequential series of 
characters; this class is abstract

TextWriter Represents a writer that can write a sequential series of 
characters; this class is abstract

© Cengage Learning

TABLE 13-1 System. IO classes (continued )

As given in Table 13-1, many of the System.IO types are exception classes that can 
be thrown while accessing information using streams, files, and directories.  Others 
deal with creating and accessing FileStream objects. Four of the classes given in 
Table 13-1 provide methods for copying, deleting, moving, and opening files and 
directories. These classes are examined first.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



852 | Chapter 13: Working with Files

File and Directory Classes
The File, FileInfo, Directory, and DirectoryInfo classes are considered util-
ity classes. They normally work with stream objects, allowing you to manipulate files 
and directory structures. The File and Directory classes expose only static 
members. Figure 13-1 shows some of the classes in the System.IO namespace.

FIGURE 13-1 NET file class hierarchy

©
 C

en
ga

ge
 L

ea
rn

in
g

As shown in Figure 13-1, the class hierarchy for the System.IO namespace is inter-
esting. Both the File and Directory classes are direct descendants of the Object 
class, whereas the other classes are descendants of the  MarshalByRefObject 
class. Notice FileInfo and DirectoryInfo extend the FileSystemInfo class. 
 StreamReader and StreamWriter extend the TextReader and  TextWriter 
classes. FileSystemInfo, TextReader, and TextWriter are subclasses of 
the  MarshallByRefObject class. As noted in the MSDN documentation, 
 MarshalByRefObject is the base class for objects that communicate across appli-
cation domain boundaries by exchanging messages using a proxy. Objects that do 
not inherit from  MarshalByRefObject are implicitly marshal by value. The boxes 
containing three dots indicate where additional classes are derived.

File Class
The IO.File class shown in Figure 13-1 provides static methods that aid in copy-
ing, moving, renaming, creating, opening, deleting, and appending to files. Because 
they expose only static members, objects cannot be instantiated from the class. 
Table 13-2 lists the key static members and provides a brief description.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



File and Directory Classes | 853

1 
3

Every member of the IO.File class is a method with a public static access 
modifier. Recall that when a method uses a static modifier, the method belongs to 
the class itself, not to a specific object of the class. The method does not require that 
an object of the class be instantiated to invoke it. To invoke the method, the method 
name is preceded by the class name (as opposed to an object’s name). For example, 
to call the Copy( ) method to make a copy of sourceFile, naming the new file 
 targetFile, you would write:
File.Copy("sourceFile", "targetFile");

This assumes the using System.IO namespace was included. Otherwise, you would 
need to fully qualify the name.

Static methods are also available for SetAttributes, SetCreationTime, 
 SetLastAccessTime, and SetLastWriteTime.

Static member Description

AppendAllText( ) Appends the specified string to the file, creating the file if it does not 
already exist

AppendText( ) Creates a StreamWriter that appends UTF-8 encoded text to an 
existing file

Copy( ) Copies an existing file to a new file

Create( ) Creates a file in the specified path

Delete( ) Deletes the specified file

Exists( ) Determines whether the specified file exists

GetCreationTime( ) Returns the date and time when the specified file was created

GetLastAccessTime( ) Gets the date and time when the specified file was last accessed

GetLastWriteTime( ) Gets the date and time when the specified file was last written to

Move( ) Moves a specified file to a new location

© Cengage Learning

TABLE 13-2 File class static members

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



854 | Chapter 13: Working with Files

If you use Visual Studio to create the application and include reference to the 
 System.IO namespace, the IntelliSense feature provides helpful information while 
you are developing your application. Figure 13-2 illustrates what is shown as you 
select  methods of the File class.

As was discussed in previous chapters, Visual Studio automatically inserts a number of 
using statements at the top of the source code when you create an application. The 
System.IO is not one of them. You have to manually add using System.IO; The extra 
using statements that are not needed are deleted from examples shown in this chapter.

FIGURE 13-2 IntelliSense display

One of the static methods of the File class is Exists( ). Prior to writing pro-
gram statements that access data in a file, you should always check to make sure 
the file is available. Example 13-1 illustrates invoking this method and several other 
methods that return information about the file.

EXAMPLE 13-1

/* DirectoryStructure.cs
   Illustrates using File and Directory utilities.
*/
using System;
using System.IO; // Added for File Access

class DirectoryStructure
{ 
     public static void Main( )
     {
         string fileName = "BirdOfParadise.jpg";
         if (File.Exists(fileName))
         {
             Console.WriteLine("FileName: {0}", fileName);
             Console.WriteLine("Attributes: {0}",
                               File.GetAttributes(fileName));
             Console.WriteLine("Created: {0}",
                               File.GetCreationTime(fileName));

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



File and Directory Classes | 855

1 
3

             Console.WriteLine("Last Accessed: {0}",
                               File.GetLastAccessTime(fileName));
          }
          else
          {
             Console.WriteLine("{0} not found - using current" +
                               "directory:", fileName);
          }
          Console.ReadKey( );
     }
}

FIGURE 13-3 Output from the DirectoryStructure application

Archive is shown as the value for the Attributes of the file. Depending on the 
operating system version you are running, you might see Normal instead of Archive. 
Normal attribute indicates the file is a standard file that has no special attributes, such 
as ReadOnly. Archive indicates the file is a candidate for backup or removal. The 
method GetAttributes( ) returns a FileAttributes enumeration. Enumerated 
types are discussed in the next section.

EnUmERATED TypES

An enumerated type is a special form of value type that supplies alternate names 
for the values of an underlying primitive type. An enumeration type has a name, an 
underlying type, and a set of fields. Also called an enumeration or an enum data type. 

In previous chapters, using static System.Console; was added to eliminated the need 
to precede calls to Write( ), WriteLine( ), and Read( ), ReadLine( ) with the Console class 
name. This using statement was not added for examples in this chapter.

The output produced from the DirectoryStructure application is shown in 
Figure 13-3.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



856 | Chapter 13: Working with Files

It consists of a set of named values called members, enumerators or elements of the type. 
The enumerator names are user-defined identifiers that behave as constants once they are 
defined. Once a variable is declared of the enumeration type, any of the named values can 
be assigned to the variable. You’ve previously seen an enumerated type, the boolean type. 
Recall bool is defined with member elements of true and false. The Boolean type is a 
pre-defined enumeration in C#. 
C# provides the C-like feature of being able to define specific integer values for enu-
merations and follows the C style for dealing with enumerators and enables enum 
value to be explicitly converted to an integer and back again.
One example of a programmer-defined enumeration might be a type called 
 DayOfWeek. The possible fields could be Sunday, Monday, Tuesday, Wednesday, 
Thursday, Friday, and Saturday. Sunday could be associated with the integer 0, 
Monday with 1 and each consecutive day with 2, 3, 4, 5, and 6, respectively. The enu-
meration could be defined as follows:

public enum DayOfWeek
{
   Sunday,
   Monday,
   Tuesday,
   Wednesday,
   Thursday,
   Friday,
   Saturday
}

The enumeration is defined outside of the class, uses the enum keyword, and normally 
offers public access. After the enumeration is defined, you may use the values as 
fields for the data type. For example, to print the string "Tuesday", you could write:
WriteLine("Today is {0}!", DayOfWeek.Tuesday);

The output produced would be as follows:
Today is Tuesday!

You can also use explicit type casting to access the associated integer assigned to the 
value. For example, to display the number associated with Wednesday, you could write:
Console.WriteLine("{0} = {1}", DayOfWeek.Wednesday, 
                  (int)DayOfWeek.Wednesday);

The output produced would be as follows:
Wednesday = 3

Now look back at Example 13-1. The method GetAttributes(fileName) returns 
the FileAttributes for the file. FileAttributes is an enumeration. As shown in 
Figure 13-3, the field it returned was Archive. Other enumerated FileAttributes 
values include Compressed, Device, Directory, Encrypted, Hidden, Normal, 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



File and Directory Classes | 857

1 
3

ReadOnly, and System. Using enumerations such as this one makes coding simpler 
and the output more readable.

Directory Class
Like the members of the File class, all members in the Directory class are 
 public static methods. The Directory class provides static methods for cre-
ating and moving through directories and subdirectories. Table 13-3 lists some of the 
more interesting methods of the Directory class.

public static member Description

CreateDirectory( ) Creates all the directories in a specified path

Delete( ) Deletes a specified directory

Exists( ) Determines whether the given path refers to an existing directory

GetCreationTime( ) Gets the creation date and time of a directory

GetCurrentDirectory( ) Gets the current working directory of the application

GetDirectories( ) Gets the names of subdirectories in a specified directory

GetFiles( ) Returns the names of files in a specified directory

GetParent( ) Retrieves the parent directory of the specified path, including both 
absolute and relative paths

GetLastWriteTime( ) Returns the date and time when the specified file or directory was 
last written to

Move( ) Moves a file or a directory and its contents to a new location

SetCurrentDirectory( ) Sets the application’s current working directory to the specified 
directory

© Cengage Learning

TABLE 13-3 Directory class members

.NET also includes DirectoryInfo and FileInfo classes. These classes are very 
similar to their name counterparts, Directory and File. They differ in that the 
DirectoryInfo and FileInfo classes both have instance methods instead of static 
members. They are direct descendents of the FileSystemInfo class.

Objects can be instantiated of the DirectoryInfo and FileInfo classes. No objects 
can be instantiated of the File and Directory classes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



858 | Chapter 13: Working with Files

FileInfo and DirectoryInfo Classes
The FileInfo and DirectoryInfo classes add functionality beyond method 
members of the File and Directory classes. They both have a number of  public 
properties and, of course, both offer a public constructor. Neither class can 
be inherited. If you plan to make reference to and use a file or directory several 
times, you will want to consider instantiating objects of one or both of these classes 
and use its instance methods. Table 13-4 shows some of the key properties of the 
FileInfo class.

The public methods for the FileInfo or DirectoryInfo classes are not shown 
in the tables. Note, however, that most of the public static methods of the File 
and Directory classes are available as instance methods in the FileInfo and 
 DirectoryInfo classes.

The DirectoryInfo class adds two other key properties: Parent and Root. 
 Parent gets the parent directory of a specified subdirectory. Root gets the root por-
tion of a path. You should be very careful when you are working with paths in con-
junction with files and/or directories. The path must be accurate or an exception is 
raised.

public member Description

Attributes Gets or sets the FileAttributes of the current FileSystemInfo

Directory Gets an instance of the parent directory

DirectoryName Gets a string representing the directory’s full path

Exists Gets a value indicating whether a file exists

Extension Gets the string representing the extension part of the file

FullName Gets the full path of the directory or file

LastAccessTime Gets or sets the time when the current file or directory was last accessed

LastWriteTime Gets or sets the time when the current file or directory was last written to

Length Gets the size of the current file 

Name Gets the name of the file

© Cengage Learning

TABLE 13-4 FileInfo properties

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



File and Directory Classes | 859

1 
3

Example 13-2 adds additional functionality to the DirectoryStructure example 
illustrated in Example 13-1. An object of the DirectoryInfo is instantiated, and the 
foreach loop structure uses the FileInfo class.

EXAMPLE 13-2

DirectoryInfo dir = new DirectoryInfo(".");
Console.WriteLine("Current Directory: \n{0}\n",  
                  Directory.GetCurrentDirectory( ));
Console.WriteLine("File Name".PadRight(52) + "Size".PadRight(10) +
                  "Creation Time");
foreach (FileInfo fil in dir.GetFiles("*.*"))
{
     string name = fil.Name;
     long size = fil.Length;
     DateTime creationTime = fil.CreationTime;
     Console.WriteLine("{0} {1,12:N0}{2,20:g}", name.PadRight(45),  
                       size, creationTime);
}

After an object of the DirectoryInfo is instantiated in Example 13-2, the 
 GetCurrentDirectory( ) method is invoked to display the current directory. The 
GetFiles( ) method of the FileInfo class is invoked to retrieve a collection of 
files in the current directory. The Name, Size or Length, and CreationTime prop-
erties of the FileInfo class are accessed for the display. The output for the revised 
example is shown in Figure 13-4.

FIGURE 13-4 Output from the revised DirectoryStructure application
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



860 | Chapter 13: Working with Files

As you review the code, you will notice that the PadRight( ) method of the 
string class was used to format the name of the file returned by the FileInfo 
Name property.

In the last line of the body of the foreach loop in Example 13-2, PadRight( ) left 
aligned the file names, adding spaces to the right to fill up 45 character positions. The Size 
or Length and CreationTime values were right aligned using the format specifiers. 
The positive integers (12 and 20) in the format specifiers indicate that the values should be 
right aligned.

You have seen how these classes can be used to obtain information about the files. 
These classes can also be used to duplicate, move, or delete files or directories. To 
read data from or write to a file, it is important to understand how streams are used. 
This is the focus of the next section.

File Streams
C# uses file streams to deal with stored data. Streams represent a chunk of data and 
provide a way to work with a sequence of bytes. Several abstract classes, including 
Stream, TextWriter, and TextReader, are defined for dealing with files. These 
classes are defined in the System.IO namespace. The stream classes provide generic 
methods for dealing with input/output, and these methods reduce the need for pro-
viding specific details about how the operating system actually accesses data from 
particular devices. You might want to review Figure 13-1. It shows the hierarchy of 
many of the classes used for file processing in .NET.

The IO.Stream class and its subclasses are used for byte-level data.  IO. TextWriter 
and IO.TextReader facilitate working with data in a text (readable) format. For 
the programs you will develop in this chapter, you will use  StreamReader and 
 StreamWriter, which are classes derived from the TextReader and TextWriter 
classes.

The StreamWriter and StreamReader classes make it easy to read or write data 
from and to text files in C#. The StreamWriter class has implementations for 
Write( ) and WriteLine( ) methods similar to the Console class methods. 
StreamReader includes implementations of Read( ) and ReadLine( ). The sim-
plest constructor for these classes includes a single argument for the name of the file. 
The name may include the full path indicating where the file is located or you may 
use the relative path to the file. Relative paths are relative to the starting location of 
the project. The starting location is usually located in the ProjectName\bin\Debug 
or ProjectName\bin\Release folder. When you specify the relative path, you do 
not give a drive letter. Instead, you either simply type the filename indicating the file 
will be stored in the starting location or specify a path relative to the starting location. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



File Streams | 861

1 
3

If the file is stored in the same Visual Studio folder that holds the project and source 
code files, you would write "../../filename". This indicates to go up two direc-
tory levels from the bin/Debug or bin/Release folders to retrieve the file.

All of the applications you have designed were Debug versions. After an application is 
debugged and you are ready to deploy or distribute it, you can build a Release version. 
You switch from Debug to Release versions. The Release version contains no debug-
ging information and is considered an optimized solution. To switch to the Release 
version, select Release from the Solution Configurations list box on the Standard 
Visual Studio toolbar. You can also make that change using the Properties dialog box 
for the project.

If you do not specify the full path for the filename, Visual Studio uses the bin\Debug or bin\
Release subdirectory of the current project. To specify the full path, you must use either 
escape characters for the backslash or the verbatim string character (@). To specify 
that the file is stored at C:\CSharpProjects\Proj1, you would include as an argument either 
("c:\\CSharpProjects\\Proj1") using two backslashes for each backslash, or 
you would write(@"C:\CSharpProjects\Proj1"). When you place an @ in front of 
the string, it becomes a verbatim string.

The identifiers of outputFile, someOutputFileName, inputFile, and 
someInputFileName are all user-supplied identifiers. outputFile and inputFile 
represent the file stream objects. someOutputFileName and someInputFileName 
would be replaced by the actual filenames associated with the file—the names you see from 
Computer or Windows Explorer. If you are creating a data file, place a file extension such 
as .dat, .dta, or .txt onto the end of the file so that it can be distinguished from the other 
files on your system. Files that end in .txt can be easily opened for inspection in Notepad.

The filename may be sent as a string literal or specified as a variable with a string 
value. The following statements construct objects of the StreamWriter and 
 StreamReader classes:
StreamWriter outputFile = new StreamWriter ("someOutputFileName");
StreamReader inputFile = new StreamReader ("someInputFileName");

To avoid fully qualifying references to objects of these classes, include the System.IO 
namespace.
using System.IO;

When you use the Write( ) or WriteLine( ) methods with the instantiated 
stream object, the characters are written to the file specified by the filename. The 
values are stored in the file as text characters—string objects. ReadLine( ) reads a 
line of characters and returns the data as a string. The following statements write and 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



862 | Chapter 13: Working with Files

read a test message to and from files after an object of the StreamWriter class has 
been constructed:
outputFile.WriteLine("This is the first line in a text file");  
string inValue = inputFile.ReadLine( );

Tables 13-5 and 13-6 show members of the StreamWriter and StreamReader 
classes.

StreamWriter members Description

AutoFlush (Property) Gets or sets a value indicating whether the StreamWriter 
flushes its buffer to the underlying stream after calls to the Write( ) or 
WriteLine( ) methods

Close( ) Closes the current StreamWriter

Dispose( ) Releases the unmanaged resources used by the StreamWriter

Flush( ) Clears all buffers for the current writer and causes any buffered data to be 
written to the underlying stream

NewLine (Property) Gets or sets the line terminator string used by the current 
TextWriter

Write( ) Writes the characters to the stream

WriteLine( ) Writes the characters to the stream, followed by a line terminator

© Cengage Learning

TABLE 13-5 StreamWriter members

StreamReader members Description

Close( ) Closes the current StreamReader

DiscloseBufferedData( ) Allows the StreamReader to discard its current data

Dispose( ) Releases the unmanaged resources used by the 
StreamReader

Peek( ) Returns the next available character but does not consume it

TABLE 13-6 StreamReader members

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



File Streams | 863

1 
3

Writing Text Files
All attempts to access text files should be enclosed inside try. . .catch blocks to 
check for exceptions. This is not required in C#, but is encouraged to avoid unhandled 
exceptions being thrown during run time. The constructor for the  StreamWriter 
class is overloaded, in that you can include additional arguments such as a Boolean 
variable indicating whether the file should be appended to or overwritten if it already 
exists. If you do not include an argument for the Append mode, a new file is cre-
ated by default, overwriting any previously created versions. Using the Append mode 
enables you to add lines onto the end of an existing file.

Constructing an object of the StreamWriter class using true as the second argu-
ment enables you to append values onto the end of a file. The following statement opens 
the file named info.txt, stored in the project subdirectory, so that records will be added onto 
the end of the file:

fileOut = new StreamWriter("../../info.txt", true);

Recall that in previous chapters, a using static System.Console; directive was 
added at the top of the program in all examples to enable calls to static members 
like Write( ), WriteLine( ), and ReadLine( ) to be invoked without fully 
 qualifying the call with the Console class name. As given in Tables 13-5 and 13-6, 
 StreamWriter and StreamReader classes have methods named Write( ), 
WriteLine( ), and ReadLine( ). Calls made to those methods will be qualified 
with the class name to avoid confusion. In this chapter, that using directive, using 
static  System.Console is not added.

StreamReader members Description

Read( ) Reads the next character or next set of characters from the input 
stream

ReadBlock( ) Reads a specified number of characters from the current stream 
and writes the data to buffer, beginning at the index

ReadLine( ) Reads a line of characters from the current stream and returns 
the data as a string

ReadToEnd( ) Reads the stream from the current position to the end of the 
stream

© Cengage Learning

TABLE 13-6 StreamReader members (continued )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



864 | Chapter 13: Working with Files

Values are placed in the file in a sequential fashion. A pointer moves through the file, 
keeping up with the current location into which the next values are to be placed in 
the file. After the file is created, the Close( ) method is used to finish storing the 
values. When the Close( ) method is called, any values waiting in the buffer to be 
written are flushed to the file and the resources associated with the file are released. 
Example 13-3 creates a text file containing the user’s favorite sayings. This example 
illustrates using exception-handling techniques with the StreamWriter class. For 
the sake of brevity, the FrmSayingsGUI.Designer.cs and Program.cs Windows 
Forms generated code is not included in the listing.

The application includes a Textbox object for data entry and a Label object 
for displaying error messages. The label is originally set to null (an empty value) at 
design time. One Button object is included. Its event-handler method is used to 
save the entry to the text file.

EXAMPLE 13-3

// FrmSayingGUI.cs
// Windows application that retrieves
// and stores values from a text box
// in a text file.
using System;
using System.Windows.Forms;
using System.IO;     // Added for file access

namespace SayingsApp
{
     public partial class FrmSayingsGUI : Form
     {
          private StreamWriter fil;  // Declares file stream object

          public FrmSayingsGUI( )
          {
               InitializeComponent( );
          }

          // Form load event handler used to construct
          // object of the StreamWriter class, sending the
          // new filename as an argument. Enclosed in
          // try…catch block.
          private void FrmSayingsGUI_Load(object sender,
                                             EventArgs e)
          {
               try
               {
                    fil = new StreamWriter("saying.txt");
               }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



File Streams | 865

1 
3

               catch (DirectoryNotFoundException exc)
               {
                    lblMessage.Text = "Invalid directory" +
                                       exc.Message;
               }
               catch (System.IO.IOException exc)
               {
                    lblMessage.Text = exc.Message;
               }
          }

          // When the button is clicked, write the characters
          // to the text file.
          private void btnStoreSaying_Click(object sender,
                                               EventArgs e)
          {
              try
              {
                   fil.WriteLine(txtBxSaying.Text);
                   txtBxSaying.Text = "";
                   txtBxSaying.Focus( );
              }
              catch (System.IO.IOException exc)
              {
                   lblMessage.Text = exc.Message;
              }
          }

          // When the form is closing (default window x
          // box is clicked), close the file associated
          // with the StreamWriter object.
          private void FrmSayingsGUI_FormClosing(object sender,
                                        FormClosingEventArgs e)
          {
              try
              {
                   fil.Close( );
              }
              catch
              {
                   lblMessage.Text = "File did not close properly: ";
              }
         }
     }
}

The application is run and two different sayings are entered by the user, as shown in 
Figure 13-5.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



866 | Chapter 13: Working with Files

As you review the statements in Example 13-3, notice that three event-handler meth-
ods are included in the Windows application. In the form-loading event handler, an 
object of the StreamWriter class is instantiated. This is included in a try. . .catch 
clause. The button click event-handler method retrieves the string from the text 
box and writes the text to the file. It is also enclosed in a try. . .catch clause. The 
third event-handler method is an on form-closing event. In this event-handler 
method, the file is closed inside another try. . .catch block. Using the data input 
from  Figure 13-5, the contents of the file created from this run of the application are 
shown in Figure 13-6.

FIGURE 13-5 Data being stored in a text file

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



File Streams | 867

1 
3

In Visual Studio, when you create a file (or attempt to access one), if a path is not 
specified for the filename, the bin\Debug subdirectory for the current project is 
used. If an invalid path is listed in the constructor for the StreamWriter object, an 
I OException exception is thrown as soon as the application launches and the form is 
loaded. To demonstrate this, the call to the constructor was changed in Example 13-3. 
On the system on which this application is run, there is no C:\Bob subdirectory. Thus, 
replacing the object constructor in the FrmSayingsGUI_Load( ) method from
fil = new StreamWriter("saying.txt");
to:
fil = new StreamWriter(@"C:\Bob\saying.txt");

throws an exception as soon as the form is loaded. When the user interface was 
designed for Example 13-3, a label, initialized with "" (a null or empty string), was 
placed on the form to display error messages. Figure 13-7 shows the message dis-
played when the DirectoryNotFoundException exception is thrown.

FIGURE 13-6  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



868 | Chapter 13: Working with Files

The "Invalid directory" string literal was concatenated onto the string returned 
from the Message property of the DirectoryNotFoundException object exc. 
Example 13-4 reprints the FrmSayingsGUI_Load( ) method that is executed when 
the form is loaded. This time it includes the invalid path argument used to construct 
the object when the exception was thrown, as shown in Figure 13-7.

EXAMPLE 13-4

private void FrmSayingsGUI_Load(object sender,
                         System.EventArgs e)
{
    try
    {
        fil = new StreamWriter
               (@"C:\Bob\saying.txt");// Invalid path
    }
    catch (DirectoryNotFoundException exc)
    {
         lblMessage.Text = "Invalid directory\n"
                    + exc.Message;
    }

FIGURE 13-7 DirectoryNotFoundException thrown

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



File Streams | 869

1 
3

    catch (System.IO.IOException exc)
    {
         lblMessage.Text = exc.Message;
    }
}

Without including the try. . .catch clause in the FrmSayingsGUI_Load( ) 
method, the program would have crashed with an unhandled exception, because no 
file can be created when an invalid path is specified.

You also cannot close a file that does not exist or is not currently open. As you examine 
the try. . .catch clause in the FrmSayingsGUI_FormClosing( ) method, notice 
inFile.Close( ); in the body of this catch is also enclosed in a try. . .catch 
block. If an exception is thrown and caught when an attempt to close the file is made, 
lblMessage. Text = "File did not close properly: "; is executed in the catch 
clause.

Reading Text Files
The StreamReader class was designed to enable lines of text to be read from a file. 
If you do not specify a different type of encoding (coding representation), the charac-
ters read are converted by default to strings of Unicode characters.

By default, the Unicode UTF-16 encoding schema is used. This represents characters as 
sequences of 16-bit integers. You could specify Unicode UTF-8, in which characters are 
represented as sequences of 8-bit bytes, or use ASCII encoding, which encodes characters 
as single 7-bit ASCII characters.

Using members of the StreamReader class, accessing the contents of a text file 
is as easy as creating it. As given in Table 13-6, several methods, including the 
 ReadLine( ) method, are available to read characters from the file. As with the 
StreamWriter class, the constructor for StreamReader is overloaded. You may 
specify a different encoding schema or an initial buffer size for retrieval of data. If you 
specify a buffer size, it must be given in 16-bit increments.

With the StreamReader and StreamWriter objects, you can use members of  parent 
or ancestor classes or static members of the File class. As given in Table 13-2, 
File.Exists( ) can be used to determine whether the file exists. You can send 
the filename as an argument to Exists( ) before attempting to construct an object. 
This is a way to programmatically avoid having a FileNotFoundException or 
 DirectoryNotFoundException exception thrown in your applications. This is 
illustrated in Example 13-5.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



870 | Chapter 13: Working with Files

Values are read from text files in sequential manner. Just as when you create a text 
file, a pointer moves through the file keeping track of the current location for the 
next read.

Example 13-5 reads strings from a text file that contains a list of names. The text 
file uses those values to populate a list box for a Windows application. This applica-
tion illustrates using exception-handling techniques with the StreamReader class. 
For the sake of brevity, the Windows Forms generated code for the FileAccessApp.
Designer.cs and Program.cs files is not included in the listing that follows. The appli-
cation includes a Listbox for data display and a Label object for displaying error 
messages. The label is originally set to a null empty value.

EXAMPLE 13-5

// FileAccessApp.cs
// Windows application that retrieves
// and stores values from a text file
// to a list box.
using System;
using System.Windows.Forms;
using System.IO;     // Added for file access

namespace FileAccessApp
{
     public partial class FrmFileGUI : Form
     {
          private StreamReader inFile; //Declares file stream object

          public FrmFileGUI( )
          {
               InitializeComponent( );
          }

          // Form load event handler used to construct
          // object of the StreamReader class, sending the
          // new filename as an argument. Enclosed in
          // try…catch block.
          private void FrmFileGUI_Load(object sender, EventArgs e)
          {
              string inValue;

Because you often want to read from one or more files and write the output to another file, 
you can have multiple files open at the same time.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



File Streams | 871

1 
3

              if (File.Exists("name.txt"))
              {
                   try
                   {
                        inFile = new StreamReader("name.txt");
                        while ((inValue =
                                   inFile.ReadLine ( )) != null)
                        {
                             this.lstBxNames.Items.Add(inValue);
                        }
                   }
                   catch (System.IO.IOException exc)
                   {
                        lblMessage.Text = exc.Message;
                   }
              }
              else
              {
                   lblMessage.Text = "File unavailable";
              }
         }

         // When the close X is clicked, as the form is
         // closing, close the file associated with the
         // StreamReader object.
         private void FrmFileGUI_FormClosing(object sender,
                                         FormClosingEventArgs e)
         {
             try
             {
                  inFile.Close( );
             }
             catch
             {
             }
         }
     }
}

Be sure to close all files before you exit the application. This ensures that the data is usable 
for the next application. Close the file by calling the Close( ) method, as shown in 
Example 13-5. No arguments are sent to the method; however, it must be called with the 
file object (inFile.Close( );).

Figure 13-8 shows the contents of the file used for testing the application in Example 
13-5. Names were placed in the text file last name first for sorting purposes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



872 | Chapter 13: Working with Files

A sample run of the application is shown in Figure 13-9.

FIGURE 13-8 Content of name.txt file

The file is displayed using Notepad. However, it was created in Visual Studio using the Text 
File template found from the File, New File, General Installed template menu option. It is 
physically located in the project subdirectory under the bin\Debug folder. If you attempt to 
create it in a word-processing application, such as Microsoft Word, be careful. It must be 
saved as a plain text file without any special formatting.

FIGURE 13-9 Output from the FileAccessApp application

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



File Streams | 873

1 
3

In Example 13-5, the try. . .catch block was enclosed inside a selection statement. 
The if statement was used to check to see if the file existed. When an invalid path 
was specified, an exception was not thrown and the try. . .catch block was skipped. 
Examine the while statement that appears in Example 13-5.
while ((inValue = inFile.ReadLine( )) != null)

The ReadLine( ) method is used with the infile object to retrieve one line of 
text from the file. The line is stored in the inValue variable. The while statement 
tests each access from the file and continues looping until inValue == null, indicat-
ing all the lines have been read.

Adding a Using Statement
The using keyword has two major uses. Previously, you added a using clause to 
your program statements to import types defined in namespaces. By doing this, you 
were able to avoid fully qualifying references to types. For example, by adding using 
System, you were able to write Console.WriteLine( ) as opposed to  System.
Console.WriteLine( ). When working in Visual Studio, you also noticed that 
once you added reference to a specific namespace with the using statement, Intel-
liSense was able to list valid members of that type referenced in the namespace.

Recall a new feature introduced as part of Visual Studio 2015 was the option to 
include a using static statement to add a reference to classes that exposed static 
members. The Console class is an example of such a class. In previous chapters, 
using static System.Console; was added. This eliminated the need to precede 
calls to Write( ), WriteLine( ), and Read( ), ReadLine( ) with the Console 
class name. The using static System.Console; was not added for examples in 
this chapter. The file stream classes introduced in this chapter have member methods 
of Write( ), WriteLine( ), and Read( ), ReadLine( ). To avoid creating con-
fusion, calls to these methods are fully qualified with the class name.

The second major use of the using keyword is to define a scope for an object and 
have the common language runtime (CLR) automatically dispose of, or release, the 
resource when the object goes out of scope. This is extremely useful when working 
with files or databases. For example, if you are writing data to a file, the data is not 
stored in the file properly until the file is closed. If you fail to close the file, you will 
find an empty file. The using block, when used with files, ensures the file is closed 
properly. It is not necessary for you to call the Close( ) method. This is called 
automatically for you by the CLR when the object goes out of scope. Example 13-6  
 illustrates adding a using statement to define a StreamReader object.

One of the properties of the ListBox objects is Sorted. By default, it is set to false; 
however, you can change that and have the entries in the list box in sort order—even if they 
are not sorted in the file. For this application, the Sorted property was changed to true.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



874 | Chapter 13: Working with Files

EXAMPLE 13-6

// FileAccessAppWithUsing.cs
using System;
using System.Windows.Forms;
using System.I0;     //Added for file access

namespace FileAccessApp
{
     public partial class FrmFileGUI : Form 
     {
         public FrmFileGUI( )
         {
              InitializeComponent( );
         }
         private void FrmFileGUI_Load(object sender, EventArgs e)
         {
              string inValue;
              try
              {
                   using (StreamReader inFile =
                              new StreamReader("name.txt"))
                   {
                        while ((inValue =
                                   inFile.ReadLine( ))!= null)
                        {
                             this.lstBxNames.Items.Add(inValue);
                        }
                    }
              }
              catch (FileNotFoundException exc)
              {
                   lblMessage.Text = "File Not Found !\n" + 
                                    exc.Message;
              }
              catch (Exception exc)
              {
                   lblMessage.Text = exc.Message;
              }
         }
     }
}

As with previous examples, the FileAccessApp.Designer.cs and Program.cs files are not 
shown. These files contain the code automatically generated by Visual Studio. The full 
application, like all other examples in the textbook, are available from the publisher as fully 
functioning Visual Studio projects.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



File Streams | 875

1 
3

Notice in Example 13-6 that the StreamReader object is defined and instantiated 
inside the using block. This occurs inside a try clause. By instantiating the inFile 
object here, the object exists only in this block and you are guaranteed that the file 
is closed when you exit the block. At this point, the inFile object resources are 
released back to memory. Also note that by placing the declaration and instantia-
tion of the object in the using statement, you no longer need to call the Close( ) 
method. Thus, you no longer need a Form_Closing( ) event registered.

If you compare Example 13-6 with Example 13-5, you will also notice the if state-
ment, which was used to check whether the file exists or not, was removed. An 
additional catch clause was added for the FileNotFoundException. It was placed 
before the catch with the Exception class because the Exception is the base of 
all exception classes and is more generic than the  FileNotFoundException class.

The using statement can be used independent of the try. . .catch clause. It is 
extremely useful for dealing with files because it automatically releases the resources 
and closes the file upon exit. However, when used as shown in Example 13-7, the 
aFont and c objects only exist inside the block designated by the curly braces, since 
that is where they are defined. An attempt to reference the objects outside of the 
block will generate a compiler error.

EXAMPLE 13-7

// Adding a using statement
using (Font aFont = new Font("Arial", 12.0f),
                             Customer c = new Customer( ))
{
     // Statements referencing aFont and c
}

As shown in Example 13-7, if you want to declare and instantiate more than one 
object, use a comma between the instantiation.

Random Access
The FileStream class also supports randomly accessing data. Values can be pro-
cessed in any order. The fifth data record can be retrieved and processed before the 
first record is processed when random access is used. This is accomplished using a 
concept called seeking, which modifies the current position. Thus, instead of reading 
or writing data in a sequential order from the beginning of the file or memory stream, 
you specify which location or record you want to process.

One of the members of the FileStream class is a Seek( ) method. Seek( ) 
lets you move the read or write position to any location within the stream using an 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



876 | Chapter 13: Working with Files

offset reference parameter. The offset can be specified relative to the beginning, the 
current position, or the end. The Seek( ) method takes two arguments. The first 
specifies the number of bytes from the origin and the second specifies the origin. The 
enumerated values for the origin are SeekOrigin.Begin, SeekOrigin.End, and 
SeekOrigin.Current.

Seeking to a location beyond the length of the stream is also supported. When you seek 
beyond the length of the file, the file size grows. Random access and seeking can be used 
with the text files and also with the binary files, which is the topic of the next section.

BinaryReader and BinaryWriter Classes
The BinaryWriter and BinaryReader classes are used for writing and reading 
binary data, rather than character strings. The files created are readable by the com-
puter but, unlike the files created by the StreamWriter class, you cannot simply 
open and read the contents of a binary file using Notepad. A program is needed to 
interpret the file contents. It is easy to write to or read from binary files. In addition 
to constructors, the BinaryWriter and BinaryReader classes expose a number 
of instance methods. Tables 13-7 and 13-8 list some of the key instance methods.

The BinaryReader and BinaryWriter classes offer streaming functionality that 
is oriented toward particular data types. As you review the BinaryReader methods 
listed in Table 13-8, you will notice several Read( ) methods. Each is focused on the 
type of data that it would be retrieving from a file.

method Description

Close( ) Closes the current BinaryWriter and the underlying stream

Flush( ) Clears all buffers for the current writer and causes any buffered data to be 
written to the underlying device

Seek( ) Sets the position within the current stream

Write( ) Writes a value to the current stream

Write7BitEncodedInt( ) Writes a 32-bit integer in a compressed format

© Cengage Learning

TABLE 13-7 BinaryWriter members

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



BinaryReader and BinaryWriter Classes | 877

1 
3

Example 13-8 illustrates using the BinaryWriter class to create a binary file that 
stores integers, decimals, and string data types.

method Description

Close( ) Closes the current BinaryReader and the underlying stream

PeekChar( ) Returns the next available character and does not advance the byte  
or character position

Read( ) Reads characters from the underlying stream and advances the current position 
of the stream

ReadBoolean( ) Reads a Boolean value from the current stream and advances the current position 
of the stream by 1 byte

ReadByte( ) Reads the next byte from the current stream and advances the current position  
of the stream by 1 byte

ReadBytes( ) Reads count bytes from the current stream into a byte array and advances the 
current position by count bytes

ReadChar( ) Reads the next character from the current stream and advances the current 
position of the stream

ReadChars( ) Reads count characters from the current stream, returns the data in a character 
array, and advances the current position

ReadDecimal( ) Reads a decimal value from the current stream and advances the current position 
of the stream by 16 bytes

ReadDouble( ) Reads an 8-byte floating-point value from the current stream and advances the 
current position of the stream by 8 bytes

ReadInt32( ) Reads a 4-byte signed integer from the current stream and advances the current 
position of the stream by 4 bytes

ReadString( ) Reads a string from the current stream; the string is prefixed with the length

© Cengage Learning

TABLE 13-8 BinaryReader members

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



878 | Chapter 13: Working with Files

EXAMPLE 13-8

// BinaryFiles.cs
// Illustrates creating a binary file
using System;
using System.IO;     // Added for file access

namespace BinaryFiles
{
     class BinaryExample
     {
          public static void Main( )
          {
              FileStream filStream;
              BinaryWriter binWriter;

              Console.Write("Enter name of the file: ");
              string fileName = ReadLine( );
              if (File.Exists(fileName))
              {
                   Console.WriteLine("File - {0} already exists!",
                                     fileName);
              }
              else
              {
                   filStream = new FileStream(fileName,
                                FileMode.CreateNew);
                   binWriter = new BinaryWriter (filStream);
                   decimal aValue = 2.16M;
                   binWriter.Write("Sample Run");
                   for (int i = 0; i < 11; i++)
                   {
                        binWriter.Write(i);
                   }
                   binWriter.Write(aValue);
                   binWriter.Close( );
                   filStream.Close( );
                   Console.WriteLine("File Created successfully");
              }
              Console.ReadKey( );
         }
     }
}

Example 13-8 first checks to see if the filename entered by the user already exists. This is 
accomplished using the static Exists( ) method of the File class. When the name 
entered is a new file, objects are instantiated of the FileStream and  BinaryWriter 
classes. Notice that the second argument to the FileStream constructor is an 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



BinaryReader and BinaryWriter Classes | 879

1 
3

enumeration. The FileMode enumerated type specifies how the operating system should 
open the file. As shown in Figure 13-10, the field value member named  CreateNew indi-
cates that the operating system should create a new file. IntelliSense notes that the System.
IO.IOException is thrown if the file already exists. Another option for an enumerated 
value for FileMode is Create. Create differs from  CreateNew in that it will replace an 
existing file with a new one, if one already exists, instead of throwing an exception.

FIGURE 13-10 Enumerated FileMode

The BinaryWriter object is based on the FileStream object or wrapped around 
the FileStream object. The FileStream object is sent in as an argument to the 
BinaryWriter constructor.
In Example 13-8, first a string argument is written to the file. This is followed by sev-
eral integers and a decimal value. Finally, for the file to be created properly, both files 
must be closed. Figure 13-11 shows the console output produced. In the foreground 
of the figure, you see the newly created file.

FIGURE 13-11 BinaryInputTestFile.bin file created
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



880 | Chapter 13: Working with Files

When testing the BinaryFiles project shown in Example 13-8, use a name other than 
BinaryInputTestFile.bin when prompted for a filename. Otherwise you’ll have a 
 message “File - BinaryInputTestFile.bin already exists!” displayed.

As you can see from Figure 13-11, because no path was specified, the file is stored in 
the bin/Debug directory for the project.

After a binary file is created, you cannot simply open the file in Notepad and view its 
contents. If you do, you will find a number of nonprintable characters. You can write 
program statements that use the BinaryReader class to retrieve the results. This 
is illustrated in Example 13-9.

EXAMPLE 13-9

// BinaryFileAccess.cs
// Illustrates retrieving data from a binary file.
using System;
using System.IO;     // Added for file access

namespace BinaryFileAccess
{
     class BinaryInput
     {
          public static void Main( )
          {
               FileStream filStream;
               BinaryReader binReader;

               Console.Write("Enter name of the file: ");
               string fileName = Console.ReadLine( );
               try
               {
                    filStream = new FileStream(fileName,
                               FileMode.Open, FileAccess.Read);
                    binReader = new BinaryReader (filStream);
                    RetrieveAndDisplayData(binReader);
                    binReader.Close( );
                    filStream.Close( );
               }
               catch (FileNotFoundException exc)
               {
                    Console.WriteLine(exc.Message);
               }
               catch (InvalidDataException exc)
               {
                    Console.WriteLine(exc.Message);
               }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



BinaryReader and BinaryWriter Classes | 881

1 
3

               catch (EndOfStreamException exc)
               {
                    Console.WriteLine(exc.Message);
               }
               catch (IOException exc)
               {
                    Console.WriteLine(exc.Message);
               }
               Console.ReadKey( );
          }
 
          public static void RetrieveAndDisplayData (BinaryReader
                                                        binReader)
          {
               // Read string data from the file.
               Console.WriteLine(binReader.ReadString( ));
               // Read integer data from the file.
               for (int i = 0; i < 11; i++)
               {
                    Console.WriteLine(binReader.ReadInt32 ( ));
               }
               // Read decimal data from the file.
               Console.WriteLine(binReader.ReadDecimal( ));
          }
     }
}

The file, BinaryInputTestFile.bin, created from Example 13-8 BinaryInput was moved to the 
bin/Debug directory for this application. If you do not specify the full path where the file is 
located, the application looks in the bin/Debug directory.

The code shown in Example 13-9 is used to retrieve the values that were stored in the 
binary file by the previous application, BinaryFiles. The code for BinaryFiles 
was displayed in Example 13-8. With Example 13-9, after the user enters the name of 
the file, objects of the FileStream and BinaryReader classes are instantiated. This 
is done inside a try. . .catch clause.

The constructor for the FileStream object includes values for two enumer-
ated types (FileMode.Open and FileAccess.Read). As their names imply, the 
 FileMode.Open indicates the operating system should open an existing file. The 
FileAccess.Read indicates the file will be used for input. Recall that the enumer-
ated value of CreateNew was used with FileMode when the file was created. The 
three enumerated values for FileAccess are Read, Write, and ReadWrite. Figure 
13-12 shows the output produced from the run.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



882 | Chapter 13: Working with Files

Three different methods were invoked to read data from the file. The ReadInt32( ) 
method retrieved the 10 integers. The ReadDecimal( ) reads the decimal value 
placed in the file, and the ReadString( ) was invoked to retrieve the string value. 
You might wonder how it knew to retrieve only the alphabetic characters "Sample 
Run" when the ReadString( ) method was called. The ReadString( ) method 
is the first method invoked. As given in Table 13-8, strings are prefixed with a length 
when they are stored in the file. The ReadString( ) method uses that value to 
determine how many characters to retrieve. Several catch clauses were included. All 
derived classes of the IOException were placed prior to the IOException catch 
because the order of placement is important.

Other Stream Classes
Streams are also used in C# for reading and writing of data on the network and read-
ing and writing to an area in memory. NetworkStream works with network connec-
tions. MemoryStream works directly with data in memory.

The NetworkStream class provides methods for sending and receiving data 
over stream sockets. It is beyond the scope of this book to provide coverage of the 
 NetworkStream class. However, this is the class used for both synchronous and 
asynchronous data transfer. The class has methods similar to the other stream classes, 
including Read and Write methods. Also included as part of .NET is a  MemoryStream 
class. The MemoryStream class is used to create streams that have memory 
as a backing store instead of a disk or a network connection. The  MemoryStream 
class encapsulates data stored as an unsigned byte array and is directly accessible 
in memory. Memory streams can reduce the need for temporary buffers and files in 

FIGURE 13-12 Reading string, integer, and decimal data from a binary file

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



BinaryReader and BinaryWriter Classes | 883

1 
3

an application. You are encouraged to explore the MSDN documentation for more 
details on how to make use of the NetworkStream and MemoryStream classes.

Objects of streams can be wrapped with an object of the BufferedStream class. 
The unbuffered stream object is passed to the constructor for a buffered stream class, 
thus enabling buffering of characters. This can improve the speed and performance 
of file-handling operations. By wrapping a BufferedStream object around a file 
stream object, you can bring chunks of characters (more than one record) into 
memory for retrieval. After the data is stored in memory, members of the class read 
the data from the buffer, reducing the number of actual accesses to secondary storage 
devices, which slows down applications.

Buffering can also be used for creating files. Here instead of writing every record 
physically to the secondary storage device, the write stores data in a buffer in  memory. 
After the buffer contains a specified number of characters, the buffer is written to 
the actual file. All that is required to use buffers is to instantiate an object of the 
 BufferedStream class and send as an argument an object of one of the stream 
classes. Then use the BufferedStream object to access the data. You are encour-
aged to explore the MSDN documentation for examples.

Instead of processing values sequentially from top to bottom, values can be processed 
in any order when random access is used with the FileStream class. Random 
access is achieved using the Seek( ) method. Seek( ) lets you move the read or 
write position to any location within the file using offset reference parameters. The 
offset can be specified relative to the beginning, the current position, or the end of 
the file.

FileDialog Class
Having worked with Windows applications, you are accustomed to browsing to a 
specific location to store or retrieve files. It is very easy to include this type of func-
tionality in your applications. Instead of hard coding the actual filename and path as 
you have seen with most of the examples included in this chapter, you can also add 
dialog boxes to allow the user to enter the name at run time. If you are accessing a file 
for input, you can display an Open file dialog box and allow the user to traverse to the 
directory where the file is located and select the file. Or if you are creating a new file, 
you can display a Save As dialog box and allow the user to type or select a filename 
at run time.

This is accomplished using the OpenFileDialog and SaveFileDialog classes. 
Both classes are derived from the FileDialog class. FileDialog is an abstract 
class, which cannot be instantiated but provides much of the functionality for 
the OpenFileDialog and SaveFileDialog classes. These classes are part of the 
 System.Windows.Forms namespace. The FileDialog class has a property 
called FileName, which is used by both the OpenFileDialog and SaveFileDialog 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



884 | Chapter 13: Working with Files

classes to set or get the name of the file from the dialog box. To add the dialog box 
behavior to an application, drag the OpenFileDialog and/or the SaveFileDialog 
control from the toolbox onto your form. When you release the mouse, the controls 
are placed in the component tray below the form, as shown in Figure 13-13.

FIGURE 13-13 Placing OpenFileDialog and SaveFileDialog controls

When the OpenFileDialog control is placed on your form, the initial default value 
for the FileName property is the name of the object, openFileDialog1. You can 
type a new value for the FileName property, or, if you prefer to not have a value for 
the name, you can erase the value for the FileName property. This causes the text box 
for the filename to be blank. Using the Properties window, the text for the filename 
was removed for this example.

After the dialog controls are placed on the form, the ShowDialog( ) method is used 
to cause the dialog boxes to open. The ShowDialog( ) method is also a member of 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



BinaryReader and BinaryWriter Classes | 885

1 
3

the abstract FileDialog class. It is available to both of these derived classes. If 
you do not change the names of the objects, but use the default names, you would 
include the following statements in your program at the location where you want to 
display the dialog boxes:
openFileDialog1.ShowDialog( );

or
saveFileDialog1.ShowDialog( );

Example 13-10 illustrates using the OpenFileDialog and SaveFileDialog classes.

EXAMPLE 13-10

// FileAccessAppDialogs.cs
// Illustrates using file dialogs for
// retrieving and saving files.
using System;
using System.Windows.Forms;
using System.IO;     // Added for file access

namespace FileAccessAppDialogs
{
     public partial class FrmFileDialogs : Form
     {
          StreamReader inFile;
          StreamWriter outFile;

          public FrmFileDialogs( )
          {
               InitializeComponent( );
          }

          private void openToolStripMenuItem_Click (object sender, 
                                                    EventArgs e)
          {
              try
              {
                    openFileDialog1.ShowDialog( );
                    inFile = new
                         StreamReader(openFileDialog1.FileName);
                    lblMessage.Text = "File " +
                         openFileDialog1.FileName;
                    inFile.Close( );
              }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



886 | Chapter 13: Working with Files

              catch (Exception ex)
              {
                   lblMessage.Text = ex.Message;
              }
         }

         private void saveAsToolStripMenuItem_Click (object sender,
                                                     EventArgs e)
         try
         {
             saveFileDialog1.ShowDialog( );
             string testValue =
                 "This is an example using Dialog boxes";
             outFile = new
                       StreamWriter(saveFileDialog1.FileName);
             outFile.WriteLine(testValue);
             outFile.Close( );{
         }
         catch (Exception ex)
         {
             lblMessage.Text = ex.Message;
         }
     }

     private void exitToolStripMenuItem_Click (object sender,
                                               EventArgs e)
     {
          Application.Exit( );
     }
   }
}

Open and Save menu options were added to the application. Example 13-10 shows 
the event-handler methods for these menuStrip objects. If a file is not selected, the 
catch clause is executed. The message property for the exception that is thrown is 
displayed on the lblMessage.

The Open file dialog box, shown in Figure 13-14, is displayed when the  ShowDialog( ) 
method is executed with the openFileDialog1 object.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



BinaryReader and BinaryWriter Classes | 887

1 
3

A dialog box similar to the one shown in Figure 13-14 would also be displayed when 
the ShowDialog( ) method is executed with a SaveFileDialog object. As 
shown in Example 13-10, to retrieve the filename from the text box in the dialog box, 
you use the FileName property. This retrieved value can be used as the argument for 
the stream object instantiation. This is illustrated with the following inFile object:
StreamReader inFile = new StreamReader(openFileDialog1.FileName);

Whenever you work with files you should always enclose your access statements in 
try. . .catch blocks. You read about checked exceptions in Chapter 12. Even though 
C#, unlike Java, has no checked exceptions, you should still include  exception-handling 
techniques for all file processing applications.

This procedure also works for StreamWriter objects. The following two lines cause 
the Save As dialog box to open. The user can browse to the location where the file 
should be stored and either type a new filename or select a file to replace.
saveFileDialog1.ShowDialog( );
StreamWriter outFile = new StreamWriter(saveFileDialog1.FileName);

When these lines are executed, instead of the dialog box having the word Open in the 
title bar, as shown in Figure 13-14, the title bar will contain the words Save As.

FIGURE 13-14 ShowDialog( ) method executed

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



888 | Chapter 13: Working with Files

In Chapter 12, a graphical user interface solution was designed to enable users to 
enter areas along the ICW where boaters were advised to take warning because 
of shoaling or shallow water. The graphical user interface enabled users to enter a 
location name, state, mile marker number, and four separate days of water depth 
at low and high tide. When valid data was entered, a message was displayed 
showing the location and its associated data. However, after the data about a 
single location was processed and displayed, it was lost when the second and 
subsequent locations were entered. There was no mechanism available to store 
the data from one run to another run. For this programming example, the solu-
tion presented in Chapter 12 will be modified to allow the results to be captured 
and stored for future use.

You should review the problem specification in Figure 12-21 and make sure you 
understand the problem definition. Several values must be entered into the pro-
gram. Instead of allowing a single set of location and associated depths to be 
entered, the application should allow multiple locations to be entered. A Win-
dows application was developed as part of the solution for the programming 
example illustrated in Chapter 12. When a Windows application is run, it is put 
in a process loop and can handle multiple value sets. Minor modifications will 
be needed to ready the form for the second and subsequent set of input values.

Three classes were designed for the solution to the WaterDepth application 
in Chapter 12. You should review Table 12-4. It lists the data field members 
needed for the ShoalArea class. No new data members are needed for this 
class. No changes are needed for the TestOfStateException class. The 
FrmWaterDepth class created the user interface and displayed a message 
showing the problem area and its water depths. In this class, an object of the 
StreamWriter class will be created.

Instead of simply displaying a message showing the location of the shoal area 
and data describing the current condition of the reported problem, the data will 
be stored in a text file. Depths will be delimited or separated by a comma and 
a space. The location will be separated by a comma and a space. The state and 
the mile marker will be followed by a colon, space, and hyphen, respectively. 
Averages will be stored inside parentheses and inserted following the raw data 
they are representing. Usually, you do not store calculated values in a data file 
or database; there is no need to take up additional storage for calculated values 
because they can be derived at any time using the raw data. Also, storing calcu-
lated values can lead to inconsistent data. If one of the day’s depths gets changed 

ANALYZE  
THE PROBLEM

DATA

DESIGN A 
SOLUTION

pROGRAmmInG EXAmpLE: ICW WaterDepth File App

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
3

Programming Example: ICW WaterDepth File App | 889

and the average does not, the integrity of the data is decreased. Figure 13-15 shows 
a prototype of what the data file might look like.

The first two printed lines would not appear in the file. They are included here to 
document what the values are. The three lines under Examples are indicative of 
what the output would look like.

You may want to look ahead at Figure 13-16 to review the form used to collect the 
data. The revised source code listings for the ShoalArea and the FrmWaterDepth 
classes follow.
// ShoalArea.cs
// This class defines a ShoalArea location
// where water depths in the ICW are problematic.
// Data stored in a text file includes the
// name of the location, state, mile marker, and
// four days of high and low tide depths, and averages.
using System;
using System.Diagnostics;
namespace WaterDepth
{
     public class ShoalArea
     {
          private string location;
          private string state;
          private double mileMarker;
          private double[ ] lowTideDepth;
          private double[ ] hiTideDepth;

          public ShoalArea( )
          {
               lowTideDepth = new double[4];
               hiTideDepth = new double[4];
          }
          public ShoalArea(string loc, string st, double mile,
                               double[ ] low, double[ ] hi)
          {
              location = loc;
              CheckStateOk(st);
              mileMarker = mile;

CODE THE 
SOLUTION

FIGURE 13-15 Data file prototype

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



890 | Chapter 13: Working with Files

              lowTideDepth = low;
              hiTideDepth = hi;
          }
          public ShoalArea(string loc, string st, double mile )
          {
               location = loc;
               state = st;
               mileMarker = mile;
          }

          //Properties
          public string Location
          {
               get { return location; }
               set { location = value; }
          }
          public string State
          {
               get { return state; }
               set { CheckStateOk(value); }
          }
          public double MileMarker
          {
               get { return mileMarker; }
               set { mileMarker = value; }
          }
          public double[ ] LoTideDepth
          {
               get { return lowTideDepth; }
               set { lowTideDepth = value; }
          }
          public double[ ] HiTideDepth
          {
               get { return hiTideDepth; }
               set { hiTideDepth = value; }
          }

          public double CalculateAverageDepth
                                (double [ ] depthArray)
          {
               double sum = 0;
               double avg;
               try
               {
                    foreach (double val in depthArray)
                         sum += val;
                    avg = sum / depthArray.Length;
               }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
3

Programming Example: ICW WaterDepth File App | 891

               catch (System.DivideByZeroException e)
               {
                    avg = 0;
                    Trace.WriteLine("Attempted to Divide by Zero" +
                                      "\nException Type: " + 
                                      e.Message );
               }
               return avg;
          }

          public void CheckStateOk(string st)
          {
              switch(st.ToUpper( ))
              {
                   case "FL":
                   case "GA":
                   case "NC":
                   case "SC":
                   case "VA":
                       state = st.ToUpper( );
                       break;
                   default:
                       TestOfStateException ex =
                           new TestOfStateException
                               ("State not Part of Atlantic ICW");
                       throw ex;
              }
          }

          public string ShoalAreaRecord
          {
               get
               {
                    string rec = location +"," + state.ToUpper( ) +
                                           ": " + mileMarker + "− ";
                    foreach (double val in lowTideDepth)
                         rec += val + ", ";
                    rec += "(" + CalculateAverageDepth 
                                 (lowTideDepth).ToString("0.00") + 
                                    "), " ;
                    foreach (double val in hiTideDepth)
                         rec += val + ", ";
                    rec += "(" + CalculateAverageDepth
                                 (hiTideDepth).ToString("0.00") + 
                                    ") ";
                    return rec;
               }
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



892 | Chapter 13: Working with Files

          public override string ToString( )
          {
               return "Location: " + location +
                      "\nState: " + state +
                      "\nMile: " + mileMarker +
                      "\nAverage Low Water Depth: " + 
                      CalculateAverageDepth(lowTideDepth).ToString
                      ("F2") + "\nAverage High Water Depth: " +
                      CalculateAverageDepth(hiTideDepth). ToString
                       ("F2") + "\n\nOverall Average Water Depth: " + 
                      ((CalculateAverageDepth(lowTideDepth) +
                      CalculateAverageDepth(hiTideDepth))
                      / 2.0).ToString("F2");
         }
     }
}

A special property, ShoalAreaRecord, was defined to format the raw data with 
delimiters. Notice how this property resembles the single data member properties 
you used previously. The keyword get is followed by statements that concatenate 
the data fields onto the string that is returned. The object’s ToString( ) method 
is overridden to provide a formatted string for output.

The FrmWaterDepth class follows. New event handlers have been added for the 
form load and form closing events.
// FrmWaterDepth.cs
// This class defines the Graphical
// User Interface class. Values retrieved
// from the user are stored in a text file.
using System;
using System.Windows.Forms;
using System.Diagnostics;
using System.IO;

namespace WaterDepth
{
     public partial class FrmWaterDepth : Form
     {
          private ShoalArea anArea;
          private StreamWriter fil;
          public FrmWaterDepth( )
          {
               InitializeComponent( );
          }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
3

Programming Example: ICW WaterDepth File App | 893

          private void FrmWaterDepth_Load(object sender,
                                          EventArgs e)
          {
               anArea = new ShoalArea( );
               try
               {
                    //// To append data onto the end of the file,
                    //// as opposed to creating a new file,
                    //// add true as the 2nd argument
                    //fil = new
                    //   StreamWriter("WaterData.txt", true);
                    fil = new StreamWriter("WaterData.txt");
               }
               catch (DirectoryNotFoundException exc)
               {
                    lblError.Text = "Invalid directory" +
                                    exc.Message;
               }
               catch (System.IO.IOException exc)
               {
                    lblError.Text = exc.Message;
               }
          }

          private void btnSubmit_Click(object sender, EventArgs e)
          {
               double[ ] lowTides = new double[4];
               double[ ] hiTides = new double[4];

               anArea.Location = txtBxLocation.Text;
               try
               {
                    lowTides[0] = double.Parse(txtBxLow1.Text);
                    lowTides[1] = double.Parse(txtBxLow2.Text);
                    lowTides[2] = double.Parse(txtBxLow3.Text);
                    lowTides[3] = double.Parse(txtBxLow4.Text);
                    hiTides[0] = double.Parse(txtBxHi1.Text);
                    hiTides[1] = double.Parse(txtBxHi2.Text);
                    hiTides[2] = double.Parse(txtBxHi3.Text);
                    hiTides[3] = double.Parse(txtBxHi4.Text);
                    anArea.State = txtBxState.Text;
                    anArea.MileMarker = 
                            double.Parse(txtBxMile.Text);
                    anArea.LoTideDepth = lowTides;
                    anArea.HiTideDepth = hiTides;
                    StoreDataInFile(anArea);
                    MessageBox.Show(anArea.ToString( ),
                                    "ICW Problem Area");
                    ClearForm( );
               }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



894 | Chapter 13: Working with Files

               catch (TestOfStateException ex)
               {
                    Trace.WriteLine("\nException: " + ex.Message);
                    lblError.Text += "\nException: " + ex.Message;
               }
               catch (FormatException ex)
               {
                    Trace.WriteLine("Method\'s actual argument " +
                                    " does not match formal " +
                                    "parameter.\nException: " + 
                                    ex.Message);
                    lblError.Text += "\nException: " + ex.Message;
               }
               catch (ArithmeticException ex)
               {
                    Debug.WriteLine("Errors in an arithmetic, " +
                                    "casting, or conversion." +
                                    "\nException: " + ex.Message);
                    lblError.Text += "\nException: " + ex.Message;
               } 
               catch (ArrayTypeMismatchException ex)
               {
                    Trace.WriteLine("Trying to store an element " +
                                    " of wrong type in an array." +
                                    "\nException: " + ex.Message);
                    lblError.Text += "\nException: " + ex.Message;
               }
               catch (IndexOutOfRangeException ex)
               {
                    Trace.WriteLine("Trying to access element " +
                                    "of an array with index " +
                                    "outside bounds of the " +
                                    "array.\nException: " +
                                    ex.Message);
                    lblError.Text += "\nException: " + ex.Message;
               }
               catch (Exception ex)
               {
                    lblError.Text += "\nException: " + ex.Message;
                    Trace.WriteLine("Exception: " + ex.Message);
               }
          }
          private void StoreDataInFile(ShoalArea anArea)
          {
               try
               {
                   fil.WriteLine(anArea.ShoalAreaRecord);
               }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
3

Programming Example: ICW WaterDepth File App | 895

               catch (DirectoryNotFoundException exc)
               {
                    lblError.Text = "Invalid directory" +
                                    exc.Message;
               }
               catch (InvalidDataException exc)
               {
                    lblError.Text = "Invalid format in data stream"
               }
               catch (System.IO.IOException exc)
               {
                    lblError.Text = exc.Message;
               }
          }

          private void FrmWaterDepth_FormClosing(object 
                        sender,FormClosingEventArgs e)
          {
               try
               {
                    fil.Close( );
               }
               catch (IOException exc)
               {
                    lblError.Text = exc.Message;
               }
          }

          public void ClearForm( )
          {
               txtBxLocation.Text = string.Empty;
               txtBxState.Text = string.Empty;
               txtBxMile.Text = string.Empty;
               txtBxLow1.Text = string.Empty;
               txtBxLow2.Text = string.Empty;
               txtBxLow3.Text = string.Empty;
               txtBxLow4.Text = string.Empty;
               txtBxHi1.Text = string.Empty;
               txtBxHi2.Text = string.Empty;
               txtBxHi3.Text = string.Empty;
               txtBxHi4.Text = string.Empty;
               lblError.Text = string.Empty;
               txtBxLocation.Focus( );
          }
     }
}

When the form is loaded, objects of the ShoalArea and StreamWriter classes are 
instantiated. When the form is closed, the file is closed. A special method was added 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



896 | Chapter 13: Working with Files

to store the data in the file. This method is called from the button-click event handler. 
Much of the functionality for the application is written in this method. Values are 
retrieved and parsed. The StoreDataInFile( ) method is called. In this method, 
the ShoalAreaRecord property is sent as an argument to the  WriteLine( ) 
method of the StreamWriter class. Because the form is used to input multiple 
records, it was necessary to clear the text box values and refocus the control back 
into the location text box. Statements were included in the ClearForm ( ) method 
to do this. Because no changes were made to the TestOfStateException class 
from the example illustrated in the previous chapter, the source code is not shown. 
A run of the application is shown in Figure 13-16.

Figure 13-16 shows the values entered during a single run of the application. If you 
want to modify the solution so that the next run of the application appends data onto 
the end of this current data in the text file, only one change is necessary. This change 
would be made in the FrmWaterDepth_Load( ) method. Add true as the second 
argument when you instantiate the StreamWriter( ) object. It would read:
fil = new StreamWriter("WaterData.txt", true);

The solution provided in the example did not include a second argument. Thus, by 
default, a new file is created each time. You get this same effect if you add false as 
the second argument. If the file exists and append is true, the data is appended or 
added onto the end of the file. If the file does not exit, a new file is created.

FIGURE 13-16 Values stored in a text file

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
3

Quick Review | 897

Coding Standards
Rarely is software maintained for its whole life by the original developer. Using good 
style improves the maintainability of the software.

Include exception-handling techniques to deal with file or directory not found types 
of problems. Use specific exception classes, such as FileIOException, to handle 
the exceptions.

System.IO namespace should be added when you are reading or writing a file. 
Always close files that are opened in applications or embed their usage in a using 
statement.

Resources
Additional sites you might want to explore:

 ? C# Code Style Guide— 
http://www.sourceformat.com/pdf/cs-coding-standard-bellware.pdf

 ? C# Station - How to: Reading and Writing Text Files— 
http://www.csharp-station.com/HowTo/ReadWriteTextFile.aspx

 ? Dot Net Perls - C# File Handling— 
http://dotnetperls.com/file-handling

QUICK REVIEW
 1. The System.IO namespace provides basic file and directory support 

classes, including File, Directory, FileInfo, DirectoryInfo, 
StreamReader, StreamWriter, BinaryReader, and BinaryWriter.

 2. The File and Directory classes expose only static members. The 
FileInfo and DirectoryInfo classes expose instance methods and 
properties.

 3. An enumeration is a special form of value type that supplies alternate 
names for the values of an underlying primitive type. An enumeration 
type has a name, an underlying type, and a set of fields.

 4. Streams represent a chunk of data and provide a way to work with a 
sequence of bytes. Several abstract stream classes, including Stream, 
TextWriter, and TextReader, are defined for dealing with files.

 5. TextWriter and TextReader facilitate working with data in a text 
(readable) format. StreamReader and StreamWriter are derived 
from the TextReader and TextWriter classes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



898 | Chapter 13: Working with Files

 6. The StreamReader class was designed to enable lines of information 
to be read from a text file.

 7. The StreamWriter class implements methods for Write( ) and 
WriteLine( ) similar to those you learned for the Console class.

 8. StreamReader includes implementations of Read( ) and ReadLine( )  
methods. These methods can be used to retrieve data from the file.

 9. To terminate normally, the Close( ) method is used with the stream 
classes.

 10. Close( ) is called without arguments, but does require that an object 
be used with the call.

 11. Include a using statement for the System.IO namespace. Otherwise, 
you will need to fully qualify the name of stream class members.

 12. If you do not specify the full path for the filename, Visual Studio uses the 
bin\Debug subdirectory of the current project.

 13. To specify the full path for a file as a string argument, you must either 
use escape characters for the backslash or the verbatim string character 
(@) in front of the string literal.

 14. All attempts to access text files should be enclosed inside try. . .catch 
blocks to check for exceptions. This is not required in C#, but is encour-
aged to avoid unhandled exceptions being thrown during run time.

 15. One of the arguments that can be included with the constructor for 
the StreamWriter class is a Boolean variable indicating whether the 
file should be appended to or overwritten if it already exists. If you do 
not include an argument for the Append mode, a new file is created by 
default, overwriting any previously created versions.

 16. The StreamReader class was designed to enable lines of text to be 
read from a file. If you do not specify a different type of encoding (coding 
representation), the characters read are converted by default to strings 
of Unicode characters.

 17. The BinaryWriter and BinaryReader classes are used for writing 
and reading binary data, rather than character strings.

 18. The files created by the BinaryWriter class are readable by the com-
puter but, unlike the files created by the StreamWriter class, you 
cannot simply open and read the contents of a binary file using a text 
editor, such as Notepad.

 19. Streams are also used in C# for reading and writing data on the network 
and reading and writing to an area in memory.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
3

Exercises | 899

EXERCISES
 1. All of the following are exception classes that are thrown in conjunction 

with files, except:
a. DirectoryNotFoundException

b. EndOfStreamException

c. InvalidDataFileException

d. FileNotFoundException

e. IOException

 2. One difference between the DirectoryInfo class and the  Directory 
class is:
a.  Methods of the Directory class allow you to move directories 

and files; DirectoryInfo does not.
b. The DirectoryInfo class also has public properties.
c. The DirectoryInfo class is a static class.
d.  The Directory class cannot be used with binary files; 

 DirectoryInfo can.
e. The DirectoryInfo class only has methods.

 3. To avoid an IOException exception with files, you can either use a 
try. . .catch block or make sure there is a file before attempting to read 
characters from it. This can be done by:
a. calling the File.Exists( ) method
b. using a loop to cycle through the file structure
c. throwing an exception
d. including statements in a finally block
e. placing a test loop in the Main( ) method

 4. Which class allows you to use the Read( ) and ReadLine( ) methods 
to retrieve data from a text file?
a. TextReader

b. FileReader

c. BinaryReader

d. StreamReader

e. File

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



900 | Chapter 13: Working with Files

 5. Which class allows you to use the Write( ) and WriteLine( ) 
 methods to write data to a text file?
a. TextWriter

b. FileWriter

c. BinaryWriter

d. StreamWriter

e. File

 6. When you are finished processing a text file, you should:
a. call the Finished( ) method
b. call the Close( ) method
c. throw an exception
d. erase the file
e. reset the file

 7. The File class:
a.  has only instance members, so to call one of its methods you must 

have an object
b.  has only instance members, so to call one of its methods you must 

use the class name
c.  has only static members, so to call one of its methods you must have 

an object
d.  has only static members, so to call one of its methods you must use 

the class name
e.  has only static members, so to call one of its methods you must use 

an instance member

 8. To which namespace does the File class belong?
a. Object

b. System.FileSystem

c. System.Object

d. Object.IO

e. System.IO

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
3

Exercises | 901

 9. The members of the _______________ class allow you to create, move, 
copy, and delete files.
a. File

b. FileInfo

c. Directory

d. DirectoryInfo

e. File and FileInfo

 10. To append data onto the end of a text file:
a. use the AppendStream class
b.  add the Append argument to the constructor for the FileStream 

class

c.  add the Append argument to the constructor for the StreamWriter 
class

d.  add true as the second argument (Append) to the StreamWriter 
class

e.  open the file in an append mode by adding an ‘a’ onto the end of the 
identifier

 11. Which of the following is an abstract class?
a. DirectoryInfo

b. Stream

c. StreamReader

d. all of the above
e. none of the above

 12. In Visual Studio, if you do not specify the full path of a file, what  directory 
is used?
a. C:\
b. the project directory
c. C:\App_Data
d. bin\Debug
e. C:\WorkDirectory

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



902 | Chapter 13: Working with Files

 13. Using the verbatim string, you could write the full path of  
C:\CSharpProjects\ Ch13\WorkDirectory as:
a. @"C:\CSharpProjects\Ch13\WorkDirectory"@

b. @"C:\\CSharpProjects\\Ch13\\WorkDirectory"

c. @"C:\CSharpProjects\Ch13\WorkDirectory"

d. "@C:\CSharpProjects\Ch13\WorkDirectory"

e. none of the above

 14. What method in the StreamReader class retrieves a full line of 
 text-up until the newline character is encountered?
a. Flush( )

b. ReadBlock( )

c. Retrieve( )

d. ReadLine( )

e. Peek( )

 15. To make a duplicate copy of a file, you could use a static method in the 
class:
a. File

b. StreamWriter

c. Stream

d. TextWriter

e. BinaryWriter

 16. Streams can be used in C# for writing data to:
a. text files
b. networks
c. memory
d. binary files
e. all of the above

 17. StreamReader is a direct descendent of:
a. MarshalByRefObject

b. Object

c. File

d. TextReader

e. IO

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
3

Exercises | 903

 18. Which of the following would store an integer in a binary file?
a. Write7BitEncodedInt( )

b. WriteInt( )

c. WriteLine( )

d. StoreInt( )

e. none of the above

 19. Which of the following methods could be used to retrieve a decimal 
value from a binary file?
a. ReadDec( )

b. ReadDecimal( )

c. ReadNumber( )

d. ReadDoubleValue( )

e. ReadDecimalValue( )

 20. All of the following methods of the BinaryReader class could be 
used to retrieve data, except:
a. ReadChar( )

b. Read( )

c. ReadChars( )

d. ReadInt( )

e. ReadString( )

 21. Write a file declaration for a file that holds text characters and can be 
stored in C:\CSharpProjects\WorkDirectory. The file will be used to 
store data.

 22. For the file declared in Exercise 21, write a method that stores the num-
bers 10 through 49 in the text file.

 23. For the file created in Exercise 22, write a method that retrieves the 
 values from the text file. Display 10 characters per line on the console 
output screen.

 24. Revise the solutions for Exercises 22 and 23 to include a try block and 
at least two appropriate catch clauses inside the method.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



904 | Chapter 13: Working with Files

 25. Describe the differences between retrieving data from a text file versus 
retrieving it from a binary file.

pROGRAmmInG EXERCISES
 1. Write a C# program that prints the current directory and the name 

and size of all files that are stored in the directory. Your display should 
be aesthetically pleasing. Numbers should be number aligned and for-
matted with a thousand separator. Provide headings over the column 
listings.

 2. Place 10 to 20 integer values in a text file. Write a C# program to retrieve 
the values from the text file. Display the number of values processed, 
the average of the values, formatted with two decimal places, and the 
smallest and largest values. Include appropriate exception- handling 
techniques with your solution. Hint: To simplify the problem, the values 
can each be placed on separate lines in a Notepad file.

 3. Write a program that enables the user to input name, address, and local 
phone number, including area code. Encourage the user to include 
dashes between the numbers (i.e. xxx-xxx-xxxx) when they type in the 
value. Once retrieved, store the values in a text file. For the phone, sur-
round the phone numbers with asterisks in the file and store only the 
numbers for the phone number. Do not store the hyphens or dashes in 
the file. Include appropriate exception-handling techniques with your 
solution. After storing the name, address, and phone number, display a 
message indicating the data was stored properly. Use Notepad to view 
the contents.

 4. Write a program that stores 50 random numbers in a file. The random 
numbers should be positive with the largest value being 1000. Store 
five numbers per line and 10 different lines. Use the Random class to 
 generate the values. Include appropriate exception-handling techniques 
in your solution. When the application closes, locate the text file and 
verify its contents.

 5. Write a program that retrieves numbers stored in a text file. Test your 
solution by retrieving data from a file that contains 10 different rows of 
data with five values per line. For your test, display the  largest and small-
est values from each row of data. Include appropriate  exception-handling 
techniques in your solution. Hint: If you completed Programming 
 Exercise #4, use the text file created by that exercise.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
3

Programming Exercises | 905

 6. Write a program that displays a graphical user interface (Windows form) 
that allows multiple names, e-mail addresses, and local phone numbers 
to be entered. Allow only numbers to be entered for the phone number. 
Retrieve and store the values entered by the user in a text file and then 
ready the GUI for the next set of input values. Store each person’s data 
on separate lines. Include appropriate exception-handling techniques in 
your solution. When the application closes, locate the text file and verify 
its contents.

 7. Write an application that retrieves both string data and numbers from 
a text file. Test your solution by retrieving names of students and three 
scores per line from a text file. Process the values by calculating the 
average of the scores per student. Write the name and average to a dif-
ferent text file. Display on the console screen what is being written to 
the new file. Test your application with a minimum of eight records in 
the original file. Hint: You might consider adding delimiters between the 
data values in the original text file to simplify retrieving and process-
ing the data. Include appropriate exception-handling techniques in your 
solution. When the application closes, locate the text file and verify its 
contents.

 8. Write a program that produces a report showing the number of students 
who can still enroll in given classes. Test your solution by retrieving the 
data from a text file that you create using a text editor, such as Notepad. 
Some sample data follows. Include the name of the class, current enroll-
ment, and maximum enrollment.

Class name Current enrollment maximum enrollment
CS150 18 20

CS250 11 20

CS270 23 25

CS300 4 20

CS350 32 20

Classes should not be oversubscribed. Define a custom exception class 
for this problem so that an exception is thrown if the current enrollment 
exceeds the maximum enrollment by more than three students. When 
this unexpected condition occurs, halt the program and display a mes-
sage indicating which course is overenrolled.

 9. Write a graphical user application that accepts employee data to include 
employee name, number, pay rate, and number of hours worked. Pay is 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



906 | Chapter 13: Working with Files

to be computed as follows: Hours over 40 receive time-and-a-half pay. 
Store the employee name, number, and the total amount of pay (prior 
to deductions) in a text file. Close the file and then, in the same applica-
tion, retrieve the stored values and display the employee name and the 
formatted total pay. Your application should allow the user to browse to 
the file location for saving and retrieving the file.

 10. Allow the user to enter multiple sets of five numbers. Store the numbers 
in a binary file. For each set of values, calculate and store the average of 
the numbers prior to retrieving the next set of values. For example, if the 
user entered 27 78 120 111 67 as the first set of values, the first values 
written to the binary file would be 27 78 120 111 67 80.6. For an extra 
challenge, close the file, reopen it, and display the values from the file in 
a listbox control.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

Working with Databases
IN THIS CHAPTER, YOU WILL:

 ? Be introduced to technologies used for accessing databases

 ? Become familiar with the ADO.NET classes

 ? Write program statements that use the DataReader class to retrieve database data

 ? Access and update databases using the DataSet, DataAdapter, and TableAdapter 
classes

 ? Be introduced to Structured Query Language (SQL) query statements

 ? Retrieve data using Language-Integrated Query (LINQ) expressions

 ? Use the visual development tools to connect to data sources, populate DataSet 
objects, build queries, and develop data-bound applications

14C H A P T E R

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



908 | Chapter 14: Working with Databases

In the last chapter, you discovered how to use data from sources other than the key-
board for your applications. You wrote programs that created files and that accessed 
data stored in files. In this chapter, you will learn about databases and the .NET tech-
nologies used for accessing and storing data in database tables. You will be introduced 
to a number of namespaces collectively called ADO.NET, which consist of a man-
aged set of library classes that allow you to interact with databases. ADO.NET stands 
for ActiveX Data Objects for .NET. It refers to the suite of data access technologies 
used to manipulate databases. You use ADO.NET classes to retrieve and update data 
in databases, such as those created using Microsoft Access, Oracle, or SQL Server. 
After being introduced to these classes, you will explore how the visual programming 
tools and wizards available with Visual Studio can be used to simplify accessing data 
for your projects. Language-Integrated Query (LINQ, pronounced “link”), which 
defines a set of query operators that can be applied to a number of different data 
sources will also be introduced.

Database Access
For small applications, you can use text files to store data for later processing. How-
ever, as the data needs increase, text files become less viable options. It becomes more 
difficult to manage or relate data that is stored in flat text files. This is where data-
bases come into play. Many applications revolve around reading and updating infor-
mation in databases.

Databases store information in records, fields, and tables. You can think of a database 
as an electronic version of a filing cabinet, organized so that you can retrieve and use 
the data. Wikipedia (http://en.wikipedia.org/wiki/Database) defines a database as a 
collection of records stored in a computer in a systematic way, so that a computer 
program can consult it to answer questions. The computer programs that are used 
to manage and query a database are known as the database management system 
(DBMS).

Database Management Systems
Database management systems facilitate storage, retrieval, manipulation, and report-
ing of large amounts of data. DBMSs include programs such as MySQL, SQL Server, 
Oracle, DB2, and Microsoft Access. Many of these DBMSs store data in tabular for-
mat and are considered relational databases. In a relational database, the rows in the 
table are referred to as records and the columns are the fields of the table. Look at 
Figure 14-1 for an example of a database table. A field is a single piece of information, 
such as StudentID or FirstName. A record is a complete set of fields. When you have 
the student identification number, student last name, student first name, phone num-
ber, and so on about an individual student, this represents a student record.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Database Access | 909

1 
4

A table, as illustrated in Figure 14-1, then is the logical grouping or collection of simi-
lar records.

The data in the tables is related through common data field keys. This enables a single 
database to consist of multiple tables. Because databases are such an important com-
ponent to many applications, the rest of this chapter is devoted to the topic. Examples 
of how to retrieve and update data in a database are presented. This should enable 
you to incorporate stored data from databases into your applications.

C# enables you to view and modify data stored in an Access or SQL Server database. 
Complete books are written on this subject alone. Thus, it is beyond the scope of this 
book to provide a discussion on creating databases.

Access creates relational databases. As mentioned previously, data is stored in tabular for-
mat for a relational database. Each row in the table represents a record, which consists 
of one or more data fields. Each data field is stored in a single column. For a Student data-
base, one table might contain personal information. In that table, one row might include the 
student identification number, first name, last name, and local phone number for a single 
student. A second row in the same table would include exactly the same data fields for a 
different student. Figure 14-1 displayed a table from an Access database.

FIGURE 14-1 Access database table

All DBMSs provide reporting capabilities; however, these capabilities can be limited, 
and there is often a need for processing the data beyond what the DBMS package 
enables. There is also often a need for a single application to process data from mul-
tiple vendors. For both of these scenarios, a programming language is required. Typi-
cally, when you are programming for database access, you use a query language. One 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



910 | Chapter 14: Working with Databases

of the most commonly used query languages, Structured Query Language (SQL), 
includes statements to access, manipulate, and update data in a database. Using SQL 
queries, you can access single rows, all rows that meet some criteria, or all rows from 
one or more tables. This retrieval can include one or more of the fields per row.

Most DBMSs include a query language that can be used to interact with the data. The 
DBMS that you will be using in this chapter includes this feature.

To experience accessing data from an Access database, you do not need the Microsoft 
Access program, only the table generated using that application. If you are new to data-
bases or do not have Access, your instructor might provide the table for you. One is 
included with the electronic version of the examples in this chapter.

Programming database access has come a long way and has successfully evolved 
much as modern DBMSs have. The .NET Framework includes a data access technol-
ogy called ADO.NET for accessing data in databases. It is discussed in the following 
section.

ADO.NET
Included as part of ADO.NET namespaces are a number of classes that can be used 
to retrieve, manipulate, and update data in databases. ADO.NET offers the capabil-
ity of working with databases in a connected or disconnected mode. ADO.NET was 
built with the disconnected mode in mind—meaning the entire database table(s) can 
be retrieved to a temporary file or to a local machine if the database is stored on the 
network. After the database data is retrieved, you no longer need to stay connected 
to it. Processing can occur at the local level. If changes are made to the database, 
the connection can be remade and the changes posted. With multitier applications, 
the database can be stored on a different computer or across the Internet. With the 
growth of Web-centric applications, this disconnect feature is extremely important.

To programmatically interact with data from a database, several things are required. 
First, you must connect to the database. After connecting, you need a mechanism to 
retrieve the data. The connection can be constant so that as you retrieve one record, 
you process it, and then retrieve another record. Or, as noted previously, you can work 
in disconnected mode. For disconnected modes, the data is stored so that your code 
can work with it. Whether you work in disconnected mode or stay connected to the 
database, at some point you should release the resources by closing the connection.

Classes that are part of ADO.NET can be used for each of these steps. In the sections 
that follow, you will see how to incorporate these features into your program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 911

1 
4

Data Providers
ADO.NET does not provide a single set of classes that work with all types of data-
base management systems. However, you can use the ADO.NET library of code to 
access data stored in many different proprietors’ database management systems. This 
is because ADO.NET uses a feature called data providers to connect, execute com-
mands, and retrieve results from a database.

The ADO.NET architecture encapsulates the details of differing database structures 
such as Oracle, as opposed to Access, in the form of data providers. Oracle has its 
own unique features, just as Access does. But, accessing each of the database man-
agement systems involves common sets of functionality—connecting to a database, 
executing commands, and retrieving results.

A data provider is a set of classes that understands how to communicate with a spe-
cific data source or database management system. The data provider database sources 
currently included with .NET are shown in Table 14-1.

.NET Framework data providers Description

SQL Server Applications using SQL Server 7.0 or later

Oracle Applications using Oracle data sources

Object Linking and Embedding 
Database (OLE DB) technology

Applications that use SQL Server 6.5 or earlier and other OLE DB 
providers, such as the Microsoft Access

Open Database Connectivity 
(ODBC) technology

Applications supported by earlier versions of Visual Studio, Access 
Driver (*.mdb), and Microsoft ODBC for Oracle

EntityClient Applications using Entity Data Model (EDM)

SQL Server Compact Applications using Microsoft SQL Server Compact 4.0

TABLE 14-1 ADO.NET data providers

Each of the data provider classes is encapsulated into a different namespace. Provider 
classes include classes that allow you to connect to the data source, execute com-
mands against the source, and read the results. The unique namespace for each of the 
data providers is shown in Table 14-2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



912 | Chapter 14: Working with Databases

A number of third-party vendors also provide ADO.NET data providers for their 
vendor-specific databases. For example, MySQL Connector/NET is a fully managed 
ADO.NET driver written in C# that enables developers to easily create .NET applica-
tions with MySQL. Sybase includes ASE ADO.NET Data Provider, allowing access 
to data in ASE using C#. IBM supplies ADO.NET data providers for access to DB2, 
Informix, and U2 databases. Phoenix offers an open source ADO.NET Data Provider 
supporting access to SQLite. New providers can also be designed and programmed.

Each data provider includes a collection of classes used to access a data source, such as a 
database. The four core classes that make up each data provider are listed in Table 14-3.

Database sources Data provider namespace

SQL Server System.Data.SqlClient

Oracle System.Data.OracleClient

Object Linking and Embedding 
Database (OLE DB)

System.Data.OleDb

Open Database Connectivity (ODBC) System.Data.Odbc

EntityClient System.Data.EntityClient

SQL Server Compact System.Data.SqlServerCe

TABLE 14-2 ADO.NET data provider namespaces

Class Class description

Connection Establishes a connection to a data source

Command Executes a command against a data source; often in the form of an SQL 
statement that retrieves data from the data source

DataReader Performs a forward-only (sequential) access of the data in the data source

DataAdapter Populates a dataset and updates the database

TABLE 14-3 Core classes that make up ADO.NET data providers

Each data provider has its own Connection, Command, DataReader, and Data-
Adapter classes. Each provider uses different names. For example, the SQL data 
provider has classes named SqlConnection, SqlCommand, SqlDataReader, and 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 913

1 
4

SqlDataAdapter. The classes are named OleDbConnection, OleDbCommand, 
OleDbDataReader, and OleDbDataAdapter with the OleDb data provider. The four 
core classes offer common functionality, primarily due to interfaces implemented by 
each of the core’s base classes.

You will recall that when a class implements an interface, it in essence signs a  contract 
indicating it will supply definitions for all of the abstract methods declared in the 
interface. An interface can also require that any implementing class must also 
implement one or more other interfaces.

Object Base class Implemented interfaces

connection DbConnection IDbConnection

command DbCommand IDbCommand

dataReader DbDataReader IDataReader, IDataRecord

dataAdapter DbDataAdapter IDbDataAdapter, IDataAdapter

TABLE 14-4 Interfaces implemented by the Core ADO.NET objects

Each provider must provide implementation details for the methods that are exposed 
in the interface. Table 14-4 lists the core objects, their base classes, and imple-
mented interfaces.

The base classes listed in Table 14-4 are all abstract. Table 14-5 lists the derived 
classes from the System.Data.Common.DbConnection class. The other base 
classes have similarly named derived classes.

Type

System.Data.Odbc.OdbcConnection

System.Data.OleDb.OleDbConnection

System.Data.OracleClient.OracleConnection

System.Data.SqlClient.SqlConnection

System.Data.EntityClient.EntityConnection

TABLE 14-5 Derived classes of DbConnection

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



914 | Chapter 14: Working with Databases

As stated in the MSDN documentation, classes that inherit from the DBConnection 
class, such as OdbcConnection, must override and provide implementa-
tion details for Close( ), BeginDbTransaction( ), ChangeDatabase( ), 
CreateDbCommand( ), and OpenStateChange( ) methods. Properties must be 
defined for ConnectionString, Database, DataSource, ServerVersion, and 
State. This ensures that all data provider connection objects will have similar func-
tionality, but can also be optimized to interact with their specific DBMS.

In addition to the specific data provider namespaces listed in Table 14-2, namespaces 
used with ADO.NET classes to access databases include the following:

 ? System.Data.Common—This namespace includes classes shared by all 
providers.

 ? System.Data—The classes in this namespace represent the ADO.NET 
architecture, which enables you to build components that use data from 
multiple data sources.

Each core class is used in subsequent sections of this chapter to retrieve and update 
data. The first example illustrates using data from an Access database.

CONNECTING TO ThE DATABASE

To access a database created with Microsoft Access, use classes from the   
System.Data.OleDb namespace. To avoid fully qualifying references to classes in 
its namespace, the following using directive is needed:
using System.Data.OleDb;

A connection object is instantiated based on the type of database or type of database 
provider you are using. .NET includes within the System.Data.OleDb namespace 
the OleDbConnection class for connection. It represents an open connection to a 
database. To instantiate an object of this class, you specify a connection string that 
includes the actual database provider and the data source. The data source is the name 
of the database. You can include the full path to the database as part of the string argu-
ment, or the database can be placed in the bin\Debug subdirectory for the project.

When specifying the full path as part of the string, the verbatim string is useful. Recall that 
if you precede the string literal with the '@' character, the string is taken as is, verbatim. 
This eliminates the requirement of using the escape character sequence ('\\') of two 
backslash characters in the path.

Example 14-1 instantiates an object using a connection string for an OleDb data pro-
vider. The "member.accdb" database is stored in the current project’s bin\Debug 
subdirectory. After an object of the OleDbConnection class is instantiated, the 
connection is opened using the Open( ) method of the OleDbConnection class.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 915

1 
4

EXAMPLE 14-1

string sConnection;
     sConnection = "Provider=Microsoft.ACE.OLEDB.12.0;" +
                   "Data Source=member.accdb";
OleDbConnection dbConn;
dbConn = new OleDbConnection(sConnection);
dbConn.Open( );

Connection strings are vendor specific. The syntax for the string begins with a provider 
or data source name such as "Provider=someValue". The value for later versions 
of Access at the time the book was published is "Microsoft.ACE.OLEDB.12.0". If 
you have an older version of Access, the data provider would be different.

If you are running examples provided with this chapter on a 64-bit processor and get 
an error indicating “The ‘Microsoft.ACE.OLEDB.12.0’ provider is not registered on this 
machine”, you may need to install a new driver. At the time the book was written, you could 
read about the problem and find the download at http://www.connectionstrings.com/
the-microsoft-ace-oledb-12-0-provider-is-not-registered-on-the-local-machine/

Example 14-2 illustrates instantiating a SqlConnection object. The connection 
string indicates that the Data Source is using a local copy of Microsoft SQL Server 
Express. The database name is RealEstateDb.mdf. The IntegratedSecurity prop-
erty in the connection string is set to true, indicating that the current Windows 
account credentials are used for authentication as opposed to having the User ID and 
Password specified in the connection string.

EXAMPLE 14-2

string sConnection = "Data Source=(localdb)\v11.0;
      IntegratedSecurity=true; AttachDbFileName=RealEstateDb.mdf";
SqlDbConnection dbConn;
dbConn = new SqlDbConnection (sConnection);
dbConn.Open( );

Sometimes the more challenging part is determining what should go in the connection 
string. At the time of writing, www.connectionstrings.com listed quite a few strings for 
different vendors. Another site, www.carlprothman.net/Default.aspx?tabid=81, also 
listed connection strings. If you do not find the specific connection string that you 
need listed at one of these two sites, you could use your favorite search engine and 
do a keyword search on .NET, “connection string,” and the database vendor name. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



916 | Chapter 14: Working with Databases

Another option is to use one of the ConnectionStringBuilder classes to create 
the connection string. The OleDbConnectionStringBuilder class can be used 
to create a connection string for an Access database. There are also classes for SQL 
Server databases (SqlConnectionStringBuilder) as well as the other providers. 
These classes enable you to programmatically create a connection string.

Exceptions can be thrown when you are working with databases. You can enclose statements 
that establish the connection to the database within a try block and write program statements 
inside the catch clause for those exceptional times when the connection cannot be made.

Retrieving Data from the Database
After connecting to the database, one way to retrieve records programmatically 
from the database is to issue an SQL query. Another class, a command class, is 
available in each of the different data providers’ namespaces to hold the SQL state-
ment. The OleDbCommand class is used to hold the SQL statement or stored pro-
cedures for OleDb database management systems, such as Microsoft Access. After 
an object of the OleDbCommand class is constructed, it has several properties that 
enable you to tie the command (SQL query) to the connection string. Example 14-3 
instantiates an object of the OleDbCommand class and sets the CommandText and 
 Connection properties of that class. Example 14-3 assigns the OleDbConnection 
object, dbConn, instantiated in Example 14-1, to the Connection property of the 
 OleDbCommand object.

EXAMPLE 14-3

string sql;
sql = "SELECT * FROM memberTable ORDER BY LastName ASC, " +
      "FirstName ASC;";      // Note the two semicolons.

OleDbCommand dbCmd = new OleDbCommand( );

dbCmd.CommandText = sql;     // Set the command to the SQL string.

dbCmd.Connection = dbConn;   // dbConn is the connection object
                             // instantiated in Example 14-2.

SQL QUERIES

SQL (officially pronounced “S-Q-L,” but commonly pronounced “sequel”) was devel-
oped in the 1970s by a group at IBM as a language that provides an interface to rela-
tional database systems. The relational model was invented by Edgar Codd, also at 
IBM. SQL is a universal language available with many database products, including 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 917

1 
4

SQL Server and Microsoft Access. SQL is a keyword-based language where each 
statement begins with a unique keyword. SQL syntax is not case sensitive; however, 
a common practice is to type keywords in uppercase. Each has its own different pro-
prietary extensions or dialects. Queries can be written in SQL that let you SELECT, 
INSERT, UPDATE, DELETE, and FIND the location of data in tables.

The SELECT statement shown in Example 14-3, SELECT * FROM memberTable ORDER 
BY LastName ASC, FirstName ASC;, is a simple SQL statement that retrieves every 
row and column in the memberTable table. The asterisk (*) used in the SQL query 
specifies the selection of all fields in the database table named memberTable. The 
ASC is an abbreviation for ascending—indicating that the result of the query is to be 
returned with the listing in ascending order by LastName. Because FirstName also 
includes ASC, any duplicate last names are ordered in ascending order by first name. 
Notice the SQL query ends with a semicolon and the entire query is placed inside 
double quotes, which ends with another semicolon. The last semicolon is used to end 
the assignment statement that assigns the query to a string variable named sql.

Any valid SQL statement can be used to retrieve data after the connection is open.

If you do not want to retrieve all fields, you replace the asterisk (*), shown in 
 Example 14-3, with one or more data field names (separated by commas). The data 
field names are the column headings in the database table. The SQL statement that 
retrieves only the first name, last name, and phone number is shown in Example 14-4.

EXAMPLE 14-4

SELECT FirstName, LastName, PhoneNumber FROM memberTable;

The SQL statement included in Example 14-4 is an example of the most basic format. 
It retrieves just the identified columns from a single table. All rows are retrieved. To 
retrieve a single row or just some of the rows from the table, you add a WHERE clause 
to the SQL query. For example, to retrieve the phone number associated with Gary 
Jones, the SQL statement would read as shown in Example 14-5.

EXAMPLE 14-5

SELECT PhoneNumber FROM memberTable
    WHERE FirstName = 'Gary' AND LastName = 'Jones';

This returns only the phone number because that is the only field specified following 
the SELECT statement. It does not return the name. Notice that for SQL statements, 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



918 | Chapter 14: Working with Databases

string literal values ('Gary' and 'Jones') are enclosed in single quotation marks. 
Also, notice that the database field identifiers do not have spaces as part of the name. 
If a database table’s field has a space, the field name would have to be enclosed in 
square brackets, as in [Phone Number], for the SQL statement.

The general format for the WHERE clause is as follows:
WHERE columnName = value

Compound expressions can be combined with AND, OR, or NOT. Relational opera-
tors can also be used with WHERE clauses, including >, <, >=, <=, and a single equal 
symbol used for equality. To test for “not equal to,” <> is used. To write conditional 
expressions that test to determine if a value falls within a specified range, the keyword 
BETWEEN can be inserted before the first value. The compound expression AND is used 
between the two values. To use a date as the value, the date value is enclosed in the 
# symbol for Microsoft Access. As noted previously, DBMSs use slightly different 
dialects. Microsoft SQL Server uses single apostrophes as date delimiters instead of 
the # symbol, as follows:
WHERE (aDate BETWEEN #10/12/2012# AND #10/12/2013#) — Access
WHERE (aDate BETWEEN '10/12/2012' AND '10/12/2013') — SQL Server

In addition to selecting data for viewing using a single table, you can use the SELECT 
statement to retrieve results from multiple tables by joining them using a common 
field. One way to combine tables is to use the SQL JOIN clause. The JOIN query com-
bines columns of one table to columns of another to create a single table, matching up 
a column from one table to a column in the other table. The JOIN query does not alter 
either table, but temporarily combines data from each table to be viewed as a single 
table. One type of JOIN statement is an INNER JOIN.

The INNER JOIN used with a SELECT statement returns all rows from both tables where 
there is a match. If there are rows in one table that do not have matches in the other table, 
these rows are not returned. To use the JOIN clause, identify the columns from both 
tables that should be returned. Their names are qualified with a prefixing dot and the 
table name. Instead of using a WHERE clause to identify the rows to be returned, the key-
word INNER JOIN and ON are used with the two tables. Suppose a second table named 
departmentTable had columns of major_ID, major_Name, and major_Chair; an 
example illustrating how the two tables could be joined is shown in Example 14-6.

EXAMPLE 14-6

SELECT memberTable.FirstName, memberTable.LastName,
       departmentTable.major_Name
    FROM memberTable INNER JOIN departmentTable
         ON memberTable.major_ID = departmentTable.major_ID;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 919

1 
4

Normally, the columns that are used for the join are the primary and/or foreign keys 
in the two tables. Thus, major_ID would need to appear in both tables. It would 
serve as a foreign key in the memberTable table. In Example 14-6, the primary key 
for the department is major_ID. Having common fields in both tables allows the two 
tables to be linked.

A primary key is a column (field) or combination of columns that uniquely identifies a row 
in a table. A foreign key is a column that refers to a column in another table. The foreign 
key is used to link the two tables.

You selectively choose the columns you want returned from both tables. It is not 
necessary to return the key that is used to link the tables. However, many applica-
tions benefit from retrieving the key columns for later use. For this example, two 
columns are returned from the memberTable (FirstName and LastName) and one 
is returned from the departmentTable (major_Name).

SQL statements can also be written to create tables or to insert, delete, and update data 
in a table. When you are working with ADO.NET, it is extremely helpful to be able to 
write SQL statements. To insert values into a table, use the SQL INSERT INTO clause 
followed by the table name and the columns for which you have values. The VALUES 
keyword is used with a parenthesized list of new values, as shown in Example 14-7.

EXAMPLE 14-7

INSERT INTO memberTable(StudentID, FirstName, LastName,
                        PhoneNumber)
    VALUES (1123, 'Kathy', 'Weizel', 2345678);

The SQL DELETE keyword is used to remove rows from a table. To identify which 
rows to delete, use the FROM and WHERE clauses. Example 14-8 illustrates removing 
the last record from the table shown in Figure 14-1.

EXAMPLE 14-8

DELETE FROM memberTable
    WHERE (StudentID = 1299);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



920 | Chapter 14: Working with Databases

The final example illustrates writing an SQL UPDATE statement. The SET and WHERE 
clauses are normally used to identify which row and values to change. Referring back 
to Figure 14-1, to change Rachel Smith’s last name to Hakim, you could write an 
UPDATE SQL statement, as shown in Example 14-9.

EXAMPLE 14-9

UPDATE memberTable
    SET LastName = 'Hakim'
        WHERE (StudentID = 1234);

SQL is a very powerful programming language in itself. To make maximum use of 
the ADO classes and the tools of Visual Studio, it is helpful to have an understand-
ing of the SQL statements. Many books are available on the topic. You are encour-
aged to explore and learn the syntax requirements for writing SQL statements. Use 
your favorite search engine on the Internet. You will find many articles, tutorials, and 
 references relating to SQL.

This chapter does not address database security issues as they relate to accessing 
database records over the Web using SQL pass-through queries. Applications that 
allow users to supply values for arguments used to query database tables directly 
are vulnerable to security hacks and attacks. SQL injection attacks, for example, 
involve typing or inserting an actual SQL query or command as input (as opposed to 
a requested value, such as a user login name), gaining access to the tables, and then 
stealing or destroying data. Use your favorite search engine to locate information 
about SQL injection attacks. At the time of writing, the following sites offered sugges-
tions for how to keep your code and database more secure from intruders.

 ? Stop SQL Injection Attacks Before They Stop You— 
http://msdn.microsoft.com/en-us/magazine/cc163917.aspx

 ? SQL Injection Attacks— 
www.unixwiz.net/techtips/sql-injection.html

Processing the Data
Several classes are available to process the data after it is retrieved through the SQL 
query. You can retrieve one record at a time in memory and process that record before 
retrieving another, or store the entire result of the query in a temporary data structure 
similar to an array and disconnect from the database.

For simple read-only access to the database, ADO.NET includes a data reader class that 
can be used to read rows of data from a database. Like the connection and command 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 921

1 
4

classes, each data provider has a different data reader class defined in its namespace. 
The data reader class for accessing OleDb providers is the  OleDbDataReader class. 
The SqlDataReader class is used with SQL Server databases.

RETRIEVING DATA USING A DATA READER

The OleDbDataReader and SqlDataReader classes allow read-only forward 
retrieval of data from the database. Results are returned as the query executes. Using 
a data reader, you can sequentially loop through the query results. This is an espe-
cially good choice for accessing data from the database when you need to retrieve a 
large amount of data. The data is not cached in memory. By default, only one row is 
stored in memory at a time when these data reader classes are used. The discussion 
that follows focuses on the OleDbDataReader class; however, the concepts work 
equally well when used with the SqlDataReader class.

To process the data using a data reader, you declare an object of the OleDbDataReader 
class and then call the ExecuteReader( ) method. The ExecuteReader( ) 
method of the OleDbCommand class is used to build the OleDbDataReader object. 
You saw in the previous section that the OleDbCommand object contains the SQL 
command and the connection string representing the data provider.

To position the OleDbDataReader object onto the row of the first retrieved query 
result, you use the Read( ) method of the OleDbDataReader class. The Read( ) 
method is also used to advance to the next record after the previous one is pro-
cessed. To understand the processing of data retrieved using the Read( ) method, 
you can think about what is retrieved from a single access using a data reader object 
as a one-dimensional table consisting of the fields from that one row. The fields 
can be referenced using the actual ordinal index representing the physical location 
within the record in which the field is located, much as you index through a single-
dimensional array. Thus, using the database table shown in Figure 14-1, the first 
call to the Read( ) method with a data reader object named dbReader references 
the value “1234” when you write dbReader[0]. dbReader[1] refers to “Smith” 
or “Hakim” if you had changed the record with the UPDATE command illustrated 
in Example 14-9. Reference to dbReader[2] refers to “Rachel” and dbReader[3] 
refers to “2677700”.

You can also use the table’s field names as indexers to the data reader object. If the 
table in the database consists of the fields named StudentID, LastName,  FirstName 
and PhoneNumber, as shown in Figure 14-1, dbReader[2] references the first name 
as does dbReader["FirstName"] when dbReader is instantiated as an object of 
the OleDbDataReader class. Thus, in addition to pulling out the values using their 
ordinal location, you can pull out the values using the individual database field names, 
such as LastName. This is sometimes more convenient and leads to more readable 
code. However, retrieval using the ordinal index is faster.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



922 | Chapter 14: Working with Databases

In addition to accessing the data through indexes, the OleDbDataReader class 
includes a number of typed accessor method members. The argument sent to each of 
the methods is the ordinal location of the data field, or the column number with the first 
column being column 0. Each of these methods returns the value in the type specified 
by the method. If you do not use these methods, you must perform an additional step, 
that being to convert the returned object to its correct data type. Table 14-6 lists some 
of the typed accessor methods and other members of the OleDbDataReader class.

OleDbDataReader members Description

Close( ) Closes an OleDbDataReader object

FieldCount Property; gets the number of columns in the current row

GetBoolean(int) Gets the value of the specified column as a Boolean

GetChar(int) Gets the value of the specified column as a char

GetDecimal(int) Gets the value of the specified column as a decimal

GetDouble(int) Gets the value of the specified column as a double

GetInt16(int), GetInt32(int), 
GetInt64(int)

Gets the value of the specified column as an integer

GetName (int) Gets the name of the specified column as a Boolean

GetOrdinal(string) Given the name of the column, gets the ordinal location

GetString(int) Gets the value of the specified column as a string

GetType(int) Gets the type of a specified column

Read( ) Advances the OleDbDataReader object 
to the next record

TABLE 14-6 OleDbDataReader class members

The first call to dbReader.Read( ) refers to value 1234 when  
dbReader  ["StudentID"] is written. “Rachel” is referenced when 
dbReader["FirstName"] is referenced. You should note that the field name  
must be enclosed in double quotes when you use the field name as an indexer.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 923

1 
4

Example 14-10 illustrates using the data reader to process results retrieved using the 
SQL command. In this example, the values are first stored in an object, aMember, of 
the Member class. The Member object is then used to populate a ListBox object 
for a Windows application.

EXAMPLE 14-10

Member aMember;
OleDbDataReader dbReader;
dbReader = dbCmd.ExecuteReader( ); // dbCmd is OleDbCommand object
                                   // instantiated in Example 14-3.
while (dbReader.Read( ))
{
     // Retrieve records 1-by-1. . .
     aMember = new
            Member(dbReader["FirstName"].ToString( ),
                   dbReader["LastName"].ToString( ));
     this.lstBxMembers.Items.Add(aMember);
}

Example 14-11 shows the statements that make up the Member class. Notice that 
one of the constructors of the Member class accepts two string arguments. In 
Example 14-10, a Member object, aMember, is instantiated using two of the retrieved 
dbReader objects. The database field names (from Figure 14-1) are used as index-
ers with the retrieved dbReader object. Notice how the ToString( ) method is 
called with the dbReader object in Example 14-10. This is because the dbReader 
returns each data field as an object. You have to do the type conversion before sending 
it to the Member constructor; otherwise, an exception is thrown. For the sake of brev-
ity, the Member class shown in Example 14-11 contains only the read-only proper-
ties, a ToString( ) method, and two constructors.

EXAMPLE 14-11

// Member.cs
// This class includes private members of
// identification number, first and last

Many of the methods listed in Table 14-6 begin with Get followed by a data type, such as 
GetString( ). These methods are called typed accessors.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



924 | Chapter 14: Working with Databases

// names, and local phone number. Read-only
// properties are included. The ToString( )
// method is overridden to return a formatted
// full name.
using System;

namespace DBExample
{
     public class Member
     {
          private string id;
          private string firstName;
          private string lastName;
          private string phoneNumber;

          // Constructors
          public Member( )
          {
          }
          public Member(string fname, string lname)
          {
               firstName = fname;
               lastName = lname;
          }

          // Properties
          public string FirstName
          {
               get
               {
                    return firstName;
               }
          }
          public string LastName
          {
               get
               {
                    return lastName;
               }
          }
          public string Id
          {
               get
               {
                    return id;
                }
          }
          public string PhoneNumber
          {
               get

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 925

1 
4

               {
                    return phoneNumber;
               }
          }
          public override string ToString( )
          {
                    return firstName + " " + lastName;
          }
     }
}

One last thing should be added to your program statements for the class that is 
accessing the database. You should always close the connections before exiting the 
application.

CLOSING ThE CONNECTION

This is one of the easiest things to do, but is often overlooked. You need to close the 
reader object and the connection object. By doing this, you unlock the database so 
that other applications can access it. Example 14-12 includes calls to the Close( ) 
method to close the connection and data reader objects instantiated in the previous 
examples.

EXAMPLE 14-12

dbReader.Close( );
dbConn.Close( );

An exception can be thrown when you attempt to close connections as well as when 
you are trying to access data. You can also enclose the close connection statements 
in a try. . .catch block, alerting the user if problems arise so that corrective action 
can be taken.

A special using statement can be added to surround the entire block of code accessing a 
database. When this is added, it is no longer necessary to call the Close( ) methods. All 
objects are disposed of when the statements included in the using block (surrounded by 
curly braces) go out of scope.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



926 | Chapter 14: Working with Databases

Example 14-13 pulls together the statements from Examples 14-1, 14-3, 14-11, and 
14-12 enclosing them in a try.  .  .catch block. For the sake of brevity, some of the 
Windows Forms Designer generated code is not included in the listing. The applica-
tion includes a ListBox object for data display and a Label object for displaying 
error messages. The label is originally set to a null value.

EXAMPLE 14-13

// DBExample.cs
// A Windows application is used as the
// front end to display records retrieved
// from an Access database.
using System;
using System.Windows.Forms;
using System.Data.OleDb;

namespace DBExample
{
     public partial class DbGUI :Form
     {
          private OleDbConnection dbConn;   // Connection object
          private OleDbCommand dbCmd;       // Command object
          private OleDbDataReader dbReader; // DataReader object
          private Member aMember;
          private string sConnection;
          private string sql;
 
          public DbGUI( )
          {
               InitializeComponent( );
          }

          private void btnLoad_Click(object sender, EventArgs e)
          {
               try
               {
                    // Construct an object of the OleDbConnection
                    // class to store the connection string
                    // representing the type of data provider
                    // (database) and the source (actual db)
                    sConnection =
                       "Provider=Microsoft.ACE.OLEDB.12.0;" +
                       "Data Source=member.accdb";
                    dbConn = new OleDbConnection(sConnection);
                    dbConn.Open( );

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 927

1 
4

                    sql = "SELECT * FROM memberTable ORDER " +
                          "BY LastName ASC, FirstName ASC;";

                    // Construct an object of the OleDbCommand
                    // class to hold the SQL query.

                    dbCmd = new OleDbCommand( );
                    dbCmd.CommandText = sql;

                    // Tie the OleDbCommand object
                    // to the OleDbConnection object
                    dbCmd.Connection = dbConn;

                    // Create a dbReader object.
                    dbReader = dbCmd.ExecuteReader( );
                    while (dbReader.Read( ))
                    {
                         aMember = new
                          Member(dbReader["FirstName"].ToString( ),
                                 dbReader["LastName"].ToString( ));
                         this.lstBxMembers.Items.Add(aMember);
                    }
                    dbReader.Close( );
                    dbConn.Close( );
               }
               catch (System.Exception exc)
               {
                    this.lblMessage.Text = exc.Message;
               }
          }
     }
}

Special note: If you do not override the ToString( ) method in the Member class, 
when you add an object of that class to the list box, you will get a list box full of the mem-
ber type names.

The output generated from the program listing in Example 14-13, which uses the 
Member class (illustrated in Example 14-11), is shown in Figure 14-2. Remember 
that the database was previously displayed in Figure 14-1.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



928 | Chapter 14: Working with Databases

The data reader class enables read-only access to the database. There are situ-
ations that require you to change or update the data in the database. This can be 
accomplished in several ways. You can write SQL statements that include INSERT, 
DELETE, and UPDATE statements and then execute those queries by calling the 
OleDbCommand.ExecuteNonQuery( ) method. An easier approach is to instanti-
ate objects of the dataset and data adapter classes. You use the data adapter object 
to populate the dataset object. The data adapter class has methods such as Fill( ) 
and Update( ) that can eliminate the need to write SQL updates. The sections that 
follow explain how this can be accomplished.

Updating Database Data
ADO.NET does not require that you keep a continuous live connection to the data-
base and process one retrieved record at a time. Additional classes are available that 
enable you to connect to the database long enough to retrieve records into mem-
ory. The data can then be changed and you can reconnect to the database to update 
the data. This can improve the performance of your applications and allow other 

FIGURE 14-2 Accessing the member.accdb database using the database reader object

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 929

1 
4

applications to access the database while you are working in a disconnected mode. 
When you do this, you create a temporary copy in memory of the records retrieved 
from the database and then work with the temporary data as opposed to the live data 
stored in the database. This is accomplished in .NET using a dataset. A dataset is 
a cache of records retrieved from some data source that may contain one or more 
tables from the data source. The interaction between the dataset and the actual data-
base is controlled through a data adapter.

Using Datasets to Process Database Records
As with the data reader objects, you use different dataset and data adapter classes 
in each of the different data provider namespaces depending on the type of data-
base you are accessing. For an Access database provider class, you would still add:  
using System.Data.OleDb;.

Up to the point where you are processing the retrieved data from the SQL query, you 
need to include the same program statements that you used with the database reader 
object. You still instantiate a connection object using the connection string for the 
OleDb data provider and still specify the database name. You will read about this in a 
later section in this chapter, but it is not necessary to call the Open( ) method with 
the connection object when you use a data adapter object. This is handled automati-
cally for you.

You still select the records (and fields) from the database by executing an SQL SELECT 
statement. As you saw in Example 14-13, the SQL statement is packaged in a data com-
mand object. Thus, you still need an object of the OleDbCommand class instantiated 
and the CommandText property for the class set to that SQL string. These statements 
from Example 14-13 are repeated for you here in Example 14-14. The only differ-
ence between using the database reader class and the dataset and data adapter classes, 
thus far, is that dbConn.Open( ) is omitted. Connection and command objects are 
needed.

EXAMPLE 14-14

private OleDbConnection dbConn;
private OleDbCommand dbCmd;
private string sConnection;
private string sql;

      :     // Colon indicates items missing

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



930 | Chapter 14: Working with Databases

      // Construct an object of the OleDbConnection
      // class to store the connection string
      // representing the type of data provider
      // (database) and the source (actual db)
      sConnection = "Provider=Microsoft.ACE.OLEDB.12.0;" +
                    "Data Source=member.accdb";
      dbConn = new OleDbConnection(sConnection);

      sql = "SELECT * FROM memberTable Order " +
            "BY LastName ASC, FirstName ASC;";

      // Construct an object of the OleDbCommand
      // class to hold the SQL query.
      dbCmd = new OleDbCommand( );
      dbCmd.CommandText = sql;

      // Tie the OleDbCommand object to the OleDbConnection object
      dbCmd.Connection = dbConn;

Details were provided in an earlier Note in this chapter about how to install a new driver if 
you are running a 64-bit processor and get an error message indicating “The ‘Microsoft.
ACE.OLEDB.12.0’ provider is not registered on this machine”.

DATASET OBJECT

The data reader object held one record of the query result at a time. The dataset 
object stores an entire relational tablelike structure. More than one table, plus rela-
tionships and constraints on the database, can be stored with the dataset object. The 
dataset is considered a memory-resident representation of the data. An object of the 
DataSet class can be instantiated, as shown in Example 14-15.

EXAMPLE 14-15

DataSet memberDS = new DataSet( );

DATAADAPTER OBJECT

An easy way to use a DataSet object is to instantiate an object of the DataAdapter 
class. Adapters are used to exchange data between a database source and a dataset 
object. The adapter also makes it easier to update the database if changes are made. 
An object of the DataAdapter class for an OleDb provider can be instantiated, as 
shown in Example 14-16.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 931

1 
4

EXAMPLE 14-16

OleDbDataAdapter memberDataAdap = new OleDbDataAdapter( );

Several new classes and a Data Source Configuration Wizard are available to simplify 
connecting to a database. A TableDataAdapter class is provided for each data 
 provider. You will experience using the wizard and the new classes later in this chapter.

The CommandBuilder object can only be used for datasets that map to a single 
database table. The SQL statement used to set the SelectCommand property must also 
return at least one primary key or unique column. A primary key is a value that uniquely 
identifies the row. For example, every student has a unique student ID. It makes a good pri-
mary key. If none are present, an InvalidOperation exception is generated, and the 
commands are not generated.

EXAMPLE 14-17

private OleDbCommandBuilder cBuilder;

     : // Colon indicates items missing
     cBuilder = new OleDbCommandBuilder(memberDataAdap); 
     memberDataAdap.SelectCommand = dbCmd;

COMMAND BUILDER OBJECT

One additional class can be used to generate SQL statements automatically so that 
you do not have to do additional SQL programming beyond the initial SELECT state-
ment used to retrieve the records. This is the OleDbCommandBuilder class. An 
OleDbCommandBuilder object automatically generates SQL statements for updates 
after you set the SelectCommand property of the OleDbDataAdapter class. This 
property is set to the SQL statement that retrieves the data from the database. Instan-
tiation of the class and setting the property are shown in the following code segment 
for Example 14-17.

FILLING ThE DATASET USING ThE DATA ADAPTER

After you have objects instantiated of the data adapter, dataset, and command builder 
classes, you are ready to go. You fill the dataset using the data adapter by specifying 
the name of the table to use as the data source, as shown in Example 14-18.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



932 | Chapter 14: Working with Databases

EXAMPLE 14-18

memberDataAdap.Fill(memberDS, "memberTable");

If your application requires that the dataset contain values from two or more tables, you 
cannot have the command builder class automatically generate the SQL statements 
for you. In this case, you have to set the InsertCommand, UpdateCommand, and 
DeleteCommand properties of the DataAdapter class. You do this by setting the 
DataAdapter object’s InsertCommand property with an SQL INSERT statement, 
DeleteCommand property with an SQL DELETE statement, and UpdateCommand 
 property with an SQL UPDATE statement.

The Fill( ) method can be used without writing additional SQL statements because 
you instantiated an object of the command builder class. The command builder auto-
matically generates SQL statements for the InsertCommand, UpdateCommand, and 
DeleteCommand properties of the DataAdapter class. You could set the value for 
each of these properties in exactly the same manner you set the SelectCommand 
property—using a string containing a SQL statement.

That is all that is required to retrieve records from a database. To show the contents of the 
table and enable the user to make changes, a presentation user interface layer is needed. 
The table values could be displayed on the console screen or on a control in a Windows 
application. The grid control is especially well suited to dataset objects. The following 
section explains how to bind a dataset object to a data grid on a Windows application.

Adding a DataGridView Control to hold the Dataset
To see the data from the database, the records can be placed in a DataGridView 
object on a Windows form. The DataGridView control creates a structure that 
is divided into rows and columns much like the structure you associate with a rela-
tional database table. In addition to being able to navigate around in the data grid, 
you can make changes by editing current records as well as to insert and delete new 
records. To tie the DataGridView object to the dataset, use the DataSource and 
DataMember properties of the dataGridView object, as shown in Example 14-19.

EXAMPLE 14-19

dataGridView1.DataSource = memberDS;
dataGridView1.DataMember = "memberTable";

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 933

1 
4

UPDATING ThE DATA IN ThE DATABASE

Any additional SQL statements needed are generated automatically for you if you 
instantiated an object of the command builder class. If you load the database into a 
DataGridView object and make changes such as adding records or changing the 
value of one or more fields, you can flush the changes back up to the live database 
using the Update( ) method of the DataAdapter class. There are no additional 
requirements to write INSERT, DELETE, or UPDATE SQL statements. All you do is 
write a single statement, as shown in Example 14-20.

EXAMPLE 14-20

memberDataAdap.Update(memberDS, "memberTable");

This statement is issued after the database table ("memberTable") is tied to the 
DataGridView object using the DataSource and DataMember properties.

Example 14-21 contains the statements that create a Windows application with a 
DataGridView object populated from the Member.accdb database used previ-
ously. The application includes statements that enable the database to be updated 
with changes made in the DataGridView object. For the sake of brevity, some 
of the Windows Forms Designer generated code is not included in the listing for 
Example 14-21.

EXAMPLE 14-21

// DataSetExample.cs
// A Windows application is used as the
// front end to display records retrieved
// from an Access database.
// Values can be changed and the
// database is updated using these changes.
using System;
using System.Data;
using System.Windows.Forms;
using System.Data.OleDb;

There are over 50 different Windows.Forms controls that can be added to your application. 
Not all are shown in the drop-down list. Additional ones can be added to the ToolBox using 
the Choose ToolBox Items from the Tools menu.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



934 | Chapter 14: Working with Databases

namespace DataSetExample
{
     public partial class FrmUpdate : Form
     {
          private OleDbDataAdapter memberDataAdap;
          private DataSet memberDS;
          private OleDbCommandBuilder cBuilder;
          private OleDbConnection dbConn;
          private OleDbCommand dbCmd;
          private string sConnection;
          private string sql;

          public FrmUpdate( )
          {
               InitializeComponent( );
          }

          private void btnUpdate_Click(object sender, EventArgs e)
          {
               try
               {
                    cBuilder =
                         new OleDbCommandBuilder(memberDataAdap);
                    memberDataAdap.Update(memberDS, "memberTable");
               }
               catch (System.Exception exc)
               {
                    this.lblMessage.Text = exc.Message;
               }
          }

          private void btnLoad_Click (object sender, EventArgs e)
          {
               try
               {
                     // Construct an object of the OleDbConnection
                     // class to store the connection string
                     // representing the type of data provider
                     // (database) and the source (actual db)
                     sConnection =
                        "Provider=Microsoft.ACE.OLEDB.12.0;" +
                        "Data Source=member.accdb";
                     dbConn = new OleDbConnection(sConnection);

                     sql = "SELECT * FROM memberTable ORDER " +
                           "BY LastName ASC, FirstName ASC;";

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ADO.NET | 935

1 
4

                     // Construct an object of the OleDbCommand
                     // class to hold the SQL query.

                     dbCmd = new OleDbCommand( );
                     dbCmd.CommandText = sql;

                     // Tie the OleDbCommand object to the
                     // OleDbConnection object
                     dbCmd.Connection = dbConn;

                     memberDataAdap = new OleDbDataAdapter( );
                     memberDataAdap.SelectCommand = dbCmd;
                     memberDS = new DataSet( );
                     memberDataAdap.Fill(memberDS, "memberTable");
                     dataGridView1.DataSource = memberDS;
                     dataGridView1.DataMember = "memberTable";
               }
               catch (System.Exception exc)
               {
                    lblMessage.Text = exc.Message;
               }
          }
     }
}

Notice how there are no calls to the Open( ) or Close( ) methods. When needed, 
the Fill( ) and Update( ) methods implicitly open the connection that the 
DataAdapter is using. These methods also close the connection when they are 
finished. This simplifies your code.

Exception-handling techniques were included in Example 14-21. As with previous 
examples presented in this chapter, a blank Label object was placed on the form to 
display error messages.

Figure 14-3 illustrates the application running. The image in the background of 
 Figure 14-3 shows what the form looks like before the Load Data button is clicked. Its 
event-handler method populates the DataGridView object from the member.accdb 
database by first calling the Fill( ) method of the OleDbDataAdapter class. 
Notice that two arguments to the Fill( ) method are the DataSet object and 
the database table. These two arguments are used to set the DataGridView object’s 
DataSource and DataMember properties.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



936 | Chapter 14: Working with Databases

One of the powerful features of the DataGridView object is that it enables you to 
delete or insert new records (rows) into the data grid. You can also change the values 
of individual fields (columns) in the data grid. However, the changes are to the local 
copy of the database. To update the live database, those changes must be posted back 
to the DataMember database table. This is done in Figure 14-4 when the Update Data 
button is clicked.

This btnUpdate_Click( ) event-handler method in Example 14-21 included a call 
to the Update( ) method of the OleDbDataAdapter class. The live database con-
nection is reopened, and the current contents of the dataset (bound to the data grid) 
are written to the database table specified by the DataMember property listed as the 
second argument.

As shown in Figure 14-4, several changes were made to the local database to illus-
trate that records could be inserted (Charlene Boswick), or deleted (Gary Jones 
and Colleen Bennett), and values in fields could be changed (Ralph Abbott 
changed to Ralph Adams). The back image in Figure 14-4 shows the updated data-
base table. The image in the foreground in Figure 14-4 shows the changed values in 
the DataGridView object.

FIGURE 14-3 Output from DataSetExample after the database is loaded

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 937

1 
4

Visual Studio includes a number of features that make it easier for you to develop 
applications that access data. Instead of writing code from scratch, the Visual Studio 
IDE encourages more drag-and-drop development where code is automatically gen-
erated for you. The rest of the chapter uses this approach.

Data Source Configuration Tools
The Data Source Configuration Wizard simplifies connecting your application to 
a data source by guiding you through the process, automatically generating the con-
nection string, creating dataset and table adapter objects, and bringing the data into 
your application. Figure 14-5 shows one way to begin this process.

FIGURE 14-4 Updated database records

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



938 | Chapter 14: Working with Databases

Add New Data Source
The Data Sources window can be opened from the View > Other Windows > Data 
Sources menu option as shown in Figure 14-5. To use the configuration tool, select 
Add New Data Source from the Data Sources pane. This is shown near the bottom 
left on the top image for Figure 14-5. Add New Data Source is also an option avail-
able under the Project menu. Whenever you are developing applications that use 
data, you will find it helpful to have the Data Sources window open on your desktop. 
This window shows you the dataset objects available to your project. You will recall 
that the data set represents the in-memory cache of data. The data set mimics the 
database on which it is based.

From the Data Sources window, you can drag items (tables and/or columns) onto your 
form. After the items are placed on the form, you can then customize the way they are 
 displayed. This is illustrated in the sections that follow.

FIGURE 14-5 Data Sources window

When you select Add New Data Source from the Data Sources window or the 
 Project menu, you are first prompted to choose a data source type. Options of 
 Database, Service, Object, and SharePoint are available, as shown in Figure 14-6.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 939

1 
4

As shown in Figure14-6, selecting Database enables you to create a typed dataset 
object. The typed dataset object corresponds directly to the underlying database 
table(s). A typed dataset defines a schema that exposes the tables and their columns 
as object properties. This makes manipulating the dataset much easier because you 
can reference the tables and columns directly by name.

When a dataset object is available for the application, the DataSet Designer tool is 
available to you. The DataSet Designer provides another visual representation of the 
objects contained in the dataset object. It enables you to set relationships between 
tables and add additional queries to your application. You will explore the DataSet 
Designer later in this chapter.

FIGURE 14-6 Data Source Configuration Wizard

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



940 | Chapter 14: Working with Databases

NEW CONNECTION

Selecting Next reveals the dialog box shown in Figure 14-7. Connections that are 
already established are available from the drop-down list shown to the left of the New 
Connection button in Figure 14-7. If the database is not already attached, the option 
to add a New Connection is selected, as shown in Figure 14-7.

FIGURE 14-7 Choose your Data Connection

You follow these steps whether you are connecting to a Microsoft SQL Server, Oracle, or a 
Microsoft Access database. Microsoft Access data source is used for the examples in this 
chapter.

To establish a new connection, select New Connection. A dialog box similar to the 
one shown in Figure 14-8 is displayed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 941

1 
4

Selecting the Change button beside the Data Source, as shown in Figure 14-8, gives 
you an opportunity to connect to different data sources through the available Data 
Providers. This opens another dialog box, similar to Figure 14-9, where you would 
choose Microsoft Access Database File as the Data Source. This option lets you 
use the .NET Framework Data Provider for OLE DB. If you select the checkbox in the 
extreme left corner, Always use this selection, Access will become the default data 
source for future connections.

FIGURE 14-8 Add a New Connection

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



942 | Chapter 14: Working with Databases

A Microsoft Access database file, using the .NET Framework Data Provider for OLE 
DB is shown selected in Figure 14-9.

Next you are able to enter details regarding the actual database to which you want 
to connect. Review Figure 14-8. Once the Data Source is determined, you select and 
enter the name of the database file using the Browse button. When connecting to an 
Access database, you are asked to enter a username and password for the database. 
The default (Admin) is automatically added as the User name. You are encouraged 
to keep this default setting and to leave the Password text box blank.

TESTING ThE CONNECTION

After you locate the appropriate database, the Test Connection button can be used to 
make sure you are able to connect to the data source. This is illustrated in Figure 14-10.  
You should perform this test before continuing with the configuration to make sure 
you are able to connect to the data source.

FIGURE 14-9 Change Data Source

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 943

1 
4

After testing your connection as shown in Figure 14-10, you are redirected back to 
the dialog box shown in Figure 14-7. If you are using the Data Source Configuration 
 Wizard, you might get a message similar to the one shown in Figure 14-11— especially 
when you are creating applications that connect to a Microsoft Access database.

FIGURE 14-10 Locate and test the connection

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



944 | Chapter 14: Working with Databases

LOCAL COPY OF YOUR DATABASE

The first time you establish a connection to the database using the Data Source Con-
figuration Wizard, the message shown in Figure 14-11 is displayed. The configuration 
tool offers to make a copy of the database and place it in your project folder. The file is 
placed at the same level as the project folder—at the same location where the source 
code files for the Windows form are stored. Selecting Yes copies the database into your 
project and modifies the connection so that it now points to the database in your proj-
ect. In addition, selecting Yes causes the file to be copied to the project’s output direc-
tory (bin\Debug folder) each time you run the application. So you end up with two 
copies of the database with your application, when you select Yes. The copy of the data-
base in the bin\Debug directory reflects any changes made from your application. The 
other copy, the original once you located outside of the project remains unchanged.

If you choose not to make a copy, and select No when prompted as shown in 
 Figure 14-11, then a connection is established, and the database file is left in its origi-
nal location. No additional copies are made. Either way, whether you select Yes or No, 
the next time you create an application and Add a Data Source, the connection to the 
database that was last accessed is automatically, by default, established. If you want to 
use a different database, you would Add New Data Source. If you wanted to use that 
same connection, nothing else is required.

FIGURE 14-11 Copy database file to your project

Another option for making a local copy of the database for your project is to use Windows 
Explorer and drag a copy of the database to the Visual Studio Solution Explorer win-
dow. The copy should be dropped on top of the project node. When you do this, the Data 
Source Configuration Wizard launches and gives you an opportunity to identify which 
table(s) to include in the dataset. Access database files end with an .accdb extension.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 945

1 
4

You can store a local copy of the database with your project. However, if multiple 
applications are using the same database, you will probably prefer to leave the data-
base in its original location so that changes made by one application are available to 
all other applications using the database. Thus, you would probably select No when 
asked if you want a copy made for your project as shown in Figure 14-11.

In order to package the database with the project examples for this chapter, a local copy 
of the each database was included in the project folder. The underlying database does not 
get changed properly. Having a local copy works fine if you only intend to display the data. 
If you are using the Data Source Configuration and DataSet Designer tools and are 
planning to update or make changes to the database within your application, it is recom-
mended that you do not make a local copy of the database. Select No when prompted.

CONNECTION STRING CREATED

Visual Studio offers to store the connection string in a configuration file that contains 
settings specific to your application. This is illustrated in Figure 14-12. As a final step 
before you identify the data to be placed in the dataset, you decide whether to store 
the connection string.

FIGURE 14-12 Save connection string

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



946 | Chapter 14: Working with Databases

As shown in Figure 14-12, storing the connection string in the application’s config-
uration file makes maintenance and deployment easier. It simplifies the process of 
maintaining your application if the database connection changes. In the event of a 
change in the database connection, you can edit the connection string in the applica-
tion configuration file as opposed to editing the source code and having to recompile 
your application. The default name for the connection string for the application is 
the name of the database followed by ConnectionString; thus for this example the 
name is StudentDataBaseConnectionString, as shown in Figure 14-12.

If you save the connection string to the application configuration file, as shown in 
Figure 14-12, an App.config file is created. Example 14-22 shows the file contents. 
It is an XML file that can be viewed and modified in Visual Studio.

EXAMPLE 14-22

<?xml version="1.0"encoding="utf-8" ?>
<configuration>
     <configSections>
     </configSections>
     <connectionStrings>
          <add name="ConfigToolsExample.Properties.Settings.
                    StudentDataBaseConnectionString"
          connectionString="Provider=Microsoft.ACE.OLEDB.12.0;
          Data Source=|DataDirectory|\StudentDataBase.accdb"
          providerName="System.Data.OleDb" />
     </connectionStrings>
     <startup>
          <supportedRuntime version="v4.0"
               sku=".NETFramework, Version=v4.5" />
     </startup>
</configuration>

If you look ahead at Figure 14-14, you will find the App.config file listed in the 
 Solution Explorer window for the project.

Dataset Object
As a final step in using the configuration tool, you identify the database objects that 
you want to bring into your application. As shown in Figure 14-13, a treelike structure 
shows the views, tables, and columns available from the data source you selected.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 947

1 
4

The chosen objects and their underlying data are brought into your application and 
become accessible through the dataset object. You can select to include in your data-
set all of the tables and/or views of the database. You also have the option of selec-
tively identifying individual tables, as shown in Figure 14-13. Another option is to 
select certain columns to have available in memory as your dataset object.

The dataset that is created includes not only the collection of one or more data table 
objects made up of rows and columns of data, but also primary and foreign keys, con-
straints, and relation information about the data.

You will recall that dataset objects, used with data adapter objects, enable you to 
update the original data source. As shown in Figure 14-14 in the Solution Explorer 
window, StudentDataBaseDataSet.xsd is created.

FIGURE 14-13 Choose dataset objects

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



948 | Chapter 14: Working with Databases

As highlighted in Figure 14-14, the App.config file, which stores the connection 
string, is now part of the application. A new set of files defining the dataset object is also 
included with the application when the configuration wizard terminates normally. These 
files, independent of the data source, are also named using the database identifier (e.g., 
StudentDataBaseDataSet.xsd) with “DataSet” appended onto the end of the name.

DATA SOURCES WINDOW

Figure 14-14 also shows the new Data Sources window to the left of the form. This 
window enables you to view the data available to your project. It greatly reduces the 
complexity of binding data from a database to controls on your forms by allowing you 
to drag complete tables or selectively drag columns from the tables onto forms to cre-
ate data-bound controls.

Data was placed in rows and columns in an earlier example using the DataGridView. 
The DataGridView has additional functionality not used in the previous example. 
You can specify how data is formatted and displayed using the DataGridView. It 
provides a customizable table that allows you to modify columns, rows, and borders. 
You can freeze rows and columns to prevent them from scrolling. You can hide rows 
or columns and provide ToolTips and shortcut menus for individual cells, rows, and 
columns in the grid.

FIGURE 14-14 Data Sources and Solution Explorer windows

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 949

1 
4

PLACING A DATAGRIDVIEW CONTROL ON ThE FORM

The easiest way to add a DataGridView control to your application is to drag a table 
from the Data Sources window onto your form. When you do this, an object of the 
DataGridView class is instantiated. You get the added benefit of another control, 
BindingNavigator object, being automatically instantiated. In Figure 14-15, 
notice the strip of buttons below the title bar. These were all placed when the table 
from the Data Sources window was dragged onto your form; no additional coding 
was needed. No other objects (other than the table) were dragged onto the form.

FIGURE 14-15 DataGridView control placed on form

As shown in Figure 14-15, in addition to the grid-like control being placed on the form 
along with the navigational strip, five objects are placed in the Component Tray. 
These objects will all be explored after you take a closer look at the DataGridView 
object.

CUSTOMIZING ThE DATAGRIDVIEW OBJECT

One way to customize the DataGridView control is to use its smart tag. You will 
recall that the smart tag glyphs are displayed when you select the control. They float 
at the upper-right corner above the control. The DataGridView tasks are shown in 
Figure 14-16.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



950 | Chapter 14: Working with Databases

The DataGridView control has many properties that can be set through the 
Properties window. Clicking the control’s smart tag reveals several other custom-
ization tool options. Selecting Dock in Parent Container causes the grid to expand 
to the form size. This is especially useful if only one control will be displayed on the 
form. As you experiment with the settings, notice that this menu option toggles to 
become Undock in Parent Container after it is selected.

EDITING COLUMNS

From the DataGridView’s smart tag, the Edit Columns option displays the columns, 
allowing you to remove or reorder them. Initially they appear in the same order and 
by the same name as the columns in the dataset. Recall that the dataset is generated 
from the table, so the column names are field names in the database. When you click 
the Edit Columns option, you’ll see the Bound Column Properties for each of the 
columns. The Bound Column Properties option, shown in Figure 14-17, is similar 
to the Properties window but is used to set values specifically for the column objects 
being displayed on the DataGridView control.

FIGURE 14-16 Customizing the DataGridView control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 951

1 
4

FIGURE 14-17 Edit DataGridView columns

The major_ID column was removed from the grid using the smart tag Edit Columns 
option. The Last Name was moved up to be displayed in the first column, and the 
student_ID was moved to the end. As shown in Figure 14-17, the ToolTipText for 
the column is set here. You enter column headings for the fields into the HeaderText 
property. Otherwise, the default column names from the database are used as the 
heading. The Frozen property indicates whether the column moves when the 
DataGridView control scrolls horizontally. Table 14-7 lists the properties and 
changes that were made for this application.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



952 | Chapter 14: Working with Databases

Object Property Value

Form1 Text Typed “Example using 
Configuration Tools”

Form1 BackColor Ghost White

studentDataGridView ColumnHeadersDefault 
CellStyle_BackColor

Blue

studentDataGridView ColumnHeadersDefault 
CellStyle_Font

12 pt

studentDataGridView GridColor Blue

studentDataGridView ColumnHeadersHeight 
SizeMode

Enable Resizing

studentDataGridView ColumnHeadersHeight 36

studentDataGridView RowHeadersDefault 
CellStyle_BackColor

Blue

studentDataGridView CellBorderStyle Raised

studentDataGridView RowHeadersBorderStyle Raised

student_ID Bound Column  
Property_HeaderText

Typed “Student ID”

student_LastName Bound Column  
Property_HeaderText

Typed “Last Name”

student_LastName Bound Column  
Property_Frozen

True

student_FirstName Bound Column  
Property_HeaderText

Typed “First Name”

student_Phone Bound Column  
Property_HeaderText

Typed “Phone”

student_Phone Bound Column  
Property_ToolTipText

Typed “Campus 
number”

TABLE 14-7 ConfigToolsExample property values

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 953

1 
4

Figure 14-18 shows the output produced when the application is run. The form and 
the DataGridView control were enlarged using the windows resizing handles. The 
DataGridView was moved to the top-left corner of the form and the DataGridView 
control’s Dock in Parent Container property was set. The Dock in Parent Container 
property is accessible from the smart tag on the top-right corner of the control.

FIGURE 14-18 Example using Configuration Tools output

Values were not stored in alphabetical order by last name in the database. The 
DataGridView control provides the additional functionality of allowing columns to 
be sorted. The records shown in Figure 14-18 are sorted in ascending order by the last 
name. Clicking on the column heading for the last name refreshed the display, sorting 
the records by last name. A second click would rearrange the records in descending 
order by last name. The sorting capability is available for all of the columns.

FORMATTING DATAGRIDVIEW CELLS

As noted earlier, when you select Edit Columns from the smart tag on the 
 DataViewControl, the Bound Columns Properties window is displayed for individ-
ual columns. As shown in Figure 14-19, the appearance of the column can be format-
ted by selecting the first listed property, DefaultCellStyle. A CellStyle Builder is 
opened when you click this property. As shown in the middle window in Figure 14-19, 
the colors, font, alignment, and format for the cell are set using these properties.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



954 | Chapter 14: Working with Databases

As shown in Figure 14-19, in addition to having numeric, currency, and scientific 
notation format options, you can also define custom formats for a cell. Nine options 
are available from the Alignment property, including TopLeft, TopRight, and 
 TopCenter. Similar values (left, right, and center) are found with the middle and 
bottom options. Four values representing the amount of blank space to insert at the 
left, right, top, and/or bottom can be set using the Padding properties.

Look back at the navigation strip on the form shown in Figure 14-18. This tool strip 
was automatically added to the form when the table from the Data Sources window 
was dropped onto the form. An object of the BindingNavigator class was instan-
tiated; it represents a standardized way to navigate and manipulate data on a form.

BINDINGNAVIGATOR CONTROL

Another class added to the component tray is the BindingNavigator class. The 
BindingNavigator control was shown in Figure 14-15. It was one of the five new 
objects added to the component tray at the bottom of the form when the table from 

FIGURE 14-19 Formatting DataGridView cells

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 955

1 
4

the Data Sources pane was placed on the form. The form and component tray are 
shown again in Figure 14-20.

FIGURE 14-20 BindingNavigator and BindingSource objects

The BindingNavigator control provides a standardized way to move through and 
process the data. The user interface for the BindingNavigator control includes 
several buttons and a text box object. The tool strip includes buttons to move to the 
first, move backward, move forward, and move to the last records. It also allows you 
to enter a record number and move directly to that record. The plus symbol inserts a 
new row so that new values can be entered. The X symbol deletes the row. The tool 
strip also includes a Save button.

In most cases, a BindingNavigator control is paired with a BindingSource control 
to move through data records on a form and interact with them. A BindingSource 
object simplifies binding controls on a form to data. It does this by first attaching 
the BindingSource control to the data source, then each of the individual controls 
placed on the form can be bound to the BindingSource object, as opposed to the 
actual data source.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



956 | Chapter 14: Working with Databases

Much functionality is automatically programmed into the toolstrip. When the 
BindingNavigator control is first instantiated, the navigational move first, last, 
forward, and backward arrows work properly. This code was also automatically gen-
erated when the DataGridView control was dropped onto the form.

EXAMPLE 14-23

private void studentBindingNavigatorSaveItem_Click
                      (object sender, EventArgs e)
{
     this.Validate( );
     this.studentBindingSource.EndEdit( );
     this.tableAdapterManager.UpdateAll
          (this.studentDataBaseDataSet);
}

The DataGridView is a very rich control that could be programmatically accessed. It 
has a number of properties and can be treated like a collection of objects stored in a two-
dimensional array. DataGridView is a column-major structure, which means you would 
specify the column index first. The following code retrieves the value stored in the first col-
umn of the selected row of dataGrid1.

dataGrid1[0, dataGrid1.CurrentRow.Index].Value.ToString( );

TableAdapterManager
The last statement in the method shown in Example 14-23 calls an UpdateAll( ) 
method of a TableAdapterManager class. You read earlier in this chapter how 
a data adapter could be used with a dataset to update a database using a discon-
nected architecture. The interaction between the dataset and the actual database 
is controlled through the methods of the data adapter or table adapter objects. 
Notice that one of the five objects in the component tray, shown in Figure 14-20, is a 
TableAdapterManager. A TableAdapterManager object is generated when you 
create a dataset in a project. The TableAdapterManager is extremely useful when 
an application pulls data from two or more tables. It uses the foreign-key relation-
ships to retrieve and save data in related data tables.

The data or table adapter fills the dataset from the data source (database), and then 
its update method is used to send the changes back to the database. Data and table 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 957

1 
4

adapters read data from a database into a dataset and then write the changed data 
from the dataset back to the database. They do this using SELECT, INSERT, DELETE, 
and UPDATE SQL statements.

TABLEADAPTERS

In the previous discussion about writing program statements to use a dataset and 
data adapter to update a database, we stated that the CommandBuilder class could 
be used to generate SQL statements for updates after you set the SelectCommand 
property of the DataAdapter class. Another approach is to use the TableAdapter 
SelectCommand, InsertCommand, UpdateCommand, and DeleteCommand proper-
ties. The CommandText for each of these properties can be set to an SQL query. For 
the TableAdapter Update( ) method to work properly, it has to have available 
SQL INSERT, DELETE, and UPDATE commands. Based on the interaction with the 
user, one or more of these commands is executed. If data is modified, the UPDATE 
SQL command is used. When records are deleted, the DELETE SQL command is 
used. The TableAdapter’s Update( ) method determines which command(s) to use 
when it is invoked.

When you dropped the DataGridView control onto the form, one of the five objects 
placed in the component tray was studentTableAdapter. TableAdapters are 
designer-generated components that are not technically part of ADO.NET, but like 
data adapters provide a communication link between an application and a database. 
They provide all of the functionality of a data adapter. They also have a built-in con-
nection object and enable you to configure the InsertCommand, UpdateCommand, 
and DeleteCommand SQL queries manually in the Properties window.

If you select the TableAdapter object in the component tray and view its properties, 
you will not see the SelectCommand, InsertCommand, UpdateCommand, and 
DeleteCommand properties. You need to use the DataSet Designer to view and modify 
the CommandText for these properties.

DataSet Designer
The DataSet Designer tool is available in Visual Studio to work with DataSet 
objects. The DataSet Designer can be used to extend the functionality of datasets. It 
is also used to create and modify data and table adapters and their queries. To start the 
designer, double-click a dataset in the Solution Explorer window or right-click the 
dataset in the Data Sources window and click Edit DataSet with Designer. A visual 
representation of the dataset and table adapter is presented, as shown in Figure 14-21.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



958 | Chapter 14: Working with Databases

The DataSet Designer is opened from the Solution Explorer window by 
double-clicking the StudentDataBaseDataSet.xsd file. The Properties 
window, shown in Figure 14-21, shows the StudentTableAdapter object. The 
StudentTableAdapter object was selected in the DataSet Designer. Notice, 
there are properties named InsertCommand, DeleteCommand, UpdateCommand, 
and SelectCommand. When the DataGridView object was dropped on the form, 
SQL commands were associated with each of these properties.

REVIEWING ThE TABLEADAPTER'S COMMAND PROPERTIES

The StudentTableAdapter object already has values associated with the SQL 
commands used to retrieve and update database tables. When you expand each of 
the properties for the four SQL commands (DeleteCommand, InsertCommand, 
SelectCommand, and UpdateCommand), three additional lines are revealed as shown 
in Figure 14-22. Options of CommandText, CommandType, and Parameters are dis-
played. You can use the Query Builder to edit or write new SQL statements for each 
of the CommandTexts.

FIGURE 14-21 DataSet Designer opened

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 959

1 
4

As shown in Figure 14-22, the first property associated with the SelectCommand, 
CommandText, holds the SQL statement. The SQL statement can be typed directly 
into this box, or it can be generated using the Query Builder. To open the Query 
Builder, click in the CommandText value box. An ellipsis will appear. The Builder is 
started when you click the ellipsis.

QUERY BUILDER

Clicking the value box beside any of the SQL command properties opens up a 
drop-down list with options of Current, New, and None. The Query Builder can 
be launched from both New or from selecting the ellipsis in the CommandText box 
under the SQL command. If you select New, the SQL statement in the CommandText 
box is cleared and then the Query Builder is launched. If you select New you are 
first prompted to select the table from which the data is to be retrieved. After you 
add the table and close the dialog box, you build the query. Instead of selecting New, 
if you select the ellipsis beside the CommandText property value, the Query Builder 
opens with the SQL statement that is automatically generated by Visual Studio. The 
SelectCommand is shown in Figure 14-23.

FIGURE 14-22 Updating the SelectCommand

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



960 | Chapter 14: Working with Databases

You can type the SQL statement into the SQL pane or use the Diagram pane to select 
the columns you want to update as shown in Figure 14-23. The Grid pane in the center 
is used to filter and enter parameterized expressions. The Filter column in the Grid 
pane is used to identify which records should be returned for the query. If you select 
the Execute Query button, the results of the query are displayed in the Results pane.

FIGURE 14-23 Identify the table for the update

Normally, all of the columns are selected for an update. Also, if you insert new records, be 
sure to insert data for any key values.

PARAMETERS

To indicate that the column is to be set by entering a value at run time, a parameter-
ized query can be created. For values that might be provided at run time while the 
form is being displayed, an “at” symbol (@) is placed in front of an identifier for SQL 
Server data sources. A question mark (?) is used instead of the @ symbol for Access. 
No identifier can follow the ? with Access.

Figure 14-24 shows the SELECT statement created with the Query Builder. Only 
records that had major_ID = ‘CS’ or major_ID = ‘MS’ were retrieved.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 961

1 
4

FIGURE 14-24 CommandText property value for the SelectCommand

The CommandText for the SelectCommand is shown in Example 14-24. When values 
were entered for the Filter and Or. . . , it was not necessary to type the equal symbol or the 
quotation marks. These symbols were automatically added. Instead of using the Diagram 
or Grid pane, this SQL statement was typed directly into the SQL pane. The Sort Order 
column was selected for the student_LastName data field. Ascending was automati-
cally stored in the SortType when the Sort Order of 1 was selected for last name.

EXAMPLE 14-24

SELECT student_ID, student_FirstName, student_LastName,
       major_ID, student_Phone
    FROM Student
         WHERE (major_ID = 'CS') OR (major_ID = 'MS')
                 ORDER BY student_LastName

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



962 | Chapter 14: Working with Databases

Inside the Query Builder, you can test your SQL statements by selecting the Execute 
Query button. If you have parameterized values, a dialog box is displayed request-
ing values for the arguments. As shown in Figure 14-24, the results of the query are 
displayed on the Results pane in the Query Builder window. This enables you to test 
the SQL statement during development.

With no changes to the SQL statements, the application enables you to insert new 
rows, modify the existing data, and delete one or more rows. Figure 14-25 shows a 
snapshot of the user interface as the application is running.

FIGURE 14-25 Example using Configuration Tools final output

As shown in Figure 14-25, 10 of the records met the SQL WHERE clause ((major_ID 
= 'CS') OR (major_ID = 'MS')) and appear in the listing. Records were sorted by 
last name. Even though the major_ID was listed as a field being returned from the 
SQL SELECT, the major did not appear in the listing of Figure 14-25. Recall that the 
major_ID column was removed from the DataGridControl using the smart tag 
Edit Columns option. Readable headers were also added during that edit as was illus-
trated in Figure 14-17.

At this point, the records were changed while the application was running. The 
record with the name Manual Alberto was deleted. Adam Jones was inserted. Alma 
King’s name was changed to Alma Norma King. Clicking the Save button caused the 
tableAdapterManager.UpdateAll( ) method to be called, which used the table 
adapter’s InsertCommand, DeleteCommand, and UpdateCommand CommandText 
SQL statements to make changes back to the database. The database file was updated. 
Figure 14-26 shows the changes made while the application was running and the 
updated Access table.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 963

1 
4

FIGURE 14-26 StudentDataBase Student table updated (from bin\Debug directory)

As you review Figure 14-26 you will notice that record with the name Adam Jones that 
was added did not have values associated with the major_ID. Recall that the field was 
deleted from the form during the design so the user could not enter values for it. Be 
very careful to make sure you include primary key fields on forms when you plan to allow 
inserts; otherwise, the cell will become null and an exception will be thrown.

Figure 14-26 displays the contents of the database stored in the bin\Debug directory. 
When the database connection was established, Yes was selected so that a local copy of 
the database was copied to the project directory. You may want to again review Figure 
14-11. It shows where that selection was made, and any changes made to the database 
are made to the copy. As the changes are not made to the database stored in the project 
directory, each time the program launches it loads the original database file.

If you run the application a second time, you may think your application did not do the 
updates. This is because the application always reloads the database file stored in the 
project’s directory (not the one stored in the bin\Debug directory). Selecting No when 
prompted about whether you want to make a copy for your project directory would have 
resulted in the changes being made to the referenced database.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



964 | Chapter 14: Working with Databases

ADDING QUERIES TO TABLEADAPTER OBJECTS

The ConfigToolsExample solution was copied to a new folder, ConfigToolsExample-
WithQuery. This section uses that application. TableAdapters typically contain 
Fill( ) and Update( ) methods, which are used to retrieve and update data in a 
database. In addition, multiple queries can be added to TableAdapter objects. This 
is one of the added benefits the TableAdapter class offers over the DataAdapter. 
The initial SELECT SQL query, used by the Fill( ) method, is stored in the 
SelectCommand CommandText property. When you add other queries, they are 
stored as public methods containing SQL statements that are called like any other 
method or function on an object.

You can use the DataSet Designer window to add the additional queries. Right-click 
the TableAdapter in the DataSet Designer window and select Add Query from 
the shortcut menu. This displays a TableAdapter Query Configuration Wizard. You 
will first be asked “How should the TableAdapter query access the database?” If you 
select Use SQL statements to load the table, the dialog box shown in Figure 14-27 is 
displayed.

FIGURE 14-27 Multiple queries with the TableAdapter

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 965

1 
4

If you are simply returning values for display, you would select the first option, 
SELECT which returns rows, as shown in Figure 14-27. The next window lets you 
type the SQL statements and select the Next option or click a button that takes you to  
the Query Builder. If you want to retrieve rows based on the user’s last name, you 
could add a parameterized query using the WHERE clause. When you have com-
pleted the SQL statement and selected the Next option, a dialog box similar to the one 
shown in Figure 14-28 opens. Notice that two methods are automatically generated.

For the ConfigToolsExampleWithQuery, a WHERE clause was typed onto the end of 
the auto-generated SQL statement. The SQL statement now reads: SELECT student_ID,  
student_FirstName, student_LastName, student_Phone FROM 
 Student WHERE (student_LastName = ?)

After typing the SQL statement indicating which data should be used to load the table 
and selecting the Next option, the configuration wizard enables you to choose which 
methods to generate as illustrated in Figure 14-28.

FIGURE 14-28 Naming the new query methods

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



966 | Chapter 14: Working with Databases

As shown in Figure 14-28, you have the option of naming the methods. The tool auto-
matically populates the method name text boxes with FillBy and GetDataBy. You  
can type a completely new name or append onto the end of the default value.  
A name such as FillByLastName would be appropriate if you wanted to show a 
listing of students with the same user-entered last name. When you click the Next 
button, a message is displayed indicating that the SQL select statement has been gen-
erated along with the Fill and Get methods. Click Finish to complete the process.

A new row, representing the new methods, is added to the class in the DataSet Designer 
for this new query. The row has an SQL icon to the left of the method name. You can look 
back at the class diagram in Figure 14-21 or ahead at Figure 14-30. Both figures show the 
DataSet Designer. The new row would be added below the Fill, GetData( ) row.

ADDING A BUTTON AND TEXT BOX FOR ThE QUERY

Buttons to execute the new queries that you define using the DataSet Designer can 
be added to the navigational tool strip. In the form design mode, when you click on 
the navigational tool strip to the right of the Save button, a new button appears. This 
button enables you to add additional controls to the form navigator. The navigational 
tool strip currently has buttons to move to the first, last, previous, and next records, 
plus buttons to add and delete rows. You could, for example, add a text box for user 
input and a new button. A ToolStripButton was added by clicking the drop-down 
list that appears to the right of the Save icon; btnRetrieve was typed in its Name 
property. Its Image property was selected and the image was cleared and set to none. 
The DisplayStyle was set to Text. The Text property for the ToolStripButton 
was set to "Retrieve By Last Name". A ToolStripTextBox was also added on the 
navigational strip; txtBxLastName was typed in its Name property.

The value entered in the text box could be retrieved and used as a parameter to 
the query’s SQL statement(s) when the button is clicked. Double-clicking the 
ToolStripButton generates the heading for the event handler. Example 14-25 shows 
a call to the FillByLastName( ) method. FillByLastName( ) is the method that 
was automatically generated by the configuration tool.

EXAMPLE 14-25

private void btnRetrieve_Click(object sender, EventArgs e)
{
     studentTableAdapter.FillByLastName
        (studentDataBaseDataSet.Student, txtBxLastName.Text);
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 967

1 
4

The event-handler method in Example 14-25 invokes the TableAdapter’s 
FillByLastName( ) method. The last name is retrieved from the ToolStripTextBox. 
It sends as arguments the dataset object and the parameterized value (last name), 
which was included as part of the SQL query. When the user types a value for last 
name, records that match that value are displayed. This is illustrated in Figure 14-29.

Two additional controls, a button and a text box, are shown on the navigational tool strip in 
Figure 14-29. The Retrieve By Last Name button uses the value entered in the text box 
to its right to populate the data grid.

FIGURE 14-29 TableAdapter’s Query

Using the smart tag on the DataViewControl on the Windows form, the option 
Undock in Parent Container was selected. When the user typed the value "Howard" 
one record was retrieved as illustrated in Figure 14-29.

As you review Figure 14-13, you are reminded that the database has two tables. 
When the solution was originally designed, the dataset was created from a single 
table, Student. It is often necessary to display data from multiple tables on a sin-
gle form. This can also be accomplished using the visual tools now available with 
Visual Studio. The ConfigToolsExample solution was copied to a new folder, 
ConfigToolsExampleWithMultipleTables. The following section uses that 
application.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



968 | Chapter 14: Working with Databases

Connecting Multiple Tables
If you plan to retrieve data from multiple tables, it is best to select all of the tables 
that you will need originally when you create the dataset object. Recall that the data-
set created earlier as part of the ConfigToolsExample selected a single table for 
the dataset. Without regenerating the dataset, several options are available to gain 
access to the database’s other table data. One of the simplest approaches is to use 
the Query Builder and add an INNER JOIN clause to the SELECT statement for the 
TableAdapter’s SelectCommand. The Query Builder is very sophisticated. You can 
use the graphical capabilities of the tool on the Diagram pane, or you can type the 
SQL statement straight into the SQL pane and test your statement using the Execute 
Query button.

USING ThE DATASET DESIGNER

To follow this approach, use the Solution Explorer window to open the 
DataSet Designer. Recall that when you double-click on the dataset file 
(StudentDataBaseDataSet.xsd) from the Solution Explorer window, the 
DataSet Designer opens with the DataSet and TableAdapter objects graphically 
displayed as a single unit. This was shown in Figure 14-21.

You need to change the TableAdapter CommandText for the SelectCommand so 
that when the Fill( ) method is called, the dataset is populated with results from 
both tables. Recall that the TableAdapter object provides the link between the 
database and the DataSet object. As you have read earlier, the Fill( ) method 
uses the SQL command associated with the adapter’s SelectCommand to populate 
the dataset object. It is through the SELECT command that the Fill( ) method 
knows what to put in the dataset. The TableAdapter's Fill( ) method is called 
from the page load event handler. This is shown in Example 14-26.

EXAMPLE 14-26

private void FrmConfigTools_Load(object sender, EventArgs e)
{
     // This line of code loads data into the
     // 'studentDataBaseDataSet.Student' table.
     this.studentTableAdapter.Fill
          (this.studentDataBaseDataSet.Student);
}

Make sure the Properties window is visible. Select the TableAdapter in DataSet 
Designer and then, using the Properties window, expand the Table Adapter’s 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 969

1 
4

MODIFYING ThE SELECTCOMMAND USING ThE QUERY BUILDER

To start the Query Builder so you can modify the SELECT statement, click the 
ellipsis in the value box for the CommandText of the SelectCommand, as shown in  
Figure 14-30.

Because a query already exists, the Query Builder takes you immediately to the 
Query Builder designer. When the Builder is first opened, the Diagram pane just 
shows the one table that was used to populate the dataset. If you right-click anywhere 
in the Diagram pane, one of the menu options is Add Table. You get a list of tables 
that belong to the database data source. The Student and Department are both 
listed. Selecting Department places the Department table in the Diagram pane with 
the Student. It automatically places a relationship line between the two tables as 
shown in Figure 14-31.

FIGURE 14-30 Revise the CommandText for the SelectCommand

SelectCommand so that you are able to see the CommandText property, as shown in 
Figure 14-30.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



970 | Chapter 14: Working with Databases

You could type the SQL statement shown in Example 14-27 in the Query Builder 
SQL pane or select the additional fields from the Department table to be dis-
played using the Diagram pane. The SQL statement shown in Figure 14-31 looks 
slightly different from what is shown in Example 14-27. The Query Builder 
fully qualifies all field name references. Instead of displaying student_ID as 
shown in Example 14-27, the field name is preceded by the table name and a dot 
(i.e., Student.student_ID).

FIGURE 14-31 Use the Query Builder to modify the SelectCommand CommandText

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 971

1 
4

EXAMPLE 14-27

SELECT   student_ID, student_FirstName, student_LastName,
         major_ID,student_Phone, major_Name, major_Chair,
         major_Phone
    FROM Student
         INNER JOIN Department
             ON Student.major_ID = Department.major_ID

Clicking the Execute Query button on the Query Builder window displays the 
records returned as the result of the query in the Results pane, near the bottom of 
the screen as shown in Figure 14-31.

You could actually just type the SQL statement into the SQL pane as soon as the Query 
Builder is opened. However, without having the second table displayed, you might not be 
able to correctly spell the column names.

Recall that if you have saved a local copy of the database within your project, the database 
file at the project level is the one that is loaded each time you launch the application. It is 
not updated. Every time the application runs, a new copy of the database is stored in the 
bin\Debug directory.

When you close the Query Builder, you will be asked whether you want to have 
the UpdateCommand, InsertCommand, and DeleteCommand regenerated using 
the newly added SelectCommand. You should select No when you see the message. 
Depending on the application you are building, you might need to go back and revisit 
one or more of the INSERT, DELETE, or UPDATE SQL commands. It is best not to have 
them automatically regenerated for you. If you select Yes, you may see a message stat-
ing that “Dynamic SQL generation is not supported against multiple base tables.” The 
tool is not able to generate dynamic DELETE, UPDATE, and INSERT SQL statements 
from a SELECT statement that involves multiple tables. The update functionality of a 
TableAdapter is dependent on how much information is available to its main SQL 
SELECT query.

UPDATING ThE WINDOWS FORM TO DISPLAY DATA FROM MULTIPLE TABLES

The DataGridView object was used earlier to display data. You saw how it could 
be customized to display multiple rows with multiple columns in a grid like struc-
ture. Recall that it was originally placed on the form by dragging the Student table 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



972 | Chapter 14: Working with Databases

node from the Data Sources window to the form. DataGridView is the default 
control used to display the data when you drag the entire table from the Data 
Sources window. After the relationship is established between the tables, you can 
add columns from the second table to the data grid. You do this by selecting the data 
grid’s smart tag in the form design mode. The Edit Columns option displays the 
dialog box previously shown in Figure 14-17. The new columns can be added from 
this dialog box or using the Add Columns option from the smart tag. As previously 
stated, you can also use the Edit Columns option dialog box to change any of the 
property values for the columns. Figure 14-32 illustrates adding columns from the 
second table.

FIGURE 14-32 Adding fields from the second table

The Student ID was moved so that it is displayed in the first column. The name of the 
major and the major chairman were added to the grid. The HeaderText property val-
ues for those fields were set to "Department" and "Chair". The Phone was removed. 
Figure 14-33 shows the new design, which retrieves data from multiple tables.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Data Source Configuration Tools | 973

1 
4

The output generated from the application shown in Figure 14-33 used the original 
database that was copied into the project directory.

DISPLAYING DATA USING DETAILS VIEW

Instead of displaying data in a grid-like structure, a Details view is also available. 
When you select Details and drag the entire table onto the form, you get Label and 
TextBox objects for each column in the dataset, as shown in Figure 14-34.

FIGURE 14-33 Data retrieved from multiple tables

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



974 | Chapter 14: Working with Databases

If you select the Label object, you can change its Text property from the  Properties 
window. You do not have to drag the full set of columns; you can pick and choose 
from the Data Sources window and selectively drag the columns of interest.

ADDING CONTROLS FROM ThE TOOLBOX

Using the Toolbox, you can also drag any control onto your form. When you select 
controls from the Toolbox, as opposed to using the Data Sources window, you will 
need to set the DataSource and DisplayMember properties for those controls. These 
properties can be set in the same way as the Text property for a control is set. Select 
the control on the form with the Properties window visible, and type a new value for 
the property. The value for the DataSource is the name of the table within the dataset 
object. The property value for the DisplayMember is the column within the table you 
want to display. You can also use the smart tag on the control to set the properties.

Figure 14-35 shows the output from the ConfigToolsExampleDetailView 
application.

FIGURE 14-34 Details view

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Language-Integrated Query (LINQ) | 975

1 
4

No actual program statements were written for these applications. The Data Source 
Configuration tool was used to identify the data source tables. The data-bound con-
trols were placed on the form from the Data Sources window. The DataSet Designer 
was used to create the relation between the tables. The TableAdapter populated the 
DataSet object with the identified tables’ data. Text properties for the form and 
data-bound labels were changed. All of this was completed using the tools of the inte-
grated development environment.

FIGURE 14-35 Output from ConfigToolsExampleDetailView application

As stated previously, when you attach a database file to your application, you might receive a 
message asking whether you want a local copy of your database stored with the  application. 
Having a local copy works fine if you only intend to display the data. It also makes testing 
easier. However, if you are making changes to the database and want the database changes 
to be available to other applications, you do not want to make a local copy of it.

Language-Integrated Query (LINQ)
As you experienced in this chapter, there is a difference between how program-
ming languages and databases represent and manipulate data. Programs manipulate 
data as objects, but often information needed by the program is stored in a rela-
tional database. As you saw previously, in order for programming languages to access 
information in databases, they use APIs that require queries to be specified as strings. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



976 | Chapter 14: Working with Databases

When you write the string for the query, there are no checks for errors at compile time 
or help from IntelliSense. To further complicate the situation, there are slight differ-
ences in the query for each type of data source: SQL databases, Access databases, and 
so on. LINQ changes that by enabling you to write the query using the programming 
language. It allows you to write queries against strongly typed collections of objects 
by using language keywords and familiar operators. With LINQ you can query and 
manipulate data independently of data sources.

LINQ was released as a part of the .NET Framework language specifications for C# 
3.0. The goal in adding LINQ to .NET was to provide a general-purpose query facility 
to the framework that could be used with not only relational data sources, but also 
XML data, and any class of data that implemented the IEnumerable<T> interface. 
IEnumerable supports simple iteration over a collection. For example, arrays imple-
ment IEnumerable.

In Chapter 2, you were introduced to a number of new contextual keywords. Four-
teen of these contextual keywords are called Query Contextual Keywords. These 14 
are redisplayed in Table 14-8.

Ascending by descending equals from group in

into join Let on orderby select where

TABLE 14-8 Query contextual keywords

Recall that contextual keywords have special meaning only when used in a given con-
text. Other times they may be used as simple identifiers. The query contextual key-
words shown in Table 14-8 are not considered reserved words in C#.

Query Expressions
When you use one of the contextual keywords in a query expression, they have a spe-
cial meaning. Most query expressions begin with a from clause and end with either 
a select or group clause. Each from clause identifies the data source and a range 
variable. The range variable is similar to the iteration variable that you used with 
a foreach statement. A where clause is added to filter or exclude items from the 
result. The other operators shown in Table 14-8 can be added to the expression.

The standard query operators defined in the System.Linq namespace enable you 
to select, filter, aggregate, and partition data from any type that implements the 
IEnumerable interface. These operators form the backbone for the query func-
tions. Table 14-9 provides a short description of some of the operators. Some are the 
same as the contextual keywords, but there are additional operators listed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Language-Integrated Query (LINQ) | 977

1 
4

Query clause keyword Description

select In a tabular format, picks specific columns and does a projection on the 
collection retrieving specific data members that make up the object. If no 
data members are identified, all are returned. Selection creates an object 
of a different type, which has either some or as many data members as the 
original class.

where Returns specific objects that meet a set of predicate rules. Objects that do 
not match the rule are filtered away.

sum / min / max / 
average / aggregate

Retrieves a certain numeric value from each element in the collection and 
uses it to find the sum, minimum, maximum, average, or aggregate values 
of all the elements in the collection, respectively.

join / groupjoin Performs an inner join on two collections by using matching keys for objects 
in each collection. Like the select operator, the results are instantiations of a 
different class.

take / takewhile The take operator retrieves the first n objects from a collection; takewhile 
uses a predicate to select those objects that match the predicate.

skip / skipwhile Does the opposite of take and takewhile. They both skip the first n objects 
from a collection, or those objects that match a predicate.

orderby / thenby Used to specify the sort order of the elements in a collection according to 
some key. The default is ascending order. To specify descending order, use 
the orderbydescending operator. The thenby operator and thenbydescending 
enables you to do a second sort within the first ordering.

reverse Reverses a collection.

groupby Takes a delegate that extracts a key value and returns a collection of 
IGrouping<Key, Values> objects, for each distinct key value. The IGrouping 
objects can then be used to enumerate all the objects for a particular key 
value.

distinct Removes duplicate instances of a key value from a collection.

union / intersect / 
except

Used to perform a union, intersection, and difference operation on two 
sequences, respectively.

count Retrieves the number of elements in the given collection.

TABLE 14-9 Some of the LINQ query operators

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



978 | Chapter 14: Working with Databases

Because arrays implement the IEnumerator interface, you can use the stan-
dard query operators to process the contents of an array. The program shown 
in Example 14-28 illustrates using a query expression to iterate through an array 
collection.

EXAMPLE 14-28

using System;
using System.Console;
using System.Collections.Generic;
using System.Linq;

namespace LinqArrayExample
{
     class LinqArrayExample
     {
          static void Main(string[] args)
          {
               string[] nameArray = {"Wong", "Abi", "Fredrick",
                     "Davis","Howard","Abbott","Fang","Erlanger",
                     "Halcomb","George","King","Doyle","Mitchell",
                     "Ralph","Barry"};

               IEnumerable<string> queryResult = 
                    from aName in nameArray
                         where aName.Length > 5
                         orderby aName descending
                    select aName;
               foreach (string name in queryResult)
                        WriteLine(name);
               ReadKey( );
          }
     }
}

In Example 14-28, the identifier aName is used with the from clause to traverse 
through the nameArray array. It works similarly, to how name works with the 
foreach statement. It is not necessary to increment an index to iterate through the 
collection. The where clause filters out records, so only those names that have more 
than five characters are added to the queryResult. The select clause specifies 
what from the collection will be returned. For this example, it is returning the aName 
element, unchanged in descending order.

The output from Example 14-28 is the list containing Mitchell, Howard, Halcomb, 
George, Fredrick, Erlanger, and Abbott.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Language-Integrated Query (LINQ) | 979

1 
4

Implicitly Typed Local Variables
With Example 14-28, you will receive an error message, if you declare queryResult as 
a string data type or even as a string array data type. The error message indicates that 
you cannot implicitly convert from an OrderedEnumerable <string> to a string 
argument. With Example 14-28, a generic reference was declared, IEnumerable 
<string>. Another option would be to declare an implicitly typed variable to hold the 
result. An implicitly typed local variable is strongly typed just as if you had declared 
the type yourself, but the compiler determines the type. The keyword var is used 
for this type of declaration. As you have read about the var data type in Chapter 11.  
var would replace IEnumerable<string>. This is illustrated in Example 14-29.

EXAMPLE 14-29

var queryResult = 
    from aName in nameArray
         where aName.Length > 5
         orderby aName descending
    select aName;

Recall that the keyword var indicates the type that will be determined from the 
expression on the right side of the equal symbol. Nothing else was changed in the 
program. The output from Example 14-29 is the same as that from Example 14-28.

In addition to using the query operators for collections such as arrays, the query oper-
ators can be used to query, project, and filter data in relational databases.

LINQ WITh DATABASES

After a connection is made to a data source, instead of embedding an SQL state-
ment in a string argument or using the Query Builder to store SQL statements 
with the SELECT, INSERT, DELETE, or UPDATE SQL commands, you can include 
your query expression directly in your C# program. In Example 14-30, a database 
was attached to the application following the steps described earlier using the  
Data Source Configuration Wizard.

From the Project menu option, Add New Data Source was selected. The DataSet 
 Database Model was used. When prompted to Choose Your Data Connection, the New 
Connection button enables you to select an Access database and browse to its location. 
For this example, the member database was selected. The Access database was copied 
into the current project. Tables was selected when prompted to Choose Database Object. 
Then the Data Sources option was selected from the View Other Windows menu.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



980 | Chapter 14: Working with Databases

A DataSet object is displayed from the Data Sources window. Expanding 
the Table node shows its data members. When you drag a table from the Data 
Sources window, code is automatically generated. By default, objects are instan-
tiated for a DataGridView object and each record from the table is used to 
populate the DataGridView object. Objects of the TableAdapter, DataSet, 
TableAdapterManager, and TableBindingSource are also placed in the compo-
nent tray, displayed below the form in design view. When you drag the table onto the 
form, code is automatically generated to load data into the DataSet’s table. It is placed 
in the FormLoad( ) event handler. Example 14-30 shows the auto-generated code.

EXAMPLE 14-30

this.memberTableTableAdapter.Fill(this.memberDataSet.memberTable);

The code tied to the DataGridView object retrieves all rows from the table. To 
illustrate use of LINQ with databases, the DataGridView object and the naviga-
tion bar were removed and a ListBox object is dragged over to the form. Instead of 
using an SQL statement to retrieve the data, a query expression traverses through the 
table producing a list of items to populate the listbox. The query expression is shown 
in Example 14-31. Basically, it uses the same query expression that was illustrated in 
Example 14-29. The primary difference was in the identification of the data source.

EXAMPLE 14-31

private void FrmLinqExample_Load(object sender, EventArgs e)
{
     // TODO: This line of code loads data into the
     // memberDataSet.MemberTable table.
     // You can move, or remove it, as needed.
     this.memberTableTableAdapter.Fill(
          this.memberDataSet.memberTable);
     var memberResults =
            from member inthis.memberDataSet.memberTable
                 where member.LastName.Length > 4
                 orderby member.LastName
            select member;
     foreach (var aRecord in memberResults)
                  this.lstBxResult.Items.Add(aRecord.FirstName +
                  " " + aRecord.LastName);
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Language-Integrated Query (LINQ) | 981

1 
4

The output from Example 14-31 is illustrated in Figure 14-36. Notice how the key-
word var is used to create the memberResults collection. Then, var is used with the 
foreach loop to traverse through the collection and add the items to the listbox.

FIGURE 14-36 LINQ database output

LINQ TO SQL

The LINQ to SQL is used to query SQL Server databases. SQL Server data resides on a 
remote server and includes a querying engine. Since SQL Server database management 
systems store the data as relational data and LINQ works with data encapsulated in 
objects, the two representations must be mapped to one another. For this reason, LINQ 
to SQL defines a mapping framework. The mapping is done by defining classes that 
correspond to the tables in the database. LINQ-to-SQL defined attributes, like primary 
keys, are specified. The DLinq (also referred to as LINQ to SQL) is specifically the ver-
sion of LINQ that focuses on querying data from relational data sources. XLinq (LINQ 
to XML) is the aspect of LINQ that is geared toward querying XML data.

Visual Studio includes a mapping designer that can be used to create the mapping 
between the data schemas in the object and the relational domain. It automatically 
creates the corresponding classes from a database schema.

Many books are written describing how to use C# and the .NET Framework to 
access databases. This chapter introduced you to the program statements required to 
make the connections between your program and different data sources. It included 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



982 | Chapter 14: Working with Databases

program statements that could be used to retrieve and update data from a database. 
It also focused on how you could use some of the many visual tools available with 
the IDE to retrieve and display data. With the prevalence of data-driven applications 
today, you are strongly encouraged to continue your exploration on the topic.

Coding Standards
All database tables should be designed to have a primary key. You should retrieve the 
key as one of the fields from your SQL query.

Use uppercase characters for SQL keywords.

Use the primary key in the WHERE condition of an UPDATE or DELETE statement 
to avoid errors.

Avoid using spaces within the name of database objects.

Resources
Additional sites you might want to explore:

 ? Database Tutorials— 
http://www.quackit.com/database/tutorial/

 ? Accessing Data in Visual Studio— 
http://msdn.microsoft.com/en-us/library/wzabh8c4.aspx

 ? Access Tutorials— 
http://databases.about.com/od/tutorials/Tutorials.htm

 ? Access Connection Strings— 
http://www.connectionstrings.com/access/

 ? 101 LINQ Samples— 
http://msdn.microsoft.com/en-us/vcsharp/aa336746.aspx

 ? LINQ to SQL: .NET Language-Integrated Query for Relational Data— 
http://msdn.microsoft.com/en-us/library/bb425822.aspx

QUICK REVIEW
 1. .NET includes a number of ActiveX Data Object (ADO.NET) classes 

that can be used to retrieve, manipulate, and update data in databases.
 2. One of the most significant advancements of ADO.NET is the ease with 

which it is able to work in a disconnected manner—that is, the database 
table(s) can be retrieved to a client or local machine.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
4

Quick Review | 983

 3. To retrieve data from a database programmatically, you must first con-
nect to the database and then use a mechanism to retrieve the data.

 4. Four data providers are included with .NET. To connect to an Access 
database, use the OleDb data provider.

 5. Connection strings are vendor specific. The syntax for the string  
begins with a provider or data source name such as  
"Provider=Microsoft.ACE.OLEDB.12.0;" +
"Data Source=member.accdb";

 6. After connecting, one way to retrieve records programmatically from 
the database is to issue a SQL query. The OleDbCommand class is used 
to hold the SQL statement.

 7. For simple read-only access to the database, .NET includes a data reader 
class that can be used to read rows of data from a database.

 8. The OleDbDataReader class allows read-only forward retrieval of 
data from the database. The data is not cached in memory. By default, 
only one row is stored in memory at a time when the OleDbDataReader 
class is implemented.

 9. To process the data using a data reader, you declare an object of the 
OleDbDataReader class and then call the ExecuteReader( ) 
method of the OleDbCommand class to build the OleDbDataReader 
object.

 10. To position the OleDbDataReader object onto the row of the first 
record retrieved, you use the Read( ) method of the OleDbDataReader 
class. The Read( ) method is also used to advance to the next record 
after the previous one is processed.

 11. To understand the processing of the data retrieved using the Read( ) 
method, you can think about what is retrieved from a single access 
attempt using a data reader object as a one-dimensional table consisting 
of the fields from that one row.

 12. You need to close the reader object and the connection object to unlock 
the database so that others can access it.

 13. ADO.NET does not require that you keep a continuous live connection 
to the database. This is accomplished in .NET using a dataset. A dataset 
is a cache of records retrieved from some data source that may contain 
one or more tables from the data source.

 14. Using the DataAdapter object with the Fill( ) and/or Update( ) 
methods eliminates the need to open and close the connections. 
Connections are opened and closed automatically when the Fill( ) 
or Update( ) methods are called.

 15. Adapters are used to exchange data between a database source and a 
dataset object.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



984 | Chapter 14: Working with Databases

 16. The OleDbCommandBuilder object automatically generates SQL state-
ments for updates to the database. It is usable for queries involving one table.

 17. The DataGrid object is a structure that is divided into rows and col-
umns and can be used to store dataset objects. The DataGrid object 
allows you to change values, or delete or insert new records.

 18. To tie the DataGrid object to the dataset, the SetDataBinding( ) 
method of the DataGrid class is used.

 19. The DataGridView class provides DataGrid-like control with added 
functionality. One way to customize the DataGridView control is to 
click on its smart tag glyph.

 20. The Data Sources window allows you to drag items (tables and/or col-
umns) onto your form.

 21. A typed dataset defines a schema that exposes the tables and their col-
umns as object properties.

 22. The DataSet Designer enables you to set relationships between tables 
and add additional queries to your application.

 23. To create a new SQL Server database from within Visual Studio, use 
the Server Explorer window. To add tables, right-click on the Table 
and select Add New Table from the shortcut menu. Select Show Table 
Data to preview the data.

 24. The connection string can be saved to an App.config file.
 25. The BindingNavigator class is normally paired with a 

BindingSource control to enable you to move through data records 
and interact with them.

 26. TableAdapters are designer-generated components that provide a com-
munication link between an application and a database.

 27. The DataSet Designer is used to create and modify datasets, table 
adapters, and their queries. To start the designer, double-click a dataset 
in the Solution Explorer window or right-click on the dataset in the 
Data Sources window.

 28. Use the Query Builder to write the SQL SELECT, INSERT, DELETE, and 
UPDATE statements.

 29. The SQL INNER JOIN clause used with a SELECT statement enables you 
to retrieve results from two or more tables.

 30. With Access, create a parent-child relationship between the tables, 
using the DataSet Designer, to enable data to be retrieved from mul-
tiple tables.

 31. LINQ enables you to write queries against strongly typed collections of 
objects by using language keywords and familiar operators.

 32. LINQ provides a query facility that can be used with relational data 
sources, XML data, and any class of data that implemented the 
IEnumerable<T> interface.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
4

Exercises | 985

 33. Most query expressions begin with a from clause and end with either a 
select or group clause.

 34. The keyword var indicates that the type will be determined from the 
expression on the right side of the equal symbol.

EXERCISES
 1. An in-memory representation of multiple rows and columns of data 

from the database is stored in what type of object?
a. data provider
b. data reader
c. datagrid
d. dataset
e. data adapter

 2. All of the following are examples of ADO.NET data providers except:
a. OLE DB
b. Oracle
c. ODBC
d. Sql Server
e. Access

 3. Which of the following is the class name of a grid-like structure used to 
display data from a database?
a. ComboBox
b. ListBox
c. DataGridView
d. Grid
e. GridData

 4. Databases store information in records, fields, and:
a. data providers
b. grids
c. columns
d. tables
e. commands

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



986 | Chapter 14: Working with Databases

 5. The core classes available with each data provider include all of the fol-
lowing except:
a. Connection
b. DataAdapter
c. Command
d. DataSet
e. DataReader

 6. Each data provider class is grouped and accessible through its:
a. namespace
b. database
c. data grid
d. provider
e. system

 7. Which of the following is a valid SQL statement that retrieves all four 
columns from the customer table?
a. SELECT ALL FROM customer
b. SELECT * FROM customer
c. SELECT customer
d. SELECT,,, , FROM customer
e. SELECT @@@@ FROM customer

 8. Parameters for SQL Server SQL statements are written slightly different 
from those written for an Access database. With SQL Server, a param-
eter is indicated using:
a. @ followed by an identifier
b. @ without an identifier
c. ? followed by an identifier
d. ? without an identifier
e. a params keyword

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
4

 9. The SQL clause that can be added to a SELECT statement to retrieve 
data from multiple tables is:
a. BETWEEN
b. INNER JOIN
c. CROSS CONNECTION
d. WHERE
e. UPDATE

 10. The following namespaces (System.Data.OleDB, System.Data.SqlClient,  
System.Data.Odbc, System.Data.OracleClient) include classes for 
different:
a. data providers
b. file streams
c. ADO.NET applications
d. databases
e. data readers

 11. For read-only access to databases, which ADO.NET class is used?
a. DataSet
b. DataAdapter
c. CommandBuilder
d. Connection
e. DataReader

 12. To provide access to an Access database management system, which 
data provider is used?
a. System.Data.OleDb
b. System.Data.SqlClient
c. System.Data.Odbc
d. System.Data.OracleClient
e. Microsoft ACE.OLEDB.12.0

Exercises | 987

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



988 | Chapter 14: Working with Databases

 13. Which class is used with the DataSet class to facilitate using a discon-
nected database?
a. DataAdapter
b. DataReader
c. Command
d. OleDbConnection
e. Fill

 14. To avoid writing additional SQL statements to update a live database, 
you instantiate an object of which class?
a. DataAdapter
b. DataReader
c. Connection
d. CommandBuilder
e. DataGrid

 15. To release the database so that it can be used by other applications, 
which method should be invoked?
a. ReleaseDb( )
b. Release( )
c. StopAccess( )
d. Close( )
e. none of the above

 16. To retrieve specific records from a database, you could create a new query 
and have it stored as a method using an object of the ______________ class.
a. DataSet
b. DataProvider
c. TableAdapter
d. Connection
e. Command

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
4

 17. Which method is used to originally populate a data-bound control?
a. Dataset Fill( ) method
b. Dataset Update( ) method
c. TableAdapter Fill( ) method
d. BindingNavigator Save( ) method
e. PageLoad( ) event-handler method

 18. Which database wizard in Visual Studio enables you to connect to a data-
base and automatically populate a DataSet object using a TableAdapter 
object?
a. Data Source Configuration
b. Data Source
c. Query Builder
d. DataSet Designer
e. TableAdapter Query Configuration

 19. Which window is used in Visual Studio to display dataset tables so they 
can be dragged and dropped onto the form?
a. Server Explorer
b. Properties
c. DataSet Designer
d. Data Sources
e. Solution Explorer

 20. A connection string contains:
a. a using directive
b. the name of the data source
c. the version number of database management system
d. the list of fields in the database
e. an SQL statement

 21. Explain how the dataset, table adapter, and data grid objects are used to 
update a database.

Exercises | 989

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



990 | Chapter 14: Working with Databases

 22. Write SQL statements for the following:
a. Retrieve all partNumber and partDescription columns from a Parts 

table that has 15 different columns.
b. Retrieve records from a Parts table for partNumbers 1000 through 

2000. Display the partDescription only.
c. Insert a new record into a Customer table. Store the following values 

in the columns: LName=Osprey, FName=Teola, CNumber=23456. 
The columns are ordered as follows: CNumber, LName, FName.

 23. What happens when you drag a dataset table from the Data Sources 
window onto a blank form?

 24. How can you have controls (other than the default Data Sources  window 
controls) display data from a database table?

 25. How does a table adapter differ from a data adapter?

PROGRAMMING EXERCISES
 1. Create a small BankAccount database with one table storing account 

details. The Account table should have fields for account number, cus-
tomer last and first names, and current balance. The type of database 
(SQL Server or Access) will be determined by your instructor. Populate 
the table with 8–10 records. Design and create a user interface that will 
enable you to display all customer records.

 2. Create a small Family database with one table to include data about 
members of your family. Include data fields such as first name, last name, 
type of relationship, hometown, and age. Include one field that uniquely 
identifies each record, such as a family member number. You can be 
creative with the family member number or use the auto- generated 
number from the database. Populate the database with members of 
your family. Be sure to include data about yourself in the table. Place at 
least 10 records in your database table, even if it is necessary to make up 
information. Write a C# program to display all of the data that appears 
in the database table on a data grid.

 3. Using the database created in Programming Exercise 2, modify your 
solution to only display the names of the members of your family in 
a data grid. Dock the grid so that it fills the form. Change the color of 
the data grid columns, increase the size of the font, choose appropriate 
headings for your columns, and format the grid control so that it is pro-
fessionally aesthetically appealing.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
4

Programming Exercises | 991

 4. Using the database created in Programming Exercise 2, write a C# pro-
gram to only display the names of the members of your family who are 
over 21 years of age. Display their name, age, and relationship to you. 
Provide an appropriate heading for the displayed items on the form and 
format the grid control.

 5. Using the database created in Programming Exercise 2, write a C# pro-
gram to display the names and type of relationship of the members  
of your family who live in the same hometown as you do. Do not include 
yourself in the query result. It may be necessary for you to go back into 
your database and modify some of the records for testing purposes. Dis-
play your results in text boxes as opposed to a data grid. Provide appro-
priate headings and labels.

 6. Create a small Sports database with two tables: Team and Athlete. The 
Team table should include fields for the type of team (e.g., basketball), 
coach’s name (both last and first), and the season the sport is most active 
(S for spring, F for Fall, or B for both). The Athlete table should include 
fields for student number, student first and last names, and type of 
sport. Use the same identifier for type of sport in both tables to enable 
the tables to be related and linked. Populate the tables with sporting 
teams from your school. The type of database (SQL Server or Access) 
will be determined by your instructor. Write a C# program that displays 
information about each team, including the names of the athletes.

 7. Create a Books database to include two tables: BookTable and Course-
BookTable. The BookTable table should have fields for ISBN number, 
title, copyright date, primary author, publisher, and number of pages. 
The CourseBookTable table should have fields for course number and 
ISBN. Populate the tables with books in your current collection, includ-
ing the books you are using for your classes. Books that are not associ-
ated with a specific course can be placed in the table with a FUN course 
number. The type of database (SQL Server or Access) will be determined 
by your instructor. Write a C# program to display the course number (or 
FUN) and the ISBN and name of the book on the same screen.

 8. Create a small database to include customer data. Include the customer 
numbers, customer names, and customer directional locations. Place at 
least eight records in the database. For the customer directional loca-
tion field, use the designations of N for North, S for South, and so on. 
The type of database (SQL Server or Access) will be determined by your 
instructor. Write a C# program to only display the names of all custom-
ers. Do not use the database configuration wizard for this application; 
write program statements.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



992 | Chapter 14: Working with Databases

 9. Using the database created in Programming Exercise 8, write a C# pro-
gram to display the customer number and name in a data grid. For-
mat the grid control so that it is professionally aesthetically appealing. 
Allow the user to add records to the database. If your designed solution 
involves the use of a disconnected database, post the changes back to the 
live database. Check the database records to make sure that the changes 
have been made. For an added challenge, write program statements, as 
opposed to using the database configuration tools wizard.

 10. Using the database created in Programming Exercise 8, write a C# pro-
gram that retrieves records from the customer table and displays them 
in a grid control. Allow the user to select an entry from the data grid and 
display the values selected in text boxes with appropriate labels. Display 
the corresponding customer area for the one selected as full text (i.e., 
display West instead of  W, which appears in the database). For an added 
challenge, write program statements, as opposed to using the database 
configuration tools wizard.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

Web-Based Applications
IN THIS CHAPTER, YOU WILL:

 ? Discover how Web-based applications differ from Windows applications

 ? Use ASP.NET to create Web applications

 ? Develop and configure Web Forms pages

 ? Learn about the different types of controls that can be added to Web applications

 ? Add HTML and Web Forms server controls to Web applications

 ? Add validation, custom, and composite controls to verify user input, display calendars, 
and connect to database tables

 ? Learn how mobile applications for smart devices are developed using Visual Studio

15CHAPTER

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



994 | Chapter 15: Web-Based Applications

In previous chapters, you learned how easy it is to develop graphical user interfaces 
for Windows applications using C# and the drag-and-drop construction approach 
of Visual Studio. In this chapter, you discover that this same approach can be used 
to develop applications for the Web. You learn how the design of Web-based appli-
cations differs from Windows applications. You discover the differences between 
HTML and Web server controls. You learn what a Web service is and how to write 
one. This chapter also includes an introduction to mobile applications.

Web-based applications are often data driven. In Chapter 14, you learned about the 
rich set of classes that are used to access and update data stored in database tables. 
You learned about data providers, and the connection, command, data reader, 
and data adapter core classes included within each data provider. You use these  
ADO.NET classes with the Web applications you develop. You learn how to use vali-
dation controls to check a user’s input values. You learn how to add calendar con-
trols to your web pages. By the time you complete this chapter, you are creating very 
sophisticated, highly interactive, data-driven Web applications.

Web-Based Applications
A Web-based application runs within an Internet browser—which means it is 
designed to be accessible to multiple users, run over different platforms, and deliver 
the same content to every user. A Web application is simply a collection of one or 
more related files or components stored on a Web server. Web applications are also 
called Web sites. A Web server is software that hosts or delivers the Web applica-
tion. The hardware on which the Web server software is loaded is often called a Web 
server, but it is the software that makes the equipment special and thus enables the 
computer to be called a server.

Web Programming Model
The programming model for web pages is somewhat different from Windows appli-
cations, especially in terms of the interaction with users. For example, MessageBox 
dialog boxes, commonly used with Windows applications, are not used with Web 
applications. Their output is displayed on the server computer instead of at the client 
computer requesting the page. Messages to users accessing a web page are normally 
displayed through the Label object or other objects on the page.

Each request to view a web page requires a round-trip to the server on which the 
page is stored. This simply means that the user requests the page via Hypertext Trans-
fer Protocol (HTTP) by typing the Web address, the Uniform Resource Locator 
(URL), into a Web browser. That request is forwarded to the Web server on which the 
page is stored. The page is then sent back as a Hypertext Markup Language (HTML) 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web-Based Applications | 995

1 
5

document where it is rendered (converted from HTML) to a formatted page on the 
client computer that requested the page.

Second and subsequent requests for the page require a postback to the server. But, 
not all events are automatically posted back to the server when an event is triggered. 
Some events such as the SelectedIndexChanged or CheckedChanged events for 
ListBox and RadioButton objects are queued, and their event-handler methods are 
not executed until an event that causes a postback to the server is fired.  ButtonClick 
events are one of the few events that cause an automatic postback.

Every postback trip to the server creates a new object. This causes web pages to be 
stateless—meaning that they do not retain their values from one trip to the Web 
server to the next. Values that you type into TextBox objects, for example, are not 
automatically saved and redisplayed when a page is sent back to a client computer. 
Second and subsequent requests for the page may require programmatically retriev-
ing and storing input values and then sending them back to the control when the page 
is sent back for redisplay on the client computer. Thus, the Web programming model 
requires some important additional considerations. In the sections that follow, you 
learn how this model is implemented using C# and ASP.NET.

Static Pages
The files that make up a Web application end with file extensions such as .htm, .html, 
.jsp, .php, .asp, .aspx, .asmx, or the files may be image, video, music, or data files. Web 
application pages are commonly categorized as either static or dynamic. Static web 
pages do not require any processing on the client computer or by a Web server. They 
are previously created, reside on the server’s hard drive, and basically are delivered 
as HTML or XHTML documents. Static web pages are suitable for the contents that 
rarely need to be updated. An HTML file contains formatting markup tags that are 
converted (rendered) into their displayed images by browser software such as Micro-
soft Internet Explorer. Figure 15-1 shows a static HTML document opened within 
Internet Explorer. As shown in the address bar of the browser software, the file ends 
with an .htm extension as part of its name.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



996 | Chapter 15: Web-Based Applications

Example 15-1 shows the HTML file used to display the static web page for Figure 15-1.

EXAMPLE 15-1

<xhtml>                             <!-- default.htm -->
  <head>
     <title>
       Simple Static Page
     </title>                       <!-- creates caption -->
  </head>                           <!-- comments on right -->
<body bgColor="#aabbff">            <!-- blue background -->
     <center>
     <h1> <p> Example page </p> </h1>
       <br/> <br/>                  <!-- break to next line-->
      <img src="bird.jpg" />
     </center>
       <br/> <br/>

FIGURE 15-1 Output from a static web page

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web-Based Applications | 997

1 
5

       <a href="http://www.cengage.com/ + ...">
                Doyle's Books at Cengage</a>
       <br/>
       <strong>HTML tags</strong>     <!-- strong − bold-->
       are used to <em>format</em>    <!-- em − italic-->
       the output.
     <ul>                             <!-- unsorted list -->
        <h3>
           Some common tags include:
        </h3>
        <li>                          <!-- element in list -->
           Headers: h1. . .h6         <!-- h1 is the largest -->
        </li>                         <!-- h6 is the smallest -->
        <li>
          Paragraph: p                <!-- text shown on page -->
        </li>
        <li>
           Line Break: br
        </li>
        <li>
           Unsorted List: ul          <!--ul     and li -->
        </li>
        <li>
           Image: img src="bird.jpg"  <!-- image-->
        </li>                         <!-- end list element -->
        <li>
           Link: a href="http://course.com"
                    Cengage Learning  <!--link      -->
        </li>
       </ui>                          <!-- end unsorted list -->
  </body>
</xhtml>

XHTML stands for Extensible Hypertext Markup Language. XHTML is HTML written as 
an XML application. It is a stricter, cleaner HTML. With XHTML, all tags or elements are writ-
ten using lowercase characters. All elements must be closed and properly nested under a 
single <html> root tag. HTML allows sloppy syntax and assumes that the output will be on 
a traditional computer running a browser. XHTML cleans up the syntax and makes it easier 
to display graphical material on not only traditional computers running browsers but also 
devices such as smart phones and tablets with limited display capability.

The Web server does not have to process any of the statements in Example 15-1. 
Static pages are client-side applications and, as the name implies, they involve no 
interaction with the user. The pages are simply displayed as static material on the cli-
ent’s Web browser. Rendering of the pages can occur at the client (local workstation) 
where the pages are displayed. The Web server simply delivers the requested page as 
an HTML document.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



998 | Chapter 15: Web-Based Applications

Some Web applications require processing before pages are displayed. Sometimes, 
information needs to be pulled from a database before the page is rendered. One 
common way to add functionality to a page is to include code written in a scripting 
language as part of the HTML file. This creates dynamic websites—pages that enable 
the user to interact and see the result of their interaction. Dynamic websites are dis-
cussed in the following.

Dynamic Pages
Dynamic web pages involve processing in addition to rendering the formatting of 
HTML tags. One programming model for creating dynamic web pages is to extend 
the HTML file by including script code in the same file. The file may still be able to 
be executed on the client machine, without additional processing at the server level. 
In this case, the code that is embedded in the HTML document is called a client-
side script, and it involves only client-side processing. Scripting languages such as 
JavaScript or ActionScript are often used for these Dynamic HTML (DHTML) and 
Flash pages.

JavaScript is not a subset of Java. There are some syntax similarities to Java, but it is 
not a full-featured programming language such as Java. JScript is Microsoft’s imple-
mentation of JavaScript. Using these scripting languages, developers are able to take 
static pages and add functionality—creating dynamic web pages. JavaScript is one 
of the components of AJAX (Asynchronous JavaScript and XML). Ajax combines 
several programming and development technologies to create dynamic and inter-
active Web content. AJAX combines JavaScript with XHTML and CSS standards 
using XML.

The static page example conforms to XHTML standards. One of the tags used in the 
example to produce Figure 15-1 is center. The center tag was used to center the  heading 
and image. The center tag is not included in the list of common tags because it is on 
the deprecated list, which means that on future XHTML versions it may be dropped. 
 Recommendations are included in HTML 4.01 and later versions that Cascading Style 
Sheets (CSSs) be used to format objects that should be centered. You read more about  
CSS later in this chapter.

Scripting languages are often interpreted, instead of compiled, and the code is embedded 
directly into the HTML page.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web-Based Applications | 999

1 
5

JavaScript, JScript, VBScript, or any one of the other scripting languages could be used 
to write the embedded code for the HTML document. This code provides functional-
ity beyond the formatting that the HTML tags provide. User input for Web applica-
tions is often validated using scripting code. When a request is sent to the server to 
display a page that contains server-side scripting, the page is interpreted (converted 
into binary form) and then the scripted code is run to get the output results. The out-
put of the script code is merged with the static HTML output found in the page before 
sending the output back to the client computer that requested the page. Figure 15-2 
illustrates this scenario. The client system requests a page using HTTP—sending the 
URL as part of the HTTP request. Behind the scenes, the script is executed on the 
server. The client receives a response back in the form of a  displayed HTML document.

FIGURE 15-2 Server-side processing of a dynamic web page

©
 C

en
ga

ge
 L

ea
rn

in
g

Figure 15-2 illustrates a client/server type of relationship. The client requests a page; 
the server gets it ready by executing the scripts inside the HTML document; and, 
lastly, the client sees the result in the form of an HTML document. This is the way 
traditional ASP is used to enable dynamic web pages to be viewed on client comput-
ers. A newer model for Web development is included as part of .NET. That model is 
called ASP.NET and it is discussed in the following section.

Server-side scripts require the processing to be done at the server level before the 
page is delivered. PHP, Perl, Ruby on Rails, Python, and ColdFusion languages often use 
the Common Gateway Interface (CGI) to produce dynamic web pages. PHP is probably the 
most popular of the other server-side languages. According to Wikipedia in 2014, PHP was 
used as the server-side programming language on 82% of all websites whose server-side 
programming language was known. WordPress, Moodle, and the user-facing portion of 
Facebook were written in PHP.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1000 | Chapter 15: Web-Based Applications

ASP.NET
ASP.NET is a server-side Web application framework that enables dynamic web 
pages to be developed. ASP.NET is the successor to the Microsoft’s Active Server 
Pages (ASP). ASP.NET is built on the Common Language Runtime (CLR), allow-
ing programmers to write ASP.NET code using any supported languages such as C#. 
It is a programming model that includes a number of classes as part of the .NET 
Framework. These classes allow you to take full advantage of the features of the CLR 
and inheritance. You can use ADO.NET with ASP.NET applications to develop data-
driven websites. Using Visual Studio and ASP.NET, you can design the user interface 
for the Web application using a drag-and-drop approach.

One way to identify an ASP Web application from an ASP.NET Web application is by looking 
at their file extensions. An ASP web page, which contains the HTML tags and the program 
logic written in a scripting language, ends with an .asp file extension. The ASP.NET web 
page file, which contains the HTML tags, ends with an .aspx file extension and includes no 
scripting language code for the program logic. This logic is stored in a separate file.

Students with valid school e-mail addresses can download a number of development soft-
ware packages, including Visual Studio, for free at http://dreamspark.com/.

You can use Visual Basic or Visual C# to develop ASP.NET Web applications, and 
the applications you create run on the computer functioning as the Web server. To 
develop an ASP.NET application, Microsoft Internet Information Services (IIS) needs 
to be installed or, another option is to use the built-in ASP.NET Development Server. 
The ASP.NET Development Server works well for applications that are going to be 
run and tested only for the machine on which they are developed.

Visual Studio for Web Development
Visual Studio provides all the tools you need to build Web applications. The Web 
development platform is integrated into the Visual Studio IDE. You use a WYSIWYG 
(what you see is what you get), drag-and-drop approach, which is similar to that used 
to develop Windows applications. The software enables you to connect to databases 
and display data in data grid controls using tools and wizards similar to those used for 
Windows applications. You can run and debug web pages. The product also includes 
features that enable you to publish your applications on the Web.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ASP.NET | 1001

1 
5

Visual Studio has a built-in ASP.NET Development Server for testing and running 
websites. The ASP.NET Development Server is an excellent tool for building and 
testing your site; however, the Development Server does not enable the site to be 
accessed by remote machines or multiple users. To enable this feature, IIS is required. 
IIS provides the software tools for managing the Web server. You do not have to work 
directly with IIS; most everything dealing with IIS happens behind the scenes.

With earlier versions of Visual Studio, ASP.NET applications typically were developed 
using IIS as a Web server, which often requires configuring and setting security per-
missions. You can continue to create websites that run under your local copy of IIS; 
however, there is another option. When you create a new Web application, you will 
see the option to create a File System website. When you select this option, it auto-
matically uses the lightweight test server (ASP.NET Development Server). The File 
System feature enables you to store and run your Web application in any directory 
on your local machine. Using the ASP.NET Development Server is simpler and does 
not leave the system open to security attacks. It is probably the preferred method for 
classroom use. This File System option is used for the examples illustrated in this 
chapter.

ASP.NET Programming Models
There are several models used for building ASP.NET websites. You can use the 
Model-View-Controller (MVC)-based pattern or the Web Forms controls model. 
Both models now enable you to incorporate CSSs into the application. Each features 
advantages.

MVC enables you to separate the application into three attributes: the Model, the 
View, and the Controller. Within the Model core, information for the application 
is described—including the data and validation rules as well as the data access and 
aggregation logic. The View component encapsulates the presentation of the appli-
cation and is described through HTML markup. The Controller core contains the 
control-flow logic, which describes the interaction between the Model and View to 
control the flow of information and the execution of the application. MVC is really a 
lower-level programming model. It does not provide higher-level abstractions such 
as widgets controls. It requires you to know HTML and HTTP more deeply. But, it 
allows you to use the full power of CSS and JavaScript.

The Web Forms model is the one you are more familiar with. It is closer to the 
 Windows Forms event-based programming model. The Web Forms model enables 
you to use server controls, encapsulating HTML and CSS so dynamic applications 
can be created. It enables you to incorporate rich user interface controls, such as data 
grids, into your application. The Web Forms model does not require that you know 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1002 | Chapter 15: Web-Based Applications

HTML and lets you easily use the drag-and-drop approach to development. Share-
Point developers use this model to create websites. SharePoint enables you to share 
content and build websites using a browser-based collaboration. Since both the MVC 
and Web Forms models are using ASP.NET, you can actually choose to incorporate 
both models into your Web applications. The Web Forms model is what is used for 
examples in this chapter.

You have access to all of the Framework class library (FCL) classes and can drag and 
drop controls in the same manner you did when you created Windows applications. 
Instead of placing the controls on a Windows Forms page, the controls are dropped 
onto a Web Forms page.

The System.Web.UI namespace organizes the classes that are used to create 
.NET Web applications. This namespace includes a Control class, inherited 
by the HTMLControl and WebControl classes. Like the Control class in the 
System.Windows.Forms namespace, Control provides some common function-
ality for all classes that are derived from it. The System.Web.UI namespace also 
includes a Page class, which is instantiated when you create a Web application 
using Visual Studio.

Web Forms Page
Building ASP.NET Web applications using the Web Forms model involves many of the 
same concepts you learned when you built Windows applications. They are designed 
with the event-driven model, but there are fewer events. Websites are created using 
a Web Forms page. As opposed to dragging and dropping controls onto a Windows 
form, controls are dropped onto a Web Forms page. There are, however, some signifi-
cant differences between a Windows and Web application.

When you build an ASP.NET Web application, two separate files are created. Both 
of these files must be available to the Web server for the page to be displayed. 
One of the files contains the visual HTML components, and the other contains the 
logic.

The file storing the logic is referred to as the code-behind file. The actual file storing 
the visual elements is the one referred to as the Web Forms page. This is the con-
tainer file from which the controls are displayed. The Web Forms page contains static 
HTML tags and any ASP.NET server controls that have been added to the applica-
tion. The programming logic resides in a separate file from the file containing the 
HTML tags. All the event-handler methods are stored in this code-behind file. This 
file contains the code that enables the user to interact with the page. The follow-
ing section examines how these two files function when an application is built using 
Visual Studio.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Page | 1003

1 
5

ASP.NET Web Forms Site
When creating a Web application, instead of selecting File, New Project as was used 
with Windows applications, you select New Web Site from the File menu. You will 
notice that there are several installed templates shown in the middle pane in Figure 15-3.

FIGURE 15-3 Web application template for ASP.NET

For this first example, the second option, ASP.NET Web Forms Site template is 
selected. When a new site is created using the ASP.NET Web Forms Site template, 
a number of files and directories are automatically created for you. It creates a 
website that you can go in and change to fit your needs. This Web Forms template 
includes features that provide a sleek and responsive look and feel that you can eas-
ily customize. Automatically included when you initially create a new project using 
this template are a Default.aspx web page, a master page, a CSS, login security that 
uses the ASP.NET membership system, and navigation with a menu control. All of 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1004 | Chapter 15: Web-Based Applications

these features are automatically added to the project when a new site is created. 
In addition, when you use this template to create a Web application, folders are 
automatically created to contain membership pages and CSS files. A data folder 
(App_Data) with permissions set that allow the file to be read and written to at 
run time is also added at the time an ASP.NET Web Forms Site Web application 
is created. Figure 15-4 shows what the website looks like before any changes are 
made. Both the Register and Login pages are functional and there is consistency 
among pages.

FIGURE 15-4 ASP.NET Web Forms Site

Figure 15-4 was shown to illustrate the robustness of the Web application from the initial 
selection of the template ASP.NET Web Forms Site. Notice that once a user selects the 
Register link, the user name is displayed on the other pages. Login changes to logout. 
There is consistent placement of the navigational menus and copyright at the bottom 
of each page. This is what you start with when a new site is created using the template  
ASP.NET Web Forms Site. The following sections examine some of the features.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Page | 1005

1 
5

Review Figure 15-3. Near the bottom-left corner of the New Web Site dialog win-
dow shown in Figure 15-3, a drop-down list appears with three options listed for 
Web location. File System is used for examples in this chapter. However, note that 
if you select FTP, the last option, you would identify a remote server that you gain 
access to using File Transfer Protocol. If you select HTTP for the File Location, the 
project is created at http://localhost. Whatever name you type for your project name 
following “http://” becomes the virtual directory name for the website. The files are 
physically stored at the default home directory for the Web application. Unless you 
change the default home directory, the files are stored at C:\Inetpub\wwwroot. 
In order to use the HTTP option, you need to have IIS components installed and 
run Visual Studio in the context of an administrative account on the development 
system.

The first two templates ASP.NET Empty Web Site and ASP.NET Web Forms Site follow 
the Web Forms model. The ASP.NET Web Site (Razor v3) adheres to the MVC model. 
The first option has no files or folders associated with it. The second option has a fully func-
tional website that can be edited with your specific details. If you are willing to accept the 
template’s design, you can have a website up quickly.

Selecting File System, as shown in Figure 15-3, enables you to Browse to the loca-
tion on your machine where you want to store the files for the website. Visual Studio 
places the two solution files for the website at a different location from your specified 
File Location designation. A directory is created using the name you typed for the 
website, and the directory is placed (along with the two solution files) at the location 
you configured Visual Studio to store all your Visual Studio projects. The two solution 
files have the same name as the Web application; they end with file extensions of .sln  
and .suo. Using the Tools, Options menu option, you can change the settings for the 
storage location of your projects.

After a Web application is created, saved, and closed, it is also reopened differently 
from a Windows application. To reopen a Web application, select File, Open Web 
Site instead of File, Open Project/Solution. If you select Local IIS, you are shown 
the list of all Web applications (sites) stored at localhost (C:\Inetpub\wwwroot). 
When you select File System option, you are able to browse to the location where 
the Web application is stored. Unlike Windows applications where you open the .sln 
file, to reopen a Web application, simply select the folder that contains the Web appli-
cation. You do not need to locate a specific file in the directory. All of the websites 
created for the rest of this chapter will be saved using the File System option. They 
were also created using the Visual Studio Development Server as opposed to IIS or 
IIS Express.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1006 | Chapter 15: Web-Based Applications

WEB PAGE

Two files are created for each page when you build Web applications. Selecting File, 
New Web Site, ASP.NET Web Forms Site with the File System option selection 
enables you to specify where the website files should be stored on your local machine. 
The Source code file for the Default.aspx markup file is automatically opened when 
you first create a website as illustrated in Figure 15-5.

As with Windows applications you still have the option of reopening websites from the Start 
Page with the Recent Project selection.

FIGURE 15-5 Source code for HTML file

In Figure 15-5, notice the three buttons, Design, Split, and Source, shown on the 
 bottom-left corner. Initially, the Default.aspx file for the  DynamicPage site is 
shown in source code; the Source button is selected. If you look ahead at Figure 15-6, 
it illustrates what is shown when the Design button is selected for the Default.aspx  
file before any changes are made. Nothing has been added to the file. This is all 
 autogenerated from Visual Studio.

The file (ending in .aspx) shown in Figure 15-5 holds the HTML tags. You can view 
and directly edit the HTML source code here. The tags automatically generated by 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Page | 1007

1 
5

Visual Studio are actually XHTML tags. They are referred to as HTML tags for the 
remainder of this chapter. Tags are automatically inserted when the website is created. 
The first two lines in the .aspx markup file are called directives. Directives are delim-
ited with <% and %>. They provide information needed by ASP.NET to process the file. 
Directives are responsible for changing settings that govern the actions of an entire 
page. The first directive is a page directive. The attribute, @ Page Title="Home Page"  
identifies the text title that will be associated with the page. This name appears in the 
title bar or tab for the browser.

When a new website using the ASP.NET Web Forms Site template is created, you 
automatically get a MasterPage added to your site. An ASP.NET MasterPage allows 
you to set a template for common user interface elements that can be used across the 
entire website. The attribute, MasterPageFile="~/Site.Master" specifies the 
path for this file. As you review Figures 15-5 and 15-6, you should see a node labeled 
Site.master in the Solution Explorer window.

Notice that the language used is identified; the name of the CodeFile is provided. The 
AutoEventWireup indicates how events are to be handled. When this attribute is set 
to true, the event-handler methods in the class are used. The  AutoEventWireup 
has another special purpose. For any event that has the name Page_ in front of the 
event, such as the Page_Load( ) event-handler method, ASP.NET automatically 
binds the event to the page when the AutoEventWireup is set to true. You do not 
have to do a separate registering of these page events. Therefore, do not double-
click the page to register the Page_Load( ) event. This automatic binding is con-
figured by the  AutoEventWireUp attribute that is true by default. If you set the 
 AutoEventWireUp to false, the page does not automatically look for methods that 
use the Page_ event naming convention.

The last attribute, Inherits, identifies the class in the code-behind file from which 
the ASP.NET class extends. If you change the class name in the code-behind file, it 
is not automatically changed in the .aspx source file. It is set initially to _Default. 
When you change the class name in the code-behind file, you must manually change 
it here for the application to run properly.

In Figure  15-4, Line 4 assigned "server" to the runat attribute, indicating that 
when a client requests this .aspx file, it should be processed on the server before 
being rendered and sent back to the client. You will see this again as you build  
ASP.NET applications.

Although you can change the tags by typing new values, this is not the ideal method. 
You will probably prefer to drag and drop the controls onto the page much like you 
did when you created Windows Forms applications, and let Visual Studio generate 
the tags for you. You can drag and drop controls from the Toolbox directly onto the 
.aspx source file that holds the HTML tags or onto the blank page. Selecting the 
Design tab at the bottom of the screen displays the .aspx page in design mode as 
illustrated in Figure 15-6.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1008 | Chapter 15: Web-Based Applications

Additional panes were opened for Figure 15-6. From the View menu option, CSS  Properties 
were selected. This window is shown in the bottom-right corner of Figure 15-6. Document 
Outline, shown on the left, was made visible from the View, Other Windows, Document 
Outline.

FIGURE 15-6 HTML document in Design mode

New websites that are constructed using Visual Studio’s ASP.NET Web Forms Site 
option create all the files shown in Figure 15-6 in the Solution Explorer window. 
The link, text, and HTML tags shown in Figure 15-6 are there when the site is first 
launched. Also, a master page and CSSs are included.

The master page and CSS features are briefly discussed in the following sections.

Master Pages
When you have more than one page associated with a website, a master page can 
add consistency to your site. You lay out the design, identifying what should appear 
on each page and indicate on the master page where content will change from one 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Page | 1009

1 
5

page to the next. For example, on a master page, you might place an HTML table for 
the layout and include an image element for a logo. You might also include special 
controls for page navigation for your site. The concept of a master page allows you 
to create and maintain a constant theme across several pages for a website. As you 
look back at Figures 15-5 and 15-6, notice that one of the nodes listed in the Solution 
Explorer window is Site.master; this is a master page. It is automatically created 
when you create a new website in Visual Studio and select the ASP.NET WebForms 
Site template. A master page ends with an extension of .master.

Figure  15-7 shows most of the Site.master file. You will notice that it contains 
formatting HTML tags. A master page can include static text, HTML elements, and 
server controls. If you look at the Site.master file in Figure  15-7, you will find 
html, head, body, form, and div elements on the page. There are a few subtle differ-
ences between master pages and other pages, like the Default.aspx page. First, the 
master pages have a special @ Master directive instead of the @ Page directive you 
find with files such as Default.aspx.

FIGURE 15-7 Site.master master page

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1010 | Chapter 15: Web-Based Applications

Web pages actually consist of two pieces: the master page itself and one or more 
content pages. Individual content pages contain the content you want to display 
in the context of the master page template. Each content page contains an @ Page 
directive, which identifies the master page to which the content page is attached. 
When users request the content pages, the master page is merged with the con-
tent page to produce output that combines the layout of the master page with the 
new material from the content page. There are a number of content pages created 
and associated with the master page for the DynamicPage example. They include  
About.aspx, Login.aspx, Register.aspx, and Default.aspx. Each of these 
files has a  MasterPageFile="~/Site.Master attribute as part of its page directive.

The other major difference between a master page and content pages such as Default.aspx  
and About.aspx is that the master page has one or more  ContentPlaceHolders 
defined with an ID. These placeholders define areas where replaceable content will 
appear. With some areas collapsed, the MainContent ContentPlaceHolders is shown 
on Line 78 in Figure 15-7. Figure 15-8 shows the replaceable content for the About.aspx 
pages. The figure shows both the Source and Design windows for the About.aspx page.

FIGURE 15-8 MainContent in the About.aspx page

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Page | 1011

1 
5

Lines 4 through 8 provide the HTML tags for the BodyContent shown in Figure 15-8 
for the About.aspx page. The static text "Your application description page" 
and "Use this area to provide additional information." are the text used to 
fill the white area (MainContent) on the page. Figure 15-9 shows the MainContent 
HTML tags that appear in the Default.aspx file.

FIGURE 15-9 MainContent in the Default.aspx page

As you review Figure  15-9, notice that the tags for the BodyContent are defined 
beginning on Line 4 and ending on Line 42 for the Default.aspx page. The 
 MainContent is more lengthy and extensive in the Default.aspx page than what is 
found on the About.aspx page because the Default.aspx page serves as the open-
ing page and the one that is displayed when Home is selected from the navigation bar.

For the content pages shown in Figures 15-8 and 15-9, the line that begins with 
<asp:Content ContentPlaceHolders="MainContent" is what ties the content 
back to the Site.master page.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1012 | Chapter 15: Web-Based Applications

As you closely review Figure 15-7, you will notice that there is a folder named  Content 
shown in the Solution Explorer window. It is expanded to reveal several files ending 
with .css extension, including Site.css. These are style sheets and are automati-
cally added to the project when a Visual Studio website is created.

Cascading Style Sheet (CSS)
Visual Studio provides support for incorporating CSSs into ASP.NET Web applica-
tions. CSSs, such as master pages, enable you to provide more consistency across 
pages on your website. They let you separate the actual content from how it is going 
to look. Before CSS, all of the presentational attributes, such as sizes and colors of 
fonts and alignment of text, were included within the HTML markup. You often 
had to repeat the properties and had to work at providing consistent presentation of 
elements.

CSS uses style sheets to describe how elements will look in terms of their layout, fonts, 
and colors. Style sheets enhance your ability to improve the appearance of pages. 
Most developers feel that style sheets represent a major breakthrough for web page 
designers because of the added ability to improve the appearance of pages. There is 
a whole new language for style sheets used to define how an HTML document will 
look.

The syntax for the language used by CSS is very high level—close to English. CSS 
uses a number of keywords to describe different style properties. It is beyond the 
scope of this chapter to describe all of the different properties; however, as you review 
 Figure 15-10, you will find the style sheet very readable and easy to modify.

As you review the DynamicPage Web application, you will discover additional  content 
pages under the Account node. Login.aspx and Register.aspx are both 
associated with the Site.master master page. No changes were made to the 
 DynamicPage Web application.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Page | 1013

1 
5

From the Solution Explorer window, the Site.css file is opened. By definition, a style 
sheet includes a list of rules. Each rule consists of a selector and one or more declara-
tion blocks. The declaration block is enclosed in curly braces. Inside the block, you 
will find a property, colon, and a value. Like C#, each property assignment ends with 
a semicolon. Example 15-2 shows the style rule for body that was included when the 
DynamicPage website was created.

EXAMPLE 15-2

body
{
    padding-top: 50px;
    padding-bottom: 20px;
}

FIGURE 15-10 Site.css

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1014 | Chapter 15: Web-Based Applications

You can go directly into the Sites.css file and type new values or add additional 
property lines. Another option is to make selections from the CSS Properties win-
dow. The CSS Properties window is shown in Figure 15-6. It can be made visible 
from the View menu. A Modify Style configuration wizard is also available from the 
 Properties window. The style property can be retrieved from any of the elements 
or classes you select in the Document Outline or the Design pane. When you click 
the ellipsis for the style value, the Modify Style dialog box shown in Figure 15-11 
is revealed.

FIGURE 15-11 Modify Style

Each of the Category items shown in Figure 15-11, the Modify Style dialog box, reveals 
a number of options you can set for the element. Selections you make are added as new 
style rules. You are encouraged to explore by making changes and then reviewing the 
.css file and the output you get from your changes when you launch the site.

Figure  15-12 shows modified website example created starting with the  
ASP.NET Web Forms Site template. No C# program statements were added. The 
default template was kept. Text was changed by typing new values onto the Design 
panes for the Default.aspx, Login.aspx, Register.aspx, About.aspx, and 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Page | 1015

1 
5

Contact.aspx pages. New URLs replaced links in the .aspx file using the Source 
pane. An image was dragged from the Toolbox to the site.master page. Prior to 
providing a value for the ImageURL in the Properties windows, a new Images folder 
was added by right-clicking on the project name in the Solution Explorer window. 
The actual .jpg image was copied and pasted into that folder. These changes are 
shown in  Figure 15-12. The Web application is called RentJaxHomes.

FIGURE 15-12 ASP.NET Web Forms Site modified

Recall that the examples DynamicPage and RentJaxHomes were created using the 
ASP.NET Web Forms Site template. As you review Figures 15-8–15-10, notice that 
each of the files ending with .aspx is expandable. If you expand any of these .aspx 
files, such as Default.aspx, in the Solution Explorer window, you will find the 
code-behind files. They all have .cs appended onto the end of their filenames.

CODE-BEHIND FILE

You can open the .aspx.cs file from the Solution Explorer window. At first glance, 
the .aspx.cs code-behind file looks very similar to a Windows application. However, 
there are a number of differences. There is no Main( ) method. Instead there is a 
Page_Load( ) event handler. It is added automatically when the project is created.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1016 | Chapter 15: Web-Based Applications

The code generated by the Web Forms Designer is no longer included. A significant 
difference exists between an ASP.NET Web Forms and Windows application in that the 
auto-generated code is not created for ASP.NET applications until you run the appli-
cation. The heading for the class declaration still includes the partial keyword. You 
saw that with Windows applications. The auto-generated code was placed in another 
 partial class. Recall that with Windows applications, the Windows- generated code 
included object instantiations for the visual controls that were placed on the form and 
event-handler hookups. These were placed in the .Designer.cs file. Unlike Windows 
applications, one of the differences you will observe when you explore the Solution 
Explorer window for ASP.NET applications is that there is no .Designer.cs file listed.

As you saw from the previous example, when you create a website using the ASP.NET 
Web Forms Site template in Visual Studio, a number of files including a master page, 
style sheet, and content pages for Default.aspx, About.aspx, and Login.aspx 
are automatically added to the project. If you click the arrow beside each of these 
content pages in the Solution Explorer window, code-behind files (ending in .cs) 
are revealed for each of these .aspx files.

The previous examples highlighted what was automatically generated. Using these 
predesigned templates, you add your own content. If you do not want this design 
template or these files automatically added to your website, you have another option. 
You can create from scratch using the ASP.NET Empty Web Site template.

ASP.NET Empty Web Site
Look back at Figure 15-3. Listed as the first option in the list of templates available for 
Web sites is the ASP.NET Empty Web Site template. Selecting this template does not 
create any files—not even the Default.aspx file. However, it also does not add lots of 
overhead to the project. This option is used for the remaining examples in this chapter.

When you make the selection File, New Web Site, ASP.NET Empty Web Site,  
no .aspx files are created. No extra folders are created. For the next project, a website 
named HtmlExample is created. A file is added to the project by right-clicking on the 
project name in the Solution Explorer window and selecting Add, Web Form. The 
default name of Default is accepted for the Item Name. A review of the Solution 
Explorer window reveals that a new file Default.aspx has been added. This file is 
automatically opened in Source view when you first start building a website. Click-
ing on the arrow beside Default.aspx expands to reveal the Default.aspx.cs  
file. This code-behind file was automatically created when you added the new  

Recall that a Form_Load( ) method was added to Windows applications when you 
 double-clicked on the form. You do not need to double-click on the page to get the  
Page_Load( ) event handler registered. The Page_Load( ) event-handler heading is 
automatically added to the Web application whenever a default.aspx.cs file is added 
to the application.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Page | 1017

1 
5

Web Form item to the project. You will read more about this shortly; however, the 
.aspx.cs file is where your program logic, including your event handlers, is stored.

A CSS was added automatically when you created the ASP.NET Web Forms site in 
the previous example. A file named Site.css was added. You can add a Site.css CSS 
to an empty site project by right-clicking the project name in the Solution Explorer 
window and selecting Add, Style Sheet.

Another option is to use the Modify Style dialog box without adding a style sheet. The 
Modify Style dialog box is shown in Figure 15-11. It is opened by clicking the ellipsis in 
the style value Properties Window. You can launch the Modify Style dialog box from 
both the Source and the Design tabs. To change, for example, the background color for 
the web page, first the Default.aspx window is opened, the Source tab is selected, and 
the mouse is clicked on the line that has the beginning <html tag. When the Modify Style 
dialog box is opened, the Background Category is selected. Using the color wheel, a 
green (Hex={CC,FF,33}) is selected for the background-color. Under the Font Cate-
gory, the medium was set for the font-size. Again using the color wheel a darker green 
(Hex={00,33,00}) was selected for the color selection under the Font Category.

You can also launch the Modify Style dialog box from the Design tab by selecting the 
Form from the drop-down list of controls in the Properties Window. Once the Form 
is selected, clicking the ellipsis in the Style value Properties Window launches the 
Modify Style dialog box.

As with a Windows application, you can debug and execute a Web application from 
within the IDE. It is a fully functioning application from the beginning. When you 
run the application, the default Web browser is launched and the file is opened inside 
the browser. The first time you run the application, you may receive a message noting 
“Debugging Not Enabled.” Selecting OK from that dialog box enables debugging.

In addition to running the application from the Debug, Start Debugging or Debug, Start 
Without Debugging menu options, you can run the application by right-clicking on the .aspx 
(HTML) file in the Solution Explorer window and selecting View in Browser. Another option 
is to open a browser and then browse to the file using the Open menu option. Visual Studio 
also installs a quick launch icon on the toolbar with a drop-down list of browsers installed on 
the machine. This enables you to view the page in multiple browsers during testing.

HTML DOCUMENT FILE

The Page object has a number of properties. In the Properties window, you have 
access to the HTML Document properties as well as much of the same functionality 
that was available for setting a Windows application form; however, differences exist. 
There are fewer properties available, and they go by different identifiers. Table 15-1 
gives some of the page (HTML document) properties that can be set. The table was 
adapted from the Visual Studio MSDN documentation.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1018 | Chapter 15: Web-Based Applications

Property name Description

Class Defines class of the page body

Culture Determines results of culture-dependent functions, such as the date, 
number, and currency formatting

Debug Indicates whether the class should be debugged with debug symbols

EnableSessionState Session state mode

ID Body element ID

Language Specifies the language used when compiling all inline rendering and code 
declaration blocks within the page

MasterPageFile Master page (read only)

Style Sets style of body element

StylesheetTheme Page style sheet theme

Theme Page theme

Trace Indicates whether tracing is enabled

TraceMode Indicates how traces are to be displayed when tracing is enabled

UICulture Determines which resources are loaded for the page

Title Caption for the title bar

© Cengage Learning

TABLE 15-1 HTML document properties

As with Windows applications, you can set some properties during design using the 
Properties window by selecting the individual property and either typing a new value 
or selecting a value from a drop-down list when available. Doing so adds code to the 
visual interface file containing the HTML tags (.aspx extension). The value typed 
for the Text property becomes text that you see on the tab for the web page when it 
is launched.

Example 15-3 includes the HTML statements modified as a result of the changes in 
the property values.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 1019

1 
5

EXAMPLE 15-3

<head runat="server">
  <title>HTML Controls Example</title>
</head>

As shown in Example 15-3, the property change is made to the .aspx file, which 
is the file containing the HTML tags. When the pair of attribute names and values 
were automatically placed in the .aspx markup file, the attribute names were written 
using lowercase characters.

Controls
Visual Studio groups controls in the Toolbox under the following categories:

 ? Standard

 ? Data

 ? Validation

 ? Navigation

 ? Login

 ? WebParts

 ? AJAX Extensions

 ? Dynamic Data

 ? Reporting

 ? HTML

The Toolbox controls are available in both design and source mode. You can drag 
and drop a control onto the .aspx markup page as easily as you can drop it on the 
design page. Most of the Web Forms controls you will be using are stored under the 
Standard type on the Toolbox. The pure HTML controls appear under the HTML 
type. HTML controls are discussed first.

HTML Controls
HTML controls are also called client-side controls. When added to a web page, they 
map straight to HTML tags. They can be added to your page using a WYSIWYG 
(what you see is what you get) drag-and-drop approach. You can type text directly on 
the page without placing a control object on the page. To move to the next line, you 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1020 | Chapter 15: Web-Based Applications

press the Enter key. For this example, the heading Computer Club Registration 
Form was typed inside the selected div area. Since the labels for text First name:, 
Last name:, and Email: do not need to be programmatically referenced, they were 
simply typed directly on the page in design mode. This is shown in Figure 15-13.

You can horizontally center or justify text or controls on the page using the  Justify 
option from the Format menu. Format, Justify, Center was used to center the 
heading. The Format menu also enables you to change the Font, Background or 
 Foreground color or add a completely New Style. You also have the option of insert-
ing tables and merging the cells from the Table menu option. Adding a table can give 
you a little more control over where items are placed on the page. Using the Format, 
Set Position option, you can set the positioning to Relative or Absolute. Be careful 
with this setting if you plan to view the page using different browsers. Remember that 
not all monitors will be set for the same resolution. You have a special Block Format 
tool on the Formatting toolbar, as shown in Figure 15-13. This enables you to select a 
segment of text and apply heading tags or create ordered or unordered lists.

FIGURE 15-13 Block format for design mode

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 1021

1 
5

Using the Block Format tool shown in Figure 15-13, the heading and labels were for-
matted using the drop-down list. The heading was set to <h1>. The text or labels for 
the input boxes were set to <h3> using the Block Format tool. You also have support 
for aligning and placing the items on the page.

The controls and properties, however, associated with the HTML controls are differ-
ent from those you saw previously with Windows applications. There is not a Label 
or Text Field object listed as an HTML control in the Toolbox. If you want to place 
labels over controls and do not need to programmatically reference them, you can 
simply type the text directly on the page in design mode. When you need to pro-
grammatically reference a Label object, drag one from the Standard group on the 
Toolbox.

To change font type or size with HTML controls, select the control you want to 
change, choose Style in the Properties window and select the ellipsis. This brings 
up a Modify Style dialog box where you can define CSS style attributes for these 
HTML controls. These settings are made by selecting from a group of options. Thus, 
you can still change these formatting features from within Visual Studio; it is just 
done a little differently than with Windows applications.

You have the option under Format, New Style. . . to create and name a new style. Select-
ing Format, New Style. . . brings up a dialog box containing most of the same options as 
the Modify Style. . . dialog box shown in Figure 15-11. Format, New Style. . . adds the 
capabilities of creating a new named style. You also have an option to apply the new style 
to the current document selection. Both of these features are not available from the Modify 
Style. . . dialog box.

ADDING HTML CONTROLS

As shown in Figure 15-14, there are a limited number of HTML controls included in 
the IDE. Most of the HTML controls are based on the HTML Input element. These 
elements are not available to the server, but just treated as markup for the browser.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1022 | Chapter 15: Web-Based Applications

To illustrate the usage of HTML controls, Input Text and Image objects were added 
to the HTMLExample Web application. Each Input Text control was dragged onto 
the form and placed to the right of the identifying text. They were moved slightly to 
the right and resized. All three controls were selected and then the Set Position was 
set to Relative from the Format menu. Using Visual Studio’s Snap lines, the Input 
Text controls were aligned with their identifying text.

Prior to adding the image, a new Images folder was placed in the solution folder for 
the Web application. The Happy.jpg picture was placed inside the folder. In order to 
center the picture below the input entries, a line was opened up on the Design pane 
and the Format, Justify, Center was selected. This was done prior to placing the 
image on the form. Double-clicking on the Image control from the HTML Toolbox 

FIGURE 15-14 HTML controls

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 1023

1 
5

placed the image in the center of the form. Once the Image object was on the form, 
clicking the ellipsis in the value text box for the scr property enabled the control to 
be tied to the picture. The Set Position was set to Relative from the Format menu.

As you review Figure 15-14, you will notice that there are three HTML button type con-
trols listed in the Toolbox: Input (Button), Input (Submit), and Input (Reset). 
You cannot double-click and register an event handler with these HTML buttons like 
you would have done with a Windows application. In order to do that, a Button from 
the Standard section in the Toolbox is added. The Button was placed on the page 
in a similar manner that the image was. In the Design pane, a line was opened up by 
pressing the return key, Justified Center selected, Button from  Standard Toolbox 
was double-clicked which placed it on the form in the center of the page. Relative 
was selected for Set Position option from the Format menu. The Text property for 
the Button was set to Submit in the Properties Window. Like a Windows applica-
tion, the application can be executed from within Visual Studio. Or, after being built, 
the page can be opened within a Web browser using the application name—because 
Visual Studio created a virtual directory for it. Figure 15-15 shows the Web applica-
tion after values are entered and the Submit button is clicked.

FIGURE 15-15 Submit button clicked

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1024 | Chapter 15: Web-Based Applications

Adding the text box, button, and image controls to the form alters the code in the file 
containing the HTML (.aspx). It does not add any statements to the file ending in 
.aspx.cs (the code-behind file). The only statements that appear in the .aspx.cs 
file are those originally placed when the page was created. Example 15-4 shows the 
contents. Notice that a number of namespaces are imported automatically.

EXAMPLE 15-4

// HTMLExample Default.aspx.cs
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.UI;

public partial class _Default : System.Web.UI.Page
{
   protected void Page_Load(object sender, EventArgs e)
   {
   }
}

The code-behind file, Default.aspx.cs, for the HTMLExample application is not 
changed. Additional HTML tags are added to the .aspx file.

HTML controls do not maintain state. When the page is requested from a Web 
browser, its static contents—formatted using the HTML tags—are displayed. HTTP 
is considered a stateless protocol. The property values that are set have a very short 
lifetime. As you look at Figure 15-15, note that after the Submit button is clicked, 
the text boxes are cleared. When the Submit button is clicked, the page is posted 
to the Web server. The Web server does not have access to what is typed into the 
HTML controls. This is because the HTML controls do not maintain their state dur-
ing the round-trip from the Web server. So, when the Web server sends back the 
results as a new HTML document, the original values in the text boxes disappear. The 
Web server only has access to the contents of the HTML tags. The biggest advantage 
HTML controls offer is that the page is rendered as it is to the browser. No processing 
is necessary by the Web server.

You might think that the illustrations in Figure 15-15 are layered incorrectly, but they are 
not. As noted previously, web pages are stateless. When the Submit button is clicked, a 
postback to the Web server occurs. When the page is redisplayed upon return from the 
round-trip to the server, the values in the text box are lost and not available for redisplay.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 1025

1 
5

But, if you want to retrieve the values entered by the user, you can programmatically 
analyze the HTTP request. This has been the traditional method; however, it requires 
more coding. A better approach is to make the controls available to the Web server, 
as described in the following section.

HTML Server Controls
To add functionality at run time, you can give the server access to the values entered 
by the user. One way to do this is to add scripting statements in the HTML file 
using a scripting language such as JavaScript or VBScript. You could use the HTML 
Input(Button), Input(Submit), or Input(Reset) buttons to do this. This was 
discussed previously. When using JavaScript or VBScript, however, you miss out 
on many of the benefits of object-oriented development and the large collection of 
predefined classes available within .NET. Another approach is to use the ASP.NET 
Web server controls that appear on the Standard tab. Recall that the button added to 
the form was retrieved from the Standard Toolbox. Web Forms server controls are 
more powerful and closely akin to Windows Forms control objects. These controls 
are  covered in the following section.

.aspx AND .aspx.cs FILES

As you examined the code-behind file in Example 15-4 and Figure 15-12, you should 
have realized that no code was written for processing the data entered by the user. 
No event-handler method for the button click was included. When the user clicked 
the Submit button, the page was refreshed from the Web server, which caused the 
text box objects to be cleared. During design, if you had placed an Input(Submit) 
or an Input(Button) from the HTML Toolbox tab, and wanted to provide func-
tionality, script code for an OnClick( ) function would need to be written in the 
.aspx markup file. You probably do not want to do that. That is why the button was 
retrieved from the Standard tab on the Toolbox. When it is placed on the form, the 
runat="server" attribute is automatically added to the button tag in the .aspx file. 
The Button is a Web Server control.

An additional control, Label, was retrieved from the Standard Toolbox. To place it 
on the form, a new line was opened under the Image control by pressing the enter 
key. Once the full paragraph was selected where the Label resided, it was left justi-
fied using the Format, Justify menu. From the Properties window, the value for the 
Text property was deleted and its id property was set to lblOutput.

RUNNING HTML CONTROLS AS SERVER CONTROLS Recall that the HTMLExample application 
had three Input(Text) controls placed on the form. These were retrieved from 
the HTML tab on the Toolbox. They did not get the runat="server" attribute 
added. The Label and Button objects are pulled over from the Standard Tool-
box. Because they are a standard ASP.NET control, the runat="server" attribute 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1026 | Chapter 15: Web-Based Applications

is automatically added to the tags for these controls in the .aspx file. This makes the 
control visible or accessible to the Web server—meaning that they become program-
mable. You can double-click on the button and have an event-handler method head-
ing automatically generated for you.
An additional step is needed in order for you to retrieve data from the HTML 
Input(Text) text boxes that you retrieved from the HTML tab on the Toolbox. 
These HTML controls are not visible as objects in your aspx.cs file until you add the 
runat="server" attribute to their tag in the .aspx file. Once this is accomplished, 
the button click event handler can retrieve and store data in those objects. The id 
properties for the three Input(Text) text boxes were set to txtFirst, txtLast, 
and txtEmail. The new tags are shown in Example 15-5.

EXAMPLE 15-5

<h3>First name:&nbsp; <input id="txtFirst" runat="server" 
     type="text" /></h3>

<h3>Last&nbsp; name:&nbsp; <input id="txtLast" runat="server" 
     type="text" /></h3>

<h3>Email:&nbsp; <input id="txtEmail" runat="server" 
     type="text" /></h3>

<p style="text-align: center"> <asp:Button ID=" btnSubmit"
     runat="server" Text="Submit" Height="45px" Width="97px" /p>

<p style="text-align: center"> <img alt="" src="Images/HAPPY.jpg"
       style="height: 34px;  width: 48px; position: relative; top: −2px; 
     left: 0px" /></p>

<p style="text-align: center"> &nbsp;</p>
     <asp:Label ID="lblOutput" runat="server" 
     style="text-align: left" Font-Size="X-Large"> </asp:Label>

The Label object is used by the Web server to store a message containing the 
retrieved name and e-mail values from the HTML Text Field objects.

The ID property is used with ASP.NET applications to set to an appropriate identifier for 
Standard controls. The ID property is similar to the Windows application Name property. 
The Text property is available for many of the Standard controls. The lblOutput 
Text property was cleared.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Controls | 1027

1 
5

SERVER CONTROL EVENTS

After you select a button from the Standard tab on the Toolbox, an object is instan-
tiated of the WebControls.Button class. You get an object complete with object 
characteristics. You can register events such as a button click event for the object. Now 
when you double-click the Submit button, you do not get the function OnClick( ) 
code added to the .aspx markup file. Instead, double-clicking registers the button click 
event exactly as it was done when you created button click events for Windows appli-
cations. An empty button click event-handler method is added. This code is inserted 
into the code-behind (.aspx.cs) file. Now when the page is requested using HTTP, 
the Web server has access to all the controls that have runat="server" attributes 
and can retrieve and process the data entered by the user. To demonstrate how the 
application functions now that the server has access to the controls, the statements 
shown in Example 15-6 were added to the event-handler method.

EXAMPLE 15-6

protected void btnSubmit_Click(object sender, EventArgs e)
{
     lblOutput.Text = "Thanks!! " +
           txtFirst.Value + " " + txtLast.Value +
           " − Information will be forwarded to " + 
           txtEmail.Value;
}

PROPERTIES OF HTML SERVER CONTROLS As noted previously, the properties of HTML 
controls are different from those you became accustomed to using Windows appli-
cations. This is because they are mapped to HTML elements. Table 15-2 lists the 
property values set for the HtmlExample application. There is no Name property. The 
id property is used to provide an identifier for the HTML controls.

Name Object type Property Value

Document Page Title HTML Controls 
Example

btnSubmit Button ID btnSubmit

btnSubmit Button Height 45px

btnSubmit Button Text Submit

TABLE 15-2 HtmlExample property values

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1028 | Chapter 15: Web-Based Applications

As you review Table 15-2 and the code illustrated in Example 15-6, notice that the 
Text property is not used to get or set values for the Input text fields. Instead, the 
Value property is used. Figure  15-16 shows the page after it is posted back from  
the Web server. It is no longer blank after the round-trip to the Web server.

FIGURE 15-16 Web page after postback

Name Object type Property Value

btnSubmit Button Width 97px

lblOutput Label ID lblOutput

lblOutput Label Font – Size X-Large

txtEmail HTML – Input (Text) id txtEmail

txtFirst HTML – Input (Text) id txtFirst

txtLast HTML – Input (Text) id txtLast

Img Image Style Height: 34px

Img Image src Images/HAPPY.jpg

TABLE 15-2 HtmlExample property values (continued )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Standard Server Controls | 1029

1 
5

Notice in Figure 15-16, that upon return from the server the Input text objects con-
tain the typed values—unlike the illustration shown in Figure 15-15. This is because 
these HTML controls are now HTML server controls. The only program statements 
added were those added to retrieve the input values and display their contents in 
a Label object. Those statements were added to the btnSubmit_Click( ) 
event and previously shown in Example 15-6. No other changes were made to the  
.aspx.cs file. The Font Size property for the lblOutput was set to X-Large using 
the Properties window. This caused the following statement to be added as an attri-
bute to the Label tag:

Font-Size="X-Large"

The attribute was placed in the .aspx markup file.

The number displayed in the Address bar, shown in Figures 15-15 and 15-16, following 
local host as the port number is a relatively random number. It is placed in the Address 
bar when you create a website and specify the location as File System. The port number 
changes.

With most Standard controls, you have a Text property and do not have to learn new 
identifiers such as Value, which was used with the HTML Input (Text) control.

As you experienced with this example, you can convert traditional HTML controls 
into server controls. However, there are other options for server-side processing. As 
part of Visual Studio, you have a whole group of Standard Web controls. They are the 
topic of the following section.

Web Forms Standard Server Controls
Referred to as Standard controls, server controls, Web controls, Web Forms server 
controls, ASP server controls, or simply Web Forms controls, these controls have 
more built-in features than the HTML controls. They are the controls you want to 
use in Visual Studio—especially if you need to have the Web server process the data 
on the page. The Web Forms server controls are designed to look and act like their 
 Windows counterparts. The programming model used for these controls is more 
closely aligned to the object-oriented model you have used throughout this book. 
There are fewer of these controls than there are Windows Form controls, but their 
functionality and many of their properties are similar.

Server controls slow applications down because the web page containing them is sent 
back to the server for processing. Because of this, fewer events can be programmed 
for server controls.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1030 | Chapter 15: Web-Based Applications

Available Web Forms Controls
Figure 15-17 shows some of the Web Forms Standard controls available in Visual 
Studio.

FIGURE 15-17 Web Forms Standard controls

If you do not see the Toolbox, it can be viewed by selecting View, Toolbox or by using the 
Ctrl+W, X shortcut. Other controls can be added to the Toolbox. Right-click within the Web 
Forms Toolbar and select Customize to add or remove controls.

You can mix and match Navigation controls, HTML controls, and Web Forms Standard 
controls. A single Web application can contain all three.

Notice how the drop-down tabs shown in Figure 15-17 include tabs for Standard, 
Data, Validation, Navigation, Login, WebParts, AJAX Extensions, Dynamic Data, 
Reporting, and HTML. The controls discussed first in this section are the Web Forms 
Standard controls available from the Toolbox.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Standard Server Controls | 1031

1 
5

Web Forms Standard controls do not map straight to HTML. Often, it may take 
several HTML tags to represent one Web Forms Standard control. When you drag 
and drop a Standard control onto the page, an HTML tag is placed in the .aspx file 
representing the control. This tag contains an extra attribute, which is not found on 
HTML controls, as follows:

<asp:controlName>attributes runat="server"

</asp:controlName>

To indicate that the control is a Web Forms control, Visual Studio prefixes the control 
name with <asp:controlName> and ends the tag with </asp:controlName>. You saw 
runat="server" previously. This attribute is added for Web Forms Standard controls.

Other attributes are included with the HTML tags. This is also true for HTML con-
trols. When you set the control’s property using the Properties window in Visual Stu-
dio, the settings are stored in the HTML document—the file ending with the .aspx 
extension. Remember that this differs from the operation of Windows applications. 
With Windows applications, the property settings are placed in the Windows Forms 
Designer generated code region. Web applications do not have a Web Forms 
Designer generated code section. Property settings are not stored in the code-behind 
file for Web applications. They are stored in the file containing the HTML tags. All the 
visual interface settings are stored in this .aspx file. You do not need to define and 
instantiate control variables. You will not find a special auto-generated section, like 
you found with Windows applications that holds control variable declarations. With 
Windows applications, when you dropped a button, for example, on the form, you 
could search through the auto-generated code and find the button being declared and 
instantiated. When you double-clicked on the button to register a click event, you could 
again search through the auto-generated code and locate the event wiring code. With 
Windows applications, all this code was autogenerated and placed in the  code-behind 
file under the InitializeComponent( ) section. But the ASP.NET run time now 
automatically performs the code generation that was performed by Visual Studio.

What this means is that the ASP.NET run time automatically inserts the required 
declaration and event wiring code into the final compiled file. Because the run time 
takes on this responsibility, you do not need to be concerned with it. The run time 
creates another partial class dynamically from the .aspx page and merges it with 
the code-behind partial class.

Web Forms Controls of the Common Form Type
As you examine Figure 15-17, notice several identifiers that you have seen previously: 
Button, Label, TextBox, ListBox, CheckBox, Image, and RadioButton. These 
common controls function similarly to their Windows counterpart objects. There are 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1032 | Chapter 15: Web-Based Applications

differences, however, between the controls and how their properties are added to an 
application. First, examine the HTML visual interface file.

HTML (.aspx) FILE

Dragging a Web Forms Button object onto a form, setting its ID (name) to 
 btnSubmit, and changing its Text value and positioning properties produces the 
HTML statement shown in Example 15-7.

EXAMPLE 15-7

<asp:Button ID="btnSubmit" runat="server"
     style="z-index: 1; left: 400px; top: 321px;
     position: absolute; width: 90px; height: 24px;
     text-align: center" Text="Submit Info"
     OnClick="btnSubmit_Click" 
</asp:Button>

As you can see from Example 15-7, the settings for the properties are not placed in the 
code-behind file. These attributes are added to the .aspx file—the markup file that 
contains all the HTML tags. The entries added to the code-behind file (.aspx.cs  
file) include only the declaration of objects and the registration of event handlers 
along with their methods.

CHANGING PROPERTIES WITHIN VISUAL STUDIO

It is valuable to examine the properties that can be set for the buttons, labels, text boxes, 
radio buttons, check boxes, and other form type controls. As shown in  Figure 15-17, 
there are fewer controls found with Web Forms types of controls than you find with 
their Windows Forms counterparts. In addition, there are fewer properties for each 
control and differences exist between the properties. One obvious difference is in 
naming the object. With Windows Forms controls, the Name property is used. With 
Web Forms controls, the ID property is used. The following list shows the number of 
events and controls that can be registered for different types of control buttons:

 ? Windows Forms button—60 events

 ? Web Forms Standard button—8 events

 ? Windows Forms button—76 properties

 ? Web Forms Standard button—30 properties

This comparison is representative of all of the other controls.

Take a look at Figure 15-18 to see the properties for the Web Forms Label control.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Standard Server Controls | 1033

1 
5

FIGURE 15-18 Properties for the Label control object

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1034 | Chapter 15: Web-Based Applications

Figure 15-18 expands the properties for Font, revealing the options for Size. Instead 
of typing a point value, Size is set with relative values. This same Font property is 
found with most Web Forms controls.

EVENTS

The events for Web applications are both raised and handled on the server. The 
response is sent back through HTML to the client browser. To the user, this event 
handling appears to be like handling events with Windows applications. However, 
by default only a few events trigger a postback to the server. Common user interface 
events such as CheckChanged events are not automatically posted to the server. The 
click events fired by buttons automatically trigger a postback. Changes in selections 
to ListBox, RadioButton, RadioButtonList, CheckBox, CheckBoxList, and 
DropDownList do not cause an automatic postback to the server by default.

AUTOMATIC POSTBACK Each of the controls listed in the previous paragraph (ListBox, 
RadioButton, RadioButtonList, CheckBox, CheckBoxList, and  DropDownList) 
has a property called AutoPostBack that can be set to true to trigger a postback to 
the server automatically. When a control’s AutoPostBack property is set to true, the 
control’s events trigger an HTTP request to the server when the control’s registered 
event is fired. You will notice that the TextBox object also has an  AutoPostBack 
property. It is also set to false by default. Normally when you design a form, you do 
not want the page to be posted back after each change on the form. Not only is this 
an expensive activity involving the server, but it is also more difficult to program. It 
is expensive because every postback to the server involves an HTTP request with 
the page’s URL. The server determines if additional processing is necessary, and if 
so, it performs the processing. Then, the server sends the page back as an HTML 
document. You can imagine that if every click or mouse move on the form required 
a round-trip back to the server, you would not only be using more resources than 
necessary but also slowing down your application and requiring more work than 
necessary. Thus, you should be judicious with your changes to this AutoPostBack 
property.
The server loads an ASP.NET web page every time it is requested by a client browser 
and then unloads it back to the browser after it processes the server-side code to 
render the HTML. Even though this communication is actually disconnected, a 
feeling of continuity is needed at the client side. When a second postback of the 
page is sent to the server, the client should experience the postback merely as the 
next step in the progression of dealing with the page. The client should not know 
that the page is being reloaded or seen for the first time. One way ASP.NET pages 
accomplish this transition—so that it seems like a seamless interaction with the 
website—is through state management. You can write code to store page informa-
tion between round-trips to the server. State management can occur at the client 
or server side.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Standard Server Controls | 1035

1 
5

Adding Common Form-Type Controls
To illustrate some of the Web Forms controls that can be added to a Web form, a 
website called WebControls is created to host the Computer Club Inquiry Form. You 
might want to review Figure 15-3. The website was created using File, New Web Site,  
ASP.NET Empty Web Site with the Visual C# template selected. File System is selected 
for the Web location. Other than the selection for the ASP.NET Empty Web Site and the 
name for this site, no additional changes were made from what is shown in Figure 15-3.

Figure 15-19 shows the website. It contains some of the controls discussed previously 
and controls that are added in the sections that follow.

You are encouraged to explore the MSDN documentation to learn more about 
maintaining state at the client side using the ViewState property and cookies. 
Explore the  documentation using the Help, Search option within Visual Studio. The 
 HttpApplicationState class has members for maintaining state for the 
entire application across many users. For example, you might want to include a coun-
ter on a web page to track the number of hits an application (web page) gets. The 
 HttpSessionState class provides access to individual user session state values.

FIGURE 15-19 Website after adding server controls

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1036 | Chapter 15: Web-Based Applications

LABEL, BUTTON, RADIOBUTTON, AND LISTBOX OBJECTS

As shown in Figure  15-19, Label, Button, RadioButton, and ListBox objects 
were added. You should be able to identify those controls on the form from your 
work with Windows applications. Event-handler methods for button clicks were writ-
ten for the three buttons in the center of the form. Other than naming the TextBox 
controls using the ID property, and sizing them, no other properties were set. Their 
 AutoPostBack property was left unchanged (set as false).

Remember that by default Button objects automatically trigger a postback.

SETTING THE PROPERTIES OF THE CONTROLS The ID properties and the individual Text 
properties were set for the  RadioButton objects. The GroupName property is set 
for all three RadioButton objects. It is set to the same identifier (Classif) for all 
three objects. Adding the three objects to a group creates a mutually exclusive set 
of controls (only one can be selected at a time). If they did not belong to a group, all 
three could be checked. When one of the buttons is selected, a message is displayed in 
the label below the radio button. So that the message is displayed as soon as the user 
clicks the RadioButton object, and the AutoPostBack property is set to true. 
Without changing its default value, the message would not display until one of the 
Button objects triggered the postback event.

The four TextBox objects appear in white in Figure 15-19. They are currently storing val-
ues for first name, last name, phone number, and student ID.

The only property set for the ListBox object in the upper-right corner of the page 
is the ID. SelectionMode that was left unchanged (set as Single). Thus, only one 
selection from the list box could be made. Changing the property to Multiple enables 
multiple selections. The program logic for determining which items were selected 
would also have to be modified. The AutoPostBack property was left unchanged 
(set as false). It is not necessary to post the page back to the server as soon as a 
selection is made from this control.

WIRING EVENT-HANDLER METHODS All three radio buttons were wired to the same 
 event-handler method. This can be done by first selecting all three buttons. Using 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Web Forms Standard Server Controls | 1037

1 
5

the Events icon on the Properties window, the radButtons_CheckedChanged( ) 
method was chosen for the CheckChanged event handler, as shown in Figure 15-20.

FIGURE 15-20 Wiring the same event to three RadioButton objects

Example 15-8 shows the event-handler method for the RadioButton  CheckedChanged( )  
event.

EXAMPLE 15-8

protected void radButtons_CheckedChanged(object sender, EventArgs e)
{
   if (radBtnFresSop.Checked)
   {
        lblClassif.Text = "Freshmen & Sophomores ";
   }
   else
        if (radBtnJrSr.Checked)
        {
             lblClassif.Text = "Junior & Seniors ";
        }
        else 
             if (radBtnOther.Checked)
             {
                  lblClassif.Text = "Special Students ";
             }
   lblClassif.Text += " Always Welcome!";
}

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1038 | Chapter 15: Web-Based Applications

The event-handler method for the Submit button is used to retrieve the values 
entered into the TextBox fields and the selections made from the ListBox object 
by the user. These values are used to populate the Label controls that are to be dis-
played when the page is reloaded for the client. Example 15-9 shows the btnSubmit 
event-handler method.

EXAMPLE 15-9

protected void btnSubmit_Click(object sender, EventArgs e)
{
   lblSubmit.Text = "Thanks " + txtBxFname.Text +
                    "! You will be contacted. . . ";
   if (lstBxInterests.SelectedIndex > −1)
   {
       lblSubmit.Text += " to discuss joining the \"" +
                         lstBxInterests.SelectedItem.Text + 
                         "\" team.";
   }
}

In Figure 15-19, you can see that two other controls were added to the Web applica-
tion shown: Calendar and GridView. In addition, a validation control was added to 
the form. These special controls are discussed in the following section.

Validation, Custom, and Composite Controls
As shown in Figure 15-19, a Calendar control is added to the lower-left corner and 
a GridView control is added to the lower right for data retrieved from a Microsoft 
Access database. These are special types of controls that are discussed in this section. 
Also, you did not see it, another type of control, a validation control, is added to the 
form. Validation controls are discussed first.

Absolute positioning was used with all of the controls that were placed on the Web form for 
this example. As soon as the control was dragged to the form, the control was selected 
and Set Position, Absolute was set from the Format menu.

Validation Controls
Review Figure 15-17. Notice that there is a special tab labeled Validation. Several 
different types of validation controls are listed in the Toolbox on this tab. These 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1039

1 
5

VALIDATION CONTROL PROPERTIES

To use one of these controls, drag the control to the Web Forms page and place it beside 
the control you want to validate. You can then treat the validation control object like 
any other control. It has properties that can be set. Using the  ControlToValidate 
property, you tie the validation control to a specific form control object such as a 
TextBox object. The ErrorMessage property can be set to the message you want 
to display when the input control does not pass the validation test and the color for 
the error message can be changed.

ADDING A RequiredFieldValidator CONTROL

Figure  15-21 illustrates adding a RequiredFieldValidator control for the first 
name.

Type of control Description

CompareValidator Compares an input value against a preset constant value 
using comparison operators

CustomValidator Checks the input value using program statements that you 
write

RequiredFieldValidator Compares an input value to see if it is between specified 
lower and upper boundaries (can check ranges of dates, 
numbers, or alphabetic characters)

RegularExpressionValidator Matches an input value to a pattern defined as a regular 
expression (used for entries such as e-mail, telephone 
numbers, and Social Security numbers to see if the values 
match a predictable sequence)

RangeValidator Checks that the entry has a value

ValidationSummary Displays a summary of all validation errors found

TABLE 15-3 Controls of .NET validation

controls enable input to be validated or checked by the server. Table 15-3 lists these 
controls in alphabetical order and describes their basic functionality.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1040 | Chapter 15: Web-Based Applications

Notice that in Figure 15-21, txtBxFname is set as the value for the ControlToValidate 
property. “Required!” is set as the ErrorMessage value. Red is selected for the  Forecolor. 
The EnableClientScript is set to false. The RequiredField Validator control is 
physically placed beside (not on top of) the TextBox object that it is validating.

Place the validation control in the location where you want the error message to be 
 displayed; it does not have to be placed beside the control. Sometimes, due to space 
 constraints, the validation control cannot be placed beside the control it is validating. As 
with other controls, to get it on the form, drag and drop it from the Toolbox window.

FIGURE 15-21 Adding a RequiredFieldValidator control

After you add the RequiredFieldValidator control and tie it to the txtBxFname 
object, "Required!" is displayed in red if the form loads and is submitted to the 
server with no value entered into the txtBxFname control. "Required!" is dis-
played because the ErrorMessage property value is set to "Required!". This was 
just a typed value entered during design.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1041

1 
5

Using the Text property available with validation controls, you can also customize the 
error information displayed to users. A common practice is to set the Text property of 
the validation control to a red star (asterisk) and place it next to the input box to be val-
idated. If you do this, an asterisk is displayed at run time if the control fails validation.

Notice that the Text property and the ErrorMessage property are both used to set the 
message that prints when validation fails. If you set both, the Text property overrides the 
ErrorMessage property.

As you design your solutions, give careful thought to which of your buttons should cause 
page validation of the input controls. Set CausesValidation to false for all other 
Button objects.

PAGE VALIDATION

By default, page validation occurs when any button on the form is clicked. It is called 
page validation because every control field on the page that has an associated vali-
dation control is checked to see if it passes the validation rules. If you do not want 
one or more of the Button objects to cause page validation, you can set a prop-
erty on the Button called CausesValidation. By default, every Button object’s 
 CausesValidation property is set to true.

Clicking the Submit Info button before typing values into the first name text box 
causes the validation error message "Required!" to be displayed in red, as shown in 
Figure 15-22.

FIGURE 15-22 Error message from the RequiredFieldValidator control

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1042 | Chapter 15: Web-Based Applications

Review the list of predefined validation controls in Table 15-3. Another one of the 
validation controls listed is RangeValidator. Using RangeValidator, you can 
make sure that the value entered by the user falls between a predetermined set 
of values. This control can be used to test for valid dates to ensure that the dates 
entered fall within a specific range or to test numeric values to ensure that they fall 
within the range specified during design. You can do pattern matching with the 
 RegularExpressionValidator control. Checks of e-mail addresses to ensure that 
the @ symbol is included are performed using the RegularExpressionValidator 
control. More than one validation control can be associated with an input object. You 
are encouraged to experiment and review the MSDN documentation.

At run time, you can use the Page.IsValid property to check whether all validation con-
trols on a page are currently valid. The property can be placed in a selection statement with 
actions performed based on its Boolean result.

PAGE LIFE CYCLE

The nature of Web programming is different from windows application development 
because of the Page life cycle. There are a number of events that fire up automatically 
and sequentially on web pages. They includes methods such as Page_Pre_Init( ), 
LoadViewState( ), LoadPostBackData( ), Page_Load( ), and eventually 
Page_Unload( ). The sequence of events is somewhat complex. It was noted ear-
lier that a Page_Load( ) method is automatically added when you create a new Web 
Form page. You do not have to do anything extra or special to register it. As long as 
you include the word "Page" as part of the name, it, like the other page methods, is 
triggered when the page is loaded. Bodies for the Page_Load( ) and other methods 
are included in the code-behind file. You do not have to provide bodies for all these 
methods, many ASP.NET applications do include a Page_Load( ) event handler. 
The Page_Load( ) method is the most commonly used method on the server-side 
application code for an .aspx file.

The last processed method is Page_Unload( ). During this method, data can be 
released to free up resources on the server for other processes. Once this method is 
completed, the HTML is sent to the browser for client-side processing.

Recall that the load event with Windows applications, the Form_Load( ) event, is 
executed once—initially when the application is run. The Page_Load( ) event with 
Web Forms is not only triggered when the application initially loads, but executed 
multiple times. It is executed every time a button is clicked and every time the page 
is loaded. It is sometimes useful to determine if this was the first time the page was 
loaded or if it is a postback, second, or subsequent loading of the page. ASP.NET pro-
vides a special property, IsPostBack property that returns a Boolean value indicating  
whether it is the first time the page is loaded.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1043

1 
5

As was noted earlier, the Web is basically stateless. Each request for a page is treated 
as a new request. Information from one request is not available by default to the next 
request, which means that every time you click a button, you lose values from the 
previous page load. With a web page, for each request, the Page class is instanti-
ated every time from “scratch,” which means that any values or whatever state it had 
previously will get lost.

ASP.NET includes a number of features for managing state—that is, for storing infor-
mation between requests. These include cookies, hidden fields, query strings, appli-
cation state, and session state. Hidden fields, cookies, and query strings all involve 
storing data on the client in various ways. However, application state and session 
state store data in memory on the server. Each option has distinct advantages and 
disadvantages, depending on the scenario. These topics are beyond the scope of this 
chapter, but you are encouraged to review the online and MSDN documentation to 
read more about managing state.

Calendar Control
A Calendar control is used to display calendar months on a web page. After being 
placed on the page, the calendar is live and users can use the calendar to view and 
select dates. For the application displayed in Figure  15-19, which is being used to 
demonstrate the server controls, a Calendar control is dragged and dropped onto 
the web page from the Toolbox. When the Calendar object is dropped on the 
page, the lines shown in Example 15-10 are added to the HTML (.aspx) file.

EXAMPLE 15-10

<asp:Calendar ID="Calendar1" runat="server" style="z-index: 1; 
     left: 23px; top: 355px; position: absolute; height: 188px;
     width: 259px">
</asp:Calendar>

Remember, after the .aspx markup file and the aspx.cs code-behind file are opened 
(using the Solution Explorer window), you use the tabs above the page to switch 
between viewing the files. To switch between HTML (Source) and Design view, use 

If you want to execute the code in the Page_Load( ) method only the first time the page 
is loaded, you can use the Page.IsPostBack property. If the Page. IsPostBack 
 property returns false, the page is loaded for the first time. If it is true, the page is 
posted back to the server, which occurs when a button, for example, is clicked on the form.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1044 | Chapter 15: Web-Based Applications

the tabs at the bottom of the page, as shown in Figure 15-23. The Split option enables 
you to see both Source and Design. Use the View menu options, if you have trouble 
locating any of these tabs.

FIGURE 15-23 Switching between .aspx and .aspx.cs files

Calendar control has a number of properties including the SelectedDate prop-
erty. SelectedDate is used to pick the month, day, and year for display. The 
 SelectedDate property is initially set to the current date. This is done when the 
page is loaded. But, you can also set the date programmatically or during design using 
the SelectedDate property found in the Properties window. Setting the date during 
design enables you to use the built-in Calendar control on the Properties  window, 
as shown in Figure 15-24.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1045

1 
5

The Calendar control is based on the .NET DateTime class, which enables you 
to work with dates in different formats. Program statements were added to the   
Page_Load( ) event handler to set the date to the current day the application is 
run. This is shown in Example 15-11. Notice that the statements are placed in a 
try. . .catch exception block.

If you are going to set the date programmatically, use the Page_Load( ) event-handler 
method. It is not necessary for you to register the event, since the event name starts 
with the Page_ attribute. You can also add a Page_Unload( ) event if you have 
 activities you need to perform when the application exits, like closing files or database 
connections. Like the Page_Load( ) event, it is automatically bound to the page, if the 
 AutoEventWireup attribute is set to true.

FIGURE 15-24 Using the Properties window to set the SelectedDate property

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1046 | Chapter 15: Web-Based Applications

EXAMPLE 15-11

protected void Page_Load(object sender, EventArgs e)
{
   try
   {
      if (Page.IsPostBack == false)
         // Could also write if(!Page.IsPostBack)
      {
         Calendar1.SelectedDate = DateTime.Today;
      }
   }
   catch (System.Exception exc)
   {
         lblMsg.Text = exc.Message;
   }
}

The IsPostBack property is used in Example 15-11. This enables users to select 
different dates. The SelectedDate property is not reset with each button click. It is 
only set when the page is FIRST loaded.

DATETIME CLASS

To work with the calendar for the WebControls application programmatically, an 
object of the DateTime class is instantiated.

The DateTime class has a large number of useful members that can be used with 
Calendar control objects. Table 15-4 gives some of the more interesting members 
of this class.

DateTime members Description

AddDays( ), AddHours( ), 
AddMinutes( ), AddMonths( ), 
AddYears( )

Adds a specified number of days, hours, minutes, 
months, or years

Compare( ) − (static member) Compares two instances of DateTime

Date Gets the date

TABLE 15-4 Members of the DateTime class

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1047

1 
5

Property members are given in Table 15-4 without ( ). Members identified as static must 
be invoked using the DateTime class name (i.e., DateTime.Now).

DateTime members Description

Day Gets the day of the month

DayOfWeek Gets the day of the week (0 for Sunday; 6 for 
Saturday)

DayOfYear Gets the day of the year

DaysInMonth( ) Returns the number of days in the specified month

Hour Gets the hour of the date

MaxValue − (static member) Returns the largest possible value for DateTime

MinValue − (static member) Returns the smallest possible value for DateTime

Minute Gets the minute of the date

Month Gets the month of the date

Now − (static member) Gets the current date and time

Parse( ) − (static member) Converts a string into the DateTime  
format

Subtract( ) Subtracts a specified time from an instance

Today − (static member) Gets the current date

Year Gets the current year

+, −, =, ==, <, >, >=, <= Operators defined to work with DateTime 
instances

© Cengage Learning

TABLE 15-4 Members of the DateTime class (continued )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1048 | Chapter 15: Web-Based Applications

USING A CALENDAR CONTROL IN APPLICATIONS

To continue creating the WebControls application, a button labeled Next Meeting 
was added to the form. Remember that the final result of the application was shown 
in Figure  15-19. When the button labeled Next Meeting is clicked, the calendar 
changes to show the date of the next computer club meeting. Programmatically, this 
is set as exactly 7 days from the current date. As you review Example 15-12, notice 
that the first line of code in the method clears any date selections made by the user. 
It then uses today’s date to set the meeting date. The application could be modified 
to have the meeting date shown as 7 days from the selected date. However, in order 
to illustrate properties associated with the current date, the Today property is used.  
A selection statement is then used to test the meeting date to make sure that the date 
does not fall on Sunday. If it does, the meeting date is set for the following Monday. 
Example 15-12 shows the event-handler method for this button.

EXAMPLE 15-12

protected void btnShowNextMeeting_Click(object sender, EventArgs e)
{
   Calendar1.SelectedDates.Clear( );

   DateTime meetingDate = new DateTime(DateTime.Today.Year, 
                       DateTime.Today.Month, DateTime.Today.Day, 8, 0, 0);

   // Meeting is schedule for one week from today!
   meetingDate = meetingDate.AddDays(7);

   // Unless, of course it's Sunday − if so meet on Monday.
   if (meetingDate.DayOfWeek.ToString( ) == "Sunday")
   {
       meetingDate = meetingDate.AddDays(1);
   }

   Calendar1.TodaysDate = meetingDate;
   Calendar1.SelectedDate = Calendar1.TodaysDate;
   lblMsg.Text = ("Meeting next week: " + meetingDate.DayOfWeek + 
                     ", " + meetingDate.Month + "/" + meetingDate.Day + 
                  " at " + meetingDate.Hour + " P.M.");
}

Figure 15-25 shows the web page before and after the user clicks the Next Meeting 
button.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1049

1 
5

The SelectedDate property of the Calendar control is set in the 
 btnShowNextMeeting_Click( ) method. This method instantiates the object of the 
DateTime class (meetingDate), initializing it using the current year (Today.Year),  
current month (Today.Month), and current day (Today.Day). As given in Table 15-4,  
Today is a static member of the DateTime class; thus, it must be referenced 
with the class name, as opposed to an object. When the meetingDate object 
is instantiated, the constructor with six arguments is used. The last three arguments 
(8, 0, and 0) set the Hour, Minute, and Second properties. It displays P.M. because 
that string literal is concatenated onto the end of the value returned from the Hour 
property, as shown in the last line for Example 15-12.

The date of the next Computer Club meeting is 7 days from today’s date—unless 
that date falls on a Sunday. If it does, the meeting date is the following Monday. This 
is what the code in Example 15-12 accomplishes. In the example, the AddDays( ) 

FIGURE 15-25 Calendar showing different dates selected

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1050 | Chapter 15: Web-Based Applications

method is used to set the meetingDate object’s new Day, Month, and Year, if neces-
sary. The value of 7 is sent as an argument to the method. The selection statement, 
shown again in Example 15-13, checks to see if the date falls on Sunday.

EXAMPLE 15-13

if (meetingDate.DayOfWeek.ToString( ) == "Sunday")
{
   meetingDate = meetingDate.AddDays(1);
}

After checking the day, the displayed calendar is changed to reflect the value stored 
with the meetingDate object and a message is displayed on a Label object. It 
contains the date and time of the meeting. This is shown in Figure 15-25.

CUSTOMIZING THE CALENDAR AT DESIGN TIME

You can customize the display of the Calendar control object by turning on grid-
lines; adding borders; changing the overall size, font, background, and foreground col-
ors; or setting the cell padding and spacing properties. Cell padding sets the amount of 
space between the cells and the border. Cell spacing sets the space between the cells.

GridView Control
You were introduced to the DataGridView control in Chapter 14. This control was 
very useful for displaying data on a Windows form. Another data-bound control 
that you will want to explore is the GridView. The GridView is very similar to the 
DataGridView you used with Windows applications. It also features automatic data. 
Both the DataGridView and the GridView are used to display data in a tabular form, 
with each column representing a field and each row representing a record from a data 
source. The DataGridView, used with Windows applications, is just a little more 
sophisticated than the GridView control. You can customize the GridView’s appear-
ance. As you learned in Chapter 14, when you used the DataGridView control, you 
must bind these types of controls to a data source.

DATA BINDING

At design time, you can use the visual configuration tools to bind the data by identify-
ing the data source, selecting the data fields, and setting properties in the  Properties 
window, such as the DataSource property. Another option is to write program state-
ments to do this. Two common data source classes used to bind  GridView objects 
to the actual data are the DataReader and DataSet. The actual data used to pop-
ulate these controls can come from sources such as arrays or database tables. You 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1051

1 
5

experienced using both the DataReader object and the DataSet object in con-
junction with the DataAdapter object in Chapter 14.

You are encouraged to review the sections in Chapter 14 that relate to accessing data from 
database tables. You recall, from Chapter 14, that there are a number of visual tools and 
wizards that can be used to bind data to controls.

You need to pay particular attention to security issues surrounding data access with 
 websites. Microsoft Access databases include fewer security features than SQL Server 
databases. Access databases are not recommended for production websites. You would 
follow the same principles to connect your website to an SQL database. Access was used 
in this chapter because it was used in Chapter 14. However, you would normally want to 
connect a website to a database that handles multiple users.

Visual Studio has a Data tab as part of the Toolbox. Included are controls for displaying 
data such as the GridView, DataList, and DetailsView controls plus controls 
that are used to connect to specific databases. These include AccessDataSource, 
SqlDataSource, XmlDataSource, and ObjectDataSource. All of these controls 
can be dragged to your form in exactly the same manner you drag other control objects, 
such as buttons.

USING A GRIDVIEW CONTROL IN APPLICATIONS

The WebControls application that is being developed in this chapter includes a 
GridView control, which displays data from an Access database. To add this con-
trol to a Web form, you follow the same design guidelines presented previously. You 
might want to review the DataSetExample, Example 14-21, in Chapter 14. It dis-
played data from an Access database on a standard Windows form. Example 14-21 
instantiated objects from the DataSet and DataAdapter classes. These same classes 
are used to retrieve data for display on a Web form in this example.

OleDB DATA PROVIDER You learned in Chapter 14 that .NET organizes ADO.NET classes 
into different provider namespaces. This enables you to work with data from different 
databases, such as Oracle and Access, using a consistent object-oriented approach. 
Each of these namespaces has its own classes prefixed with the provider type, one of 
which is OleDB for working with Access databases.

CONNECTING TO THE DATABASE A button labeled See Current Members is added to the 
WebControls application. When the user clicks this button, a table should be dis-
played with the names of current members. A solution can be developed by writing 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1052 | Chapter 15: Web-Based Applications

program statements to populate a control. This approach will be explored first. How-
ever, with the visual tools available with Visual Studio, another approach will then be 
illustrated that minimizes the amount of program statements required.
For the first example, a Connection object is instantiated. The same connec-
tion string that you saw in Chapter 14 is used as an argument to the construc-
tor. The connection string identifies the provider as an Access database. It also 
specifies the name of the database—including the full path to the database location. 
The example that follows, Example 15-14, shows the statements that make up the 
 btnShowMembers_Click( ) method. As you review the code, notice the com-
ment that appears in the method. Only minor modifications are needed to the code 
presented in Chapter 14. The DataBind( ) method call is different for Web appli-
cations. To display the data using the GridView, objects of the DataAdapter and 
DataSet classes are used for both Web and Windows applications.

Note that the path of the database is listed as 

"C:\\CSharpProjects\\member.accdb"

You will want to change the path indicating where you have placed a copy of the member.
accdb. As noted in Chapter 14, if are running examples provided with this chapter on a 64-bit 
processor and get an error indicating “The ‘Microsoft.ACE.OLEDB.12.0’ provider is not regis-
tered on this machine”, you may need to install a new driver. At the time the book was written, 
you could read about the problem and find the download at http://www.connectionstrings.com/ 
the-microsoft-ace-oledb-12-0-provider-is-not-registered-on-the-local-machine/

EXAMPLE 15-14

protected void btnShowMembers_Click(object sender, EventArgs e)
{
   lblMembers.Visible = true;
   try
   {
     string sConnection =
         "Provider=Microsoft.ACE.OLEDB.12.0;" + 
         "Data Source=C:\\CSharpProjects\\member.accdb";
     OleDbConnection dbConn = new OleDbConnection(sConnection);

     string sql =
       "Select FirstName as [First Name], LastName as " +
                "[Last Name] From memberTable " +
                " Order By LastName Asc, FirstName Asc;";
     OleDbCommand dbCmd = new OleDbCommand( );
     dbCmd.CommandText = sql;
     dbCmd.Connection = dbConn;

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1053

1 
5

     OleDbDataAdapter memberDataAdap = new OleDbDataAdapter( );
     memberDataAdap.SelectCommand = dbCmd;
     DataSet memberDS = new DataSet( );
     memberDataAdap.Fill(memberDS, "memberTable");
     grdViewMembers.DataSource = memberDS;

     // Binding is required for web apps
     this.grdViewMembers.DataBind( );

     lblMembers.Visible = true;
     grdViewMembers.Visible = true;
   }
   catch (System.Exception exc)
   {
      this.lblMsg.Text = exc.Message;
   }
}

If you use the Data Source Configuration wizard to connect to the database, an 
asp:AccessDataSource control tag is added to the .aspx file. One of its attributes is 
DataFile="~/App_Data/member.accdb".

RETRIEVING DATA FROM THE DATABASE

Example 14-21 in Chapter 14 contained statements that created a Windows application 
with a DataGridView object populated from the Member.accdb database. Example 
15-14 is similar but stores the retrieved data on a Web Form. As with Example 14-21, 
an SQL statement stored in the string identifier, sql, is used to select the records. 
In this example, the data fields of FirstName and LastName from  memberTable 
are retrieved. The SQL statement arranges the result by LastName. When there are 
duplicate records with the same last name, the records are arranged in ascending 
order by FirstName. In order to programmatically change the column heading for 
the  GridView, the as keyword was used. Square brackets were used around the iden-
tifier to enable a space to be included as part of the name. Writing   Select  FirstName 
as [First Name], retrieves the data field named  FirstName and uses “First Name” 
as the column heading. The sql string object is set as the CommandText property 
value. The connection string, dbConn, is set as the  Connection property as follows:
       dbCmd.CommandText = sql;
       dbCmd.Connection = dbConn;

To use the Fill( ) method with the DataSet object, an object of the 
 DataAdapter class is instantiated. Notice that each of these classes is part of the 
OleDb namespace, thus class names are prefixed with OleDb. Additional using 
statements were added to include the Data and Data.OleDb namespaces. The 
SelectCommand property of the DataAdapter class is set to the  CommandText 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1054 | Chapter 15: Web-Based Applications

object holding the SQL statement. Using the DataAdapter’s Fill( ) method, 
the table from the actual Access database (memberTable) is used to populate the 
 DataSet object (memberDS). The final statements in the try block for Example 
15-14 binds the GridView object to the DataSet. Recall that this is the only state-
ment that has changed from the Windows application.

Remember, Figure 15-19 shows this application running after all the controls are added to 
the page and event-handler methods are wired.

The property values set for the WebControls example are given in Table 15-5.

Name Object type Property Value

btnShowMembers Button ID btnShowMembers

btnShowMembers Button Text See Current  
Members

btnShowNextMeeting Button ID btnShowNextMeeting

btnShowNextMeeting Button Text Next Meeting

btnSubmit Button ID btnSubmit

btnSubmit Button Text Submit Info

Calendar1 Calendar ID Calendar1

Calendar1 Calendar SelectedDate 12/4/2015

grdViewMembers GridView ID grdViewMembers

grdViewMembers GridView BackColor White

grdViewMembers GridView BorderColor #336666

TABLE 15-5 WebControls properties

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1055

1 
5Name Object type Property Value

grdViewMembers GridView BorderStyle Double

grdViewMembers GridView BroderWidth 3px

grdViewMembers GridView CellPadding 4

grdViewMembers GridView EmptyDataText There are no data 
records to show

grdViewMembers GridView Font Small

grdViewMembers GridView GridLines Horizontal

Label1 Label ID Label1

Label1 Label Text Classification

Label2 Label ID Label2

Label2 Label Text Special Interests

Label3 Label ID Label3

Label3 Label Text Click below to see 
when the club meets 
next.

lblClassif Label ID lblClassif

lblMembers Label ID lblMembers

lblMembers Label Text Current Members:

lblMsg Label ID lblMsg

lblSubmit Label ID lblSubmit

lstBxInterests ListBox ID lstBxInterests

(continues)

TABLE 15-5 WebControls properties (continued )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1056 | Chapter 15: Web-Based Applications

Name Object type Property Value

lstBxInterests ListBox Items Collection. . .  
"Programming 
Contest", "Ask 
a Techie", 
"Tutoring", 
"Mentoring", 
"Department Web 
Site"

radBtnFresSop RadioButton ID radBtnFreSop

radBtnFresSop RadioButton Text Freshman/ 
Sophomore

radBtnFresSop RadioButton AutoPostBack True

radBtnFresSop RadioButton GroupName Classif

radBtnJrSr RadioButton ID radBtnJrSr

radBtnJrSr RadioButton Text Junior/Senior

radBtnJrSr RadioButton AutoPostBack True

radBtnJrSr RadioButton GroupName Classif

radBtnOther RadioButton ID radBtnJrSr

radBtnJrSr RadioButton Text Other

radBtnJrSr RadioButton AutoPostBack True

radBtnJrSr RadioButton GroupName Classif

RequiredField 
Validator1

RequiredField 
Validator

ID RequiredField 
Validator1

RequiredField 
Validator1

RequiredField 
Validator

ControlTo 
Validate

txtBxID

TABLE 15-5 WebControls properties (continued )

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1057

1 
5Name Object type Property Value

RequiredField 
Validator1

RequiredField 
Validator

ErrorMessage Required!

RequiredField 
Validator1

RequiredField 
Validator

ForeColor Red

RequiredField 
Validator1

RequiredField 
Validator

Text Required!

txtBxFname TextBox ID txtBxFname

txtBxID TextBox ID txtBxID

txtBxLname TextBox ID txtBxLname

txtBxPhone TextBox ID txtBxPhone

TABLE 15-5 WebControls properties (continued )

The complete program listing for the code-behind file for the WebControls project 
is shown in Example 15-15.

EXAMPLE 15-15

// WebControls
using System;
using System.Collections.Generic;
using System.Linq;
using System.Data;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Data.OleDb;

public class _Default : System.Web.UI.Page
{
  protected void Page_Load(object sender, EventArgs e)
  {
     try
     {
        if (Page.IsPostBack == false)
     // Could also write if(!Page.IsPostBack)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1058 | Chapter 15: Web-Based Applications

        {
           Calendar1.SelectedDate = DateTime.Today;
        }
     }
     catch (System.Exception exc)
     {
        lblMsg.Text = exc.Message;
     }
  }

  protected void btnShowNextMeeting_Click (object sender, 
                                           EventArgs e)
  {
     Calendar1.SelectedDates.Clear( );
     DateTime meetingDate = new
           DateTime(DateTime.Today.Year, DateTime.Today.Month, 
                    DateTime.Today.Day, 8,0,0);

     // Meeting is scheduled
     // for one week from today!
     meetingDate = meetingDate.AddDays(7);
     // Unless, of course it's Sunday − if so
     // meet on Monday.
     if (meetingDate.DayOfWeek.ToString( ) == "Sunday")
     {
         meetingDate = meetingDate.AddDays(1);
     }

     Calendar1.TodaysDate = meetingDate;
     Calendar1.SelectedDate = Calendar1.TodaysDate;
     lblMsg.Text = "Meeting next week: " + 
                    meetingDate.DayOfWeek + ", " + 
                    meetingDate.Month + "/" + 
                    meetingDate.Day + " at " + 
                    meetingDate.Hour + " P.M.";
  }

  protected void btnShowMembers_Click (object sender, EventArgs e)
  {
        try
        {
             string sConnection =
                  "Provider=Microsoft.ACE.OLEDB.12.0;" +
                  "Data Source=C:\\CSharpProjects\\member.accdb";
             OleDbConnection dbConn = new 
                  OleDbConnection (sConnection);

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1059

1 
5

             string sql = "Select FirstName as [First Name], 
                  LastName as [Last name] From " + 
                  "memberTable Order " + "By LastName Asc, 
                  FirstName Asc;";
             OleDbCommand dbCmd = new OleDbCommand( );
             dbCmd.CommandText = sql;
             dbCmd.Connection = dbConn;
             OleDbDataAdapter memberDataAdap = new
                  OleDbDataAdapter( );
             memberDataAdap.SelectCommand = dbCmd;
             DataSet memberDS = new DataSet( );
             memberDataAdap.Fill(memberDS, "memberTable");
             grdViewMembers.DataSource = memberDS;
             // Binding is required for web apps
             grdViewMembers.DataBind( );
             lblMembers.Visible = true;
             grdViewMembers.Visible = true;
         }
         catch (System.Exception exc)
         {
             lblMsg.Text = exc.Message;
         }
  }

  protected void btnSubmit_Click(object sender, EventArgs e)
  {
     lblSubmit.Text = "Thanks " +
        txtBxFname.Text +
        "! You will be contacted. . . ";
     if (lstBxInterests.SelectedIndex > −1)
     {
         lblSubmit.Text +=
            " to discuss joining" +
            "the \"" +
            lstBxInterests.SelectedItem.Text + 
            "\" team.";
     }
  }

  protected void radButtons_CheckedChanged(object sender,
                                           EventArgs e)
  {
     if (radBtnFresSop.Checked)
     {
         lblClassif.Text = "Freshmen & Sophomores ";
     }

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1060 | Chapter 15: Web-Based Applications

     else if (radBtnJrSr.Checked)
     {
        lblClassif.Text = "Junior & Seniors ";
     }
     else if (radBtnOther.Checked)
     {
        lblClassif.Text = "Special Students ";
     }
     lblClassif.Text += " Always Welcome!"; }
     }
   }
}

If the AccessDataSource does not show up in your Toolbox, it can be added by 
 right-clicking on the Data Toolbox and selecting Choose Items. Another option is to make 
the database available to the application from the Tools, Connect to Database menu 
option. The Server Explorer window will reveal the available database tables once you 
make the connection. You then drag one of the database tables onto the form. From there, 
you can use the configuration wizard.

AccessDataSource
Instead of writing the program statements in the btnShowMembers_Click( ) 
method to connect to the database and retrieve the data, you could use the data visual 
configuration tools and have these statements automatically generated for you. Recall 
from Chapter 14 that when you drag a data-bound control onto your application using 
Visual Studio, you get a smart tag on the control that enables you to select the binding 
data source. .NET includes data source classes that reduce your need for accessing 
individual Data Provider classes. The AccessDataSource class simplifies con-
necting an ASP.NET web page to an Access database. The  AccessDataSource is a 
special class that actually inherits from the SqlDataSource and provides additional 
functionality for working specifically with Access databases.

Using Visual Tools to Connect
To illustrate the use of the visual configuration tools, a copy of the WebControls 
website application that was just completed was created. The original GridView 
object was deleted. The btnShowMembers_Click( ) event-handler method was 
removed from the code-behind file (Default.aspx.cs). One additional change was 
made to the file before using the configuration tools. On the btnShowMembers tag 
in the Default.aspx source code file, the OnClick="btnShowMembers_Click" 
attribute was removed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1061

1 
5

Once those items were removed from the application, Connect to Database was 
selected from the Tools menu. The members.accdb Access database file was located, 
selected, and the connection was established. Then using the Server Explorer win-
dow, the member table is dragged onto the form. This puts a GridView object on 
the page. Additional configuring can occur to the grid, but it is that simple. The grid is 
tied to the database table. As you saw in Chapter 14, the visual tools could be opened 
a number of different ways. When the control object is placed on a page, its smart 
tag reveals a number of options as shown in Figure 15-26.

FIGURE 15-26 Binding data source to the GridView

As shown in Figure 15-26, from the smart tag, you can add columns using the Add 
New Column option. Columns can be removed or formatted using the Edit  Columns 
option. Configure Data Source launches the configuration wizard.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1062 | Chapter 15: Web-Based Applications

The Browse button shown in Figure 15-27 enables you to select a different Access 
Database.

FIGURE 15-27 Connecting to Access Database

Recall that the location or path of the member.accdb database was hard-coded in the ear-
lier example. Using the AccessDataSource control object, you can provide a relative 
path to the database. This makes deploying or moving the data-driven website easier.

As shown in Figure 15-27, selecting Configure Data Source launches the configura-
tion wizard. You could identify a different database where the application should get 
its data or move to the next step.

Store Databases in App_Data Folder
When the application was first created a Web folder was added, App_Data, to hold 
the database. This is where member.accdb is stored. Recall that this application was 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1063

1 
5

started as an ASP.NET Empty Web Site. From the Solution Explorer window, a 
Web Form was added, Default.aspx, and then using the Solution Explorer 
 window, App_Data was added using the Add, Add ASP.NET Web Folder option. 
The  member.accdb was then moved into that directory. This makes it easy to locate 
when you Select the Microsoft Access Database to connect to the website, as shown 
in Figure 15-28. Selecting Browse when prompted to Choose a Database displays 
the window shown in Figure 15-28.

FIGURE 15-28 Database file stored in App_Data directory

If the Access database is in the App_Data directory, you browse to that location and a 
relative path is set, as shown in Figure 15-29. You do not have to set the Connection 
string property; you just identify the location of the Access .accdb file.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1064 | Chapter 15: Web-Based Applications

The database is now referenced by a relative path (for example, ~/App_Data/ 
 member.accdb). If you move the website, ASP.NET will look for the database in the 
App_Data folder of the application. This is one of the advantages of using the con-
figuration tools. It is no longer necessary for you to locate and change the path for the 
database in your source code if the website gets moved.

After the file is located, the Configure Data Source wizard enables you to iden-
tify which table(s) and field(s) to display on the GridView. This is shown in 
Figure 15-30.

FIGURE 15-29 Relative address for the Access database

You can place your database in the App_Data directory using the Solution Explorer 
 window by right-clicking on the App_Data folder and selecting Add, Add Existing Item. 
You can then Browse to its original location.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1065

1 
5

As shown in Figure 15-30, the database table(s) is selected from a drop-down list. The 
query builder tool is launched if you select the WHERE button. To have the items 
displayed in ascending or descending order by a specific field, the Order By option 
is used. For the WebControls application, the records were ordered by  LastName 
and then by FirstName. As shown at the bottom of the display in Figure 15-30, an 
SQL select statement is generated based on your selections. The Test Query but-
ton enables you to see what will be returned from the query. This is illustrated in 
Figure 15-31.

FIGURE 15-30 Identify what data to retrieve

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1066 | Chapter 15: Web-Based Applications

After you complete the data source configuration, you are returned back to the web 
page. As shown in Figure 15-26, options are available from the GridView’s smart tag 
to enable paging, sorting, and selection or to change the columns. Enable Sorting 
option makes it possible for you to select a column and have the table reordered by 
that field. If you want to change the column heading, do this using the Edit Columns 
option. The Edit Columns option displays a dialog box where each field’s proper-
ties can be changed. A number of properties are available for each field grouped by 
Accessibility, Appearance, Behavior, Data, and Style. The Header Text was 
set for both columns and the BackColor property for the HeaderStyle for both the 
last and first names was set to yellow (#FFFFC0). The FirstName column was moved 
up so that it appears first.

Setting the Visibility Property
The btnShowMembers_Click( ) method of the WebControls application with the 
GridView no longer needs code to connect to the database and populate the control 

FIGURE 15-31 Test the Query

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1067

1 
5

on the page. Recall that this is done behind the scenes by the Configure Data Source 
wizard. If you review Examples 15-14 and 15-15, you will notice that the first line of 
code in the btnShowMembers_Click( ) method for Example 15-14 was a state-
ment that made the label over the table visible when the user clicked the See Current 
Members button. The same line of code (lblMembers.Visible = true;) is also 
part of Example 15-15. If you also want to wait to display the GridView object after 
the user clicks this button, the Visible property should initially be set to false 
for both the Label and the GridView. Another line of code needs to be added to 
this method to make the GridView visible. The new btnShowMembers_Click( ) is 
shown in Example 15-16. All of the database connection code is deleted.

EXAMPLE 15-16

protected void btnShowMembers_Click(object sender, EventArgs e)
{
   lblMembers.Visible = true;
   grdViewMembers.Visible = true;
}

MODIFYING THE DATA By default, the GridView control displays data on a Web form 
in a read-only format. To allow users to edit data stored in the GridView object, 
you can use the Advanced button to configure the select statement from the Data 
Source Configuration tool. This Advanced button is shown in Figure 15-30. Select-
ing this option generates the additional Insert, Delete, and Update SQL state-
ments needed.
To use this feature, all primary key values must be retrieved as part of the select 
statement during the data source configuration. The key fields do not have to be dis-
played on the GridView. They can be removed using the smart tag after the configu-
ration is complete; however, the query must return their values.

Be cautious about not including primary key results in your display. If you have specified 
that a key field cannot be null, you will not be able to add records if no value is entered for 
the key.

After the SQL statements are available for the InsertCommand, UpdateCommand, 
and DeleteCommand, the smart tag for the GridView reveals additional options 
of Enable Editing and Enable Deleting. If you select these options, an additional 
 column is added to the GridView table, as shown in Figure 15-32.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1068 | Chapter 15: Web-Based Applications

FIGURE 15-32 Modifying the data table

Recall from Chapter 14 that a question mark (?) is used as part of the SQL statement to 
indicate a parameterized value for the insert, delete, and update queries with Access data-
bases. An ampersand (&) is used with SQL Server Express.

As shown in Figure 15-32, when the application is run, the column displays buttons labeled 
Edit and Delete. Clicking the Edit button causes the row of data to be displayed in an edit-
able format. Because the StudentID is a primary key, it is not editable. Notice that on the 
row being modified, the Edit button is replaced with Update and Cancel buttons. After 
you change the data and click the Update button, the UpdateCommand event is raised or 
triggered, and the code written to change the data in the database table is executed.

Other Controls
You are encouraged to review Figure 15-17. It shows the many different Web Forms 
controls that can be added to a Web Forms page from the Toolbox using a drag-  
and-drop approach. A number of Web Forms server controls are available to you. 
Explore the System.Web.UI.WebControls namespace to find others. Not all of 
the Web server controls are included in the Toolbox.
Because of space constraints, this chapter uses only a small subset of the classes 
 available to you for creating ASP.NET applications. Over 250 classes make up the 
 System.Web.UI.WebControls namespace.

NAVIGATION

For navigation purposes, you can add site navigation to your websites by defining a 
site map. You can do this using one of the navigation controls, such as the TreeView 
and SiteMapPath controls. These controls automatically create menu or tree views 
of pages. There are a number of classes focusing on security and navigation.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Validation, Custom, and Composite Controls | 1069

1 
5

DATA

You have a very large selection of controls for working with data. You experienced 
the GridView control in this chapter. You will want to explore the DetailsView and 
FormView controls. They are also used to display and edit data from different data 
sources. You saw in this chapter how the smart tag for the GridView enabled you to 
bind the control to a data source. The connections, queries, and parameters are all 
now encapsulated with these other data source controls. These data source controls 
automatically retrieve data when the page runs, cutting down the need to write code 
to execute commands and manage data sets for common data scenarios.

LOGIN

ASP.NET provides security controls that enable you to authenticate users with a suite 
of login controls. The Login control prompts users for credentials and validates 
them. The PasswordRecovery control helps users change or remember their pass-
word. The LoginStatus control lets you present a Login or Logout button.

Entire books are written on ADO.NET and ASP.NET. The intent is to give you a 
foundation and introduce you to what is available, so that you can continue learn-
ing after finishing this chapter. You might want to do that by exploring some of the 
classes listed in Table 15-6. The table was adapted from the Visual Studio’s MSDN 
 documentation—retrievable using the Help, Search menu option.

Class identifier Description

AccessDataSource Represents a Microsoft Access database to data-bound controls

AdRotator Displays an advertisement banner on a web page

ChangePassword Provides a user interface that enables users to change their website 
password

Content Holds text, markup, and server controls to render to a 
ContentPlaceHolder control in a master page

ContentPlaceHolder Defines a region for content in an ASP.NET master page

DataList A data-bound list control that displays items using templates

DetailsView Displays the values of a single record from a data source in a table, where 
each data row represents a field of the record; the DetailsView 
control allows you to edit, delete, and insert records

TABLE 15-6 Additional Web Forms control classes

(continues)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1070 | Chapter 15: Web-Based Applications

Class identifier Description

HiddenField Represents a hidden field used to store a non-displayed value

HyperLink Displays a link to another web page

Image Displays an image on a web page

ImageButton Displays an image and responds to mouse clicks on the image

ImageMap Creates a control that displays an image on a page; when a hot spot 
region defined within the ImageMap control is clicked, the control 
either generates a postback to the server or navigates to a specified URL

Link-Button Displays a hyperlink style button control on a web page

Login Provides user interface (UI) elements for logging in to a website

LoginStatus Detects the user’s authentication state and toggles the state of a link to 
log in to or log out of a website

SiteMapPath Displays a set of text or image hyperlinks that enable users to more easily 
navigate a website, while taking a minimal amount of page space

SqlDataSource Represents an SQL database to data-bound controls

Table Displays a table on a web page

TreeView Displays hierarchical data, such as a table of contents, in a tree structure

ValidationSummary Displays a summary of all validation errors on a web page, in a message 
box, or both

Xml Displays an XML document

© Cengage Learning

TABLE 15-6 Additional Web Forms control classes (continued )

The examples illustrated in this chapter specified the File System for the Location 
argument when the website was created. Moving the files to a different location and 
reopening the website is not as problematic as attempting to move a website created 
using IIS. You might find that once you move a site, after the website is opened and 
viewed in a browser, the IDE requests you to create a new solution file. However, it 
does that for you automatically.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Mobile Applications | 1071

1 
5

You have dragged and dropped controls on a design surface, typed property values 
using the properties windows, and directly typed program statements into a file. 
These same concepts can be applied to creating mobile applications. The following 
section describes how Visual Studio and C# are used to develop smart device apps.

Mobile Applications
Mobile application development involves writing software for handheld devices such 
as smartphones or tablets. Today, mobile apps play such an important role in society 
that when people think about software, they are now often referring to the apps on 
their phone. There are over a billion smartphones being used around the world today 
running many different apps. All of these apps are programs providing some type of 
functionality with a different look and feel from the traditional desktop software you 
have developed thus far. In addition to a smaller visual interface, there is a different 
user-interaction model based primarily on touch with a keyboard that pops up only 
when necessary. The underlying programming concepts are similar but another layer 
of complexity is added into the picture. There are different platforms that a developer 
can choose for their applications. Unfortunately, these platforms are pretty much 
incompatible. Applications developed on one platform will not run on another and 
most handheld devices only support one particular platform.

MOBILE DEVELOPMENT PLATFORMS

The two dominant current platforms for mobile development are Android and iOS. 
There is potential for this to change, but currently these are the two giants followed 
by Microsoft’s Windows phone. The Android operating system, developed by Google, 
is based on the Linux kernel and runs on a variety of phones. For Android develop-
ment, Eclipse on a variety of platforms is normally used. The Apple family of iPhones 
and iPads target the iOS operating System. The primary programming language used 
for developing the iOS has been Objective-C with the XCode IDE on the Mac. Java 
is the programming language normally used to write for the Android while C# has 
been used for Windows Phone platforms. In order to have an app available for mul-
tiple platforms, the app normally has to be rewritten. There is great potential for this 
to change. C# combined with Xamarin can be used to write apps that target all three 
platforms: iOS, Android, and Windows.

XAMARIN

With the Visual Studio 2015 release, Microsoft partnered with a software develop-
ment company called Xamarin and included their software with the 2015 edition. 
Xamarin provides add-ins to Visual Studio that not only enable you to build iOS, 
Android, and Windows apps within the IDE using IntelliSense but also provides 
support for the building, deploying, and debugging of apps. As part of the Xamarin 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1072 | Chapter 15: Web-Based Applications

partnership with Microsoft, Xamarin extensions can be downloaded and added to 
earlier versions of Visual Studio, back to VS 2010.

Xamarin was founded in 2011 but has an interesting history that started in the early 2000’s 
when .NET was first announced. Xamarin’s creators started an open-source project called 
Mono as an alternative implementation of C# which could run on Linux. The original  company 
was called Ximian. It was later sold to Novell and when Novell was acquired by Attachmate 
in 2011, the Mono project came back under the support of its original  engineers in a new 
company named Xamarin. In addition to partnering with Xamarin for the Visual Studio 2015 
release, Microsoft also announced that it was embracing open source as a core principal 
to enable .NET applications to run on multiple operating systems. April 2014 Microsoft 
 published an open-source version of the C# compiler, .NET Compiler Platform.

The Xamarin Starter edition, which includes Xamarin Studio, is bundled with Visual 
Studio 2015, but has limited functionality. It makes it easy to explore and download 
the Xamarin product offerings. The first time you attempt to create in Visual Studio 
an Android app, for example, you receive the message shown in Figure 15-33.

FIGURE 15-33 Download Xamarin

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Mobile Applications | 1073

1 
5

After downloading Xamarin, more functionality including additional templates for 
building iOS and Android apps with Xamarin directly in Visual Studio 2015 will be 
available when you create new projects. This is illustrated in Figure 15-34.

FIGURE 15-34 Mobile app project template

At the time the book was written, Xamarin offered students the free Indie edition, 
which enables to develop projects of unlimited sized and use Xamarin.Forms. Reg-
istration at their website (http://xamarin.com/student) was a requirement for the 
download. Xamarin.Forms can be used to create stand-alone applications targeted 
at individual platforms or cross-platform applications targeting two or more of the 
platforms.

Xamarin.Forms
Xamarin.Forms released in May 2014 is a cross-platform natively backed user 
interface toolkit. Natively backed means the user interface controls are rendered 
and transformed using the native controls of the target platform, allowing the appli-
cations to retain the look and feel you are accustomed to seeing with that platform. 
Xamarin.Forms includes a library of classes that enables developers to build user 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1074 | Chapter 15: Web-Based Applications

interfaces for iOS, Android, and Windows Phone and have the different platforms’ 
apps shared C# code. These classes in Xamarin.Forms are collections of render-
ers, classes that change the Xamarin.Forms widgets or user interface controls into 
the platform-specific user interface control. Each of the three platforms has differ-
ent ways of presenting and interacting with the user. Each platform (Android, iOS, 
and Windows Phone) uses different navigational widgets, different ways of mov-
ing from screen to screen, and different ways of presenting menu options. These  
Xamarin.Forms renderers, classes, take the UI control created in Xamarin.Forms 
and convert them into the platform’s control. For example Xamarin.Forms has a 
Slider class for displaying a horizontal bar to allow users to select values based on 
sliding the bar. This Slider renders to a UISlider for iOS platforms, SeekBar on 
Android platforms, and Slider for Windows Phone. They all have different looks, 
but the functionality is the same. Xamarin.Forms is able to take advantage of this 
shared code.

The sharing of code is done via either a Shared Asset Project (SAP) or a Portable Class 
Library (PCL) project. If you were building an app to run on both Android and iOS, 
three separate projects would be built as part of a Xamarin.Forms application. The 
first project would target Android, the second would target iOS, and the third would 
be a project-containing common code, the business logic for the application. There 
are differing details that apply to each platform.

iOS Apps
If you want to create iOS applications using Visual Studio, you must have a Mac 
machine available. Xamarin Studio and Xcode must be installed on the Mac 
machine. The PC and Mac need to be connected via a network (such as WiFi). You 
must run the Xamarin.ios Build Host on the Mac for this interconnection, and 
Visual Studio uses that machine to build and deploy the executable on the Mac. 
When the iOS application is built, Xamarin generates C# Intermediate Language 
(IL) code and then makes use of the Apple compiler on the Mac to generate the 
native iOS code, just like an Objective C compiler would. So for developing iOS 
Apps, you can use Visual Studio on a Windows machine, but you need a Mac avail-
able for testing.

Android Apps
You can write apps for Android devices using Xamarin Studio on the Mac, Xamarin 
Studio on the PC, or Visual Studio on the PC. All that is needed is Visual Studio and 
Xamarin. There are a number of emulators available for testing or you can perform 
testing by plugging an Android device directly into a USB port. An  emulator provides 
a virtualized environment so that when the application is launched a functioning 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Mobile Applications | 1075

1 
5

device is displayed. During development, you interact with the emulator in the same 
way that you would interact with a phone or tablet device. Several emulators that sim-
ulate different Android devices are included in Visual Studio 2015 with Xamarin. The 
emulators have many of the same features you find on mobile devices. They enable 
you to see what the output would look like when displayed on the real device. Some 
are slow to load and one of the issues with Android development is that there are so 
many different Android devices that it becomes necessary to test on several devices 
or emulators to ensure that the app will function properly. For the Android apps, 
Xamarin generates IL, which runs on a version of C# Mono on the device alongside 
the Java engine, but the API calls from the app are pretty much the same as if the app 
were written in Java.

Windows Phone Apps
You use Visual Studio 2015 to develop mobile apps to run on Windows 8.1 and later 
phones. There are a several templates available from which to choose for developing 
Windows Phone apps. Many target Silverlight.

Silverlight
Silverlight was initially released as a video streaming plugin, but today provides 
functionality similar to Adobe Flash. It is a Web application framework that enables 
you to integrate multimedia such as graphics, sounds, and animations into applica-
tions. Silverlight user interfaces are declared using Extensible Application Markup 
Language (XAML) and programmed using a subset of the .NET Framework. You 
use much of the same programming model you used to develop Web applications. 
You still have access to the core methods and classes so that the business logic and 
data access layer can be separated from the GUI. A Silverlight application starts 
by invoking the Silverlight control from the HTML page, which then loads up an 
XAML file.

XAML

XAML is a declarative XML-based language developed by Microsoft. It is used for 
initializing objects and mapping directly to CLR object instances, properties, and 
events on those objects. XAML files can be created and edited with visual design 
tools in Visual Studio. The XAML file contains a Canvas object, which acts as a 
placeholder for other elements. XAML is a way of describing the user interface using 
XML. Like Web applications, you have fewer controls to drag and drop and fewer 
events to program. You can type tags directly into the XAML file and/or drag and 
drop controls onto the Design pane. Once created, you debug your applications using 
an actual Windows Phone device or an emulator.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1076 | Chapter 15: Web-Based Applications

Universal Apps
Another option for creating a Windows Phone App is to select one of the installed 
Universal Apps templates. These templates create a single application that runs on 
both Windows and Windows phones. The Store Apps/Universal Apps template cre-
ates a single-page universal app for both Windows and Windows Phone. From the 
File, New Project option you will also find Hub App (Universal Apps) available 
under the Installed, Templates, Visual C#, Store Apps, Universal Apps option as 
shown in Figure 15-35.

FIGURE 15-35 Windows phone universal app

The Hub App creates a three-page universal app that uses a Hub control. You could 
start with a blank Universal App and drag and drop a Hub control onto the canvas. It 
is one of the XAML Controls available in the Toolbox. A Hub control enables a series 
of sections to be panned side to side. The Hub control is part of the native Windows 
Phone look and feel. Unlike an app designed to fit everything within the confines of 
a single phone screen, a Hub App offers a way to view controls using a wide por-
trait approach virtual canvas that extends horizontally beyond the confines of a single 
screen. Selecting this option, as illustrated in Figure 15-35, automatically adds the 
Hub control to the application. Figure  15-36 shows the development environment 
when a Hub App is created.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Mobile Applications | 1077

1 
5

As shown in the Solution Explorer window in Figure 15-36, three projects are created 
when you select Hub App. The first is a Windows project. The second and the one 
selected, Windows Phone 8.1, is located in the middle of the Solution Explorer pane. 
A shared project containing items that are used by both the Windows and the Win-
dows Phone projects is stored in the project. Because it is a Hub App, three separate 
XAML files are added to the Windows and Window Phone projects  (HubPage.xaml, 
ItemPage.xaml, SectionPage.xaml). Notice in Figure  15-36 that the  Windows 
Phone .xaml files were expanded to reveal the code-behind files (HubPage.xaml.cs,  
ItemPage.xaml.cs, SectionPage.xaml.cs). Like Windows applications, the 
code-behind file stores the event-handler methods.

You drag and drop controls on the design surface or directly type XML statements 
into the .xaml files. You can split the screen so that you have access to not only the 
Designer pane but also the .xaml file containing the XML Application Markup Lan-
guage tags. Each of the items on the design screen of an application has a graphical 
rendering of an object so you will find tags relating to each element that you place on 
your design surface. These elements contain properties that define how it appears on 
the screen. Figure 15-36 illustrates that split screen.

FIGURE 15-36 Windows phone development

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1078 | Chapter 15: Web-Based Applications

You will probably also want the Document Outline window opened while you are creating 
mobile apps. It is very useful for quickly selecting a control without having to use the mouse 
to click on it. It is unpinned in Figure 15-36. If it is not opened, it can be displayed from the 
VIEW, Other Windows menu option.

Hyper-V is a virtual machine manager, a piece of software that creates and runs a virtual 
machine. The Hyper-V feature must be enabled. If you get an error message stating “Can’t 
start the Windows Phone Emulator because your PC is missing the Hyper-V pre-requisites,” 
and you are running Windows 8 Pro, you may need to go to the Control Panel, Programs 
and Features, Turn Windows features on or off, and click the check box beside 
 Hyper-V to enable it.

Running the App
When you finish with the design and are ready to test and debug, you build the solu-
tion much the same way you did with other Visual Studio projects. The Build menu 
has options for Build Solution and Build project, with shortcuts of F6 and Shift+F6. 
As with other types of projects, you can bypass this step and launch the applica-
tion using Start Debugging or Start Without Debugging. Before doing that you 
will need to determine where your output for the app will be displayed. You have two 
options. You can deploy it to a device, if you have a Windows Phone. With this option, 
the Windows phone needs to be connected to your development computer. The other 
option is to use the emulator.

Deploying to an Emulator
A Windows Phone emulator is included as part of the Visual 2015 install. The emula-
tor runs as a Hyper-V virtual machine on your Windows PC. It has much of the same 
software as a “real” phone. You can use your PC mouse and/or keyboard to control 
the emulator. You can perform location and orientation simulation, manage the emu-
lator environment, and even change settings on the emulator.

In order to use the emulator, you must be running a version of Windows 8 Profes-
sional Operating System or higher on a 64-bit machine that supports Second Level 
Address Translation (SLAT). Intel-based processors such as i3, i5, i7, and i9 support 
SLAT as do CPUs based on Nehalem, Westmere, or Sandybridge microarchitectures. 
The emulator will not run under Windows 8 Home versions. You can design and 
create applications running under just the Windows 8 Home version, but in order to 
launch the emulator you must be on a machine that is running the Windows 8 Pro 
version. In addition, the emulator requires Hyper-V be enabled, a feature not avail-
able in the Home version of Windows 8.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Resources | 1079

1 
5

You can easily reuse existing code you have written with mobile apps. A new interface 
must be designed for these types of applications. You have a much smaller surface for 
the user interface for mobile applications, so the design is extremely important. There 
are different controls. Build intuitive interfaces, being careful to not intimidate users, 
but rather your goal should be to make them feel comfortable with your layout. Focus 
on the content that your app is delivering. Focus on what you are attempting to achieve 
as you design and continually strive for creating a clear uncluttered consistent looking 
app. You should take pride in the craftsmanship and make the application look good.

The business logic, data tiers, and event-driven programming model can all be 
extended to work with mobile applications. The market for mobile devices is growing 
by leaps and bounds. You are encouraged to take advantage of the opportunities and 
continue your exploration of programming these devices using .NET.

It is beyond the scope of this book to illustrate development for the three platforms. 
However, you are encouraged to take what you have learned here as the first step and 
keep learning, exploring, and continuing to grow. There are a lot of online resources 
focusing on mobile application development. Between iOS, Android, and Windows, 
your C# code can run on billions of devices.

Coding Standards
Use an appropriate classification suffix such as lbl for Label or btn for Button so 
that you can differentiate between the control objects and take advantage of Intel-
liSense during development.

ASPX files should not contain any inline server-side scripting. ASPX files should 
only contain the visual elements of the page such as the XHTML and static text. The 
programming logic for the page should be contained in a separate code-behind file. 
Code-behind files should contain the programming logic for the event handlers.

Resources
Additional sites you might want to explore:

 ? Official Microsoft ASP.NET site— 
http://www.asp.net/

 ? Jump Start with ASP.NET Starter Kit— 
http://msdn.microsoft.com/en-us/magazine/cc164097.aspx

 ? Windows Communication Foundation— 
http://msdn.microsoft.com/en-us/library/dd936243.aspx

 ? Xamarin— 
http://xamarin.com/

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1080 | Chapter 15: Web-Based Applications

 ? Windows Phone Silverlight Development— 
https://msdn.microsoft.com/library/windows/apps/ff402535(v=vs.105).aspx

 ? Channel 9 - Xamarin— 
http://channel9.msdn.com/Blogs/Videos-DX/Xamarin

 ? DreamSpark— 
https://www.dreamspark.com

 ? Windows Phone Developer Account— 
http://dev.windowsphone.com

 ? Microsoft Student Developer Program— 
https://msdn.microsoft.com/en-us/student-developer-program.aspx

QUICK REVIEW
 1. A Web application, also called a website, is simply a collection of one 

or more related files or components stored on a Web server. Web serv-
ers are software that is responsible for hosting or delivering the Web 
application.

 2. When a page is requested using HTTP, the request goes to the Web 
server, which sends back the document in an HTML format. This is con-
sidered a round-trip to the server. Another round-trip is required when 
changes are made on a dynamic web page.

 3. Every trip to the server creates a new object because web pages are con-
sidered stateless. They do not retain their values from one trip to the 
Web server to the next.

 4. Static pages do not require any processing by a Web server. They are 
precreated and reside on the server’s hard drive. Dynamic websites 
involve processing in addition to rendering the formatting HTML.

 5. ASP.NET Web application projects are created at http://localhost 
if you select the HTTP option for Location. Physically, the files are 
stored in the home directory, C:\Inetpub\wwwroot. This is the default 
for the home directory. A directory is also created with the name you 
typed for the project, and it is placed (along with the two solution files) 
at the location you configured Visual Studio to store all of your Visual 
Studio projects. Choosing the File System option for the Location lets 
you identify where on your local machine the website application is 
stored.

 6. The Web Forms page object has a number of properties, many with 
the same functionality that was available for setting a Windows applica-
tion form.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
5

Quick Review | 1081

 7. Two files are created for Web applications. Code for the visual interface 
file is placed in the file containing the HTML tags (.aspx extension). The 
other file, the code-behind file, contains the logic for the application. 
There is no .Designer.cs file as you find with Windows applications. The 
ASP.NET code-behind model requires an additional step—compiling 
the source code when ASP runs the application.

 8. HTML controls are also called client-side controls. The biggest advan-
tage HTML controls offer is that the page is rendered “as is” to the 
browser. Client-side controls require no processing by the Web server.

 9. One option for creating a New website, creates a number of files and 
folders, including a master page. A master page allows you to create and 
maintain a consistent theme across several pages for a website.

 10. Cascading Style Sheets can be used with Web applications. They enable 
you to separate the actual page content from the visual appearance of 
the page.

 11. Server controls are referred to as Web controls, Web Forms server con-
trols, ASP server controls, or simply Web Forms controls. Visual Studio 
prefixes the control name with <asp:control> and ends the tag with 
</asp:control>.

 12. Only a few events trigger a postback to the server. ListBox, 
 RadioButton, RadioButtonList, CheckBox, CheckBoxList, and 
DropDownList have a property called AutoPostBack that can be set 
to true to trigger a postback automatically.

 13. Validation controls enable input to be validated or checked by the 
server. You can check to make sure that values have been entered, that 
values fall between a range of values, or you can create custom valida-
tion checks.

 14. You tie the validation control to a specific control such as a TextBox 
object, using the ControlToValidate property. The ErrorMessage 
property can be set to the message you want to display when the input 
control does not pass the validation test.

 15. A Calendar control is used to display a monthly calendar on a web 
page. After being placed on the page, the calendar is live and users can 
employ it to view and select dates. To work programmatically with the 
calendar for the WebControls application, you declare an object of 
the DateTime class.

 16. The GridView control is very useful for displaying data in a tabular 
format.

 17. To populate the control, the actual data can come from sources such as 
arrays or database tables.

 18. Mobile application development involves writing software for handheld 
devices such as smartphones or tablets.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1082 | Chapter 15: Web-Based Applications

 19. The two dominant current platforms for mobile development are 
Android and iOS.

 20. Xamarin provides add-ins to Visual Studio that not only enable you to build 
iOS, Android, and Windows apps within the IDE using IntelliSense but 
also provides support for building, deploying, and debugging of apps.

 21. The hub control is part of the native Windows Phone look and feel and 
offers a way to view controls using a wide portrait approach extending 
horizontally beyond the confines of a single screen.

 22. You debug Windows Phone applications using an actual Windows 
Phone device or an emulator. In order to launch the emulator, you must 
be on a machine that is running the Windows 8 Pro version or late and 
have Hyper-V enabled.

EXERCISES
 1. .NET Web applications differ from Windows applications in that Web 

applications must take the following into consideration:
a. Multiple users need to be able to access the application at the same time.
b. An application must be viewable by multiple types of platforms, 

including Linux and Windows.
c. Fewer graphical user interface controls are available for Web 

applications.
d. A Web server must be loaded for development of Web applications.
e. all of the above

 2. The term Web application is synonymous with:
a. Web server
b. IIS
c. Web Forms
d. Web page
e. Website

 3. Interaction with users on Web applications cannot include the use of:
a. MessageBox

b. Label

c. TextBox

d. ListBox

e. Button

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
5

Exercises | 1083

 4. The term used to reference converting an HTML document into a 
 viewable format for display purposes is:
a. request
b. host
c. illustrate
d. viewState
e. render

 5. Web pages do not require any processing by the server when they only 
include which of the following?
a. HTML controls
b. HTML server controls
c. Web Forms controls
d. HTML controls or HTML server controls
e. HTML controls, HTML server controls, or Web Forms controls

 6. Presentational attributes, such as sizes and colors of fonts and alignment 
of text, can be placed in a separate file if ___________ are used.
a. Cascading Style Sheets
b. Web controls
c. Master pages
d. HTML server controls
e. none of the above

 7. ASP.NET applications are characterized by which of the following?
a. Program statements written in languages such as Java are included 

inside the HTML file.
b. A code-behind file is created.
c. Only formatting HTML tags can be used with the application.
d. Only static pages can be developed.
e. Script is embedded in the HTML document.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1084 | Chapter 15: Web-Based Applications

 8. The HTML control property used to set the text on a label is:
a. Text

b. Name

c. InnerText

d. ID

e. none of the above

 9. When you set property values for Web Forms controls, the program 
statements referencing the settings are:
a. placed in the code-behind file
b. placed in the .aspx.cs file
c. stored in the .aspm file
d. stored in the file containing the HTML tags
e. none of the above

 10. The default home directory for storing C# Web applications when IIS is 
used is:
a. C:\CSharpProjects
b. C:\localhost
c. C:\InetPub\wwwroot
d. C:\WebApps
e. none of the above

 11. Events associated with which of the following automatically trigger a 
postback to the Web server?
a. ListBox

b. TextBox

c. DropDownList

d. Button

e. all of the above

 12. Which control is often used to display data from a database table?
a. DataGrid

b. DataTable

c. Table

d. DataList

e. none of the above

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
5

 13. The validation control used to make sure that values have been entered 
into a field is:
a. RangeValidator

b. FieldRequiredValidator

c. CompareValidator

d. RequiredFieldValidator

e. Required

 14. To work programmatically with the Calendar control, instantiate an 
object of the ___________ class.
a. Calendar

b. DateTime

c. Date

d. CalendarDate

e. none of the above

 15. A file ending with the extension of .xaml is associated with which type 
of application?
a. WebService

b. WebClass

c. Web application

d. Mobile application

e. all of the above

 16. Master pages also require one or more:
a. content pages
b. server
c. Web service
d. HTML control
e. none of the above

Exercises | 1085

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1086 | Chapter 15: Web-Based Applications

 17. There are a number of events that fire up automatically and sequentially 
on web pages. They include:
a. LoadPostBackData( )
b. Page_Load( )
c. Page_Pre_Init( )
d. LoadViewState( )
e. all of the above

 18. Square brackets were used around the identifier with SQL statements to:
a. enable a space to be included as part of a name
b. indicate an entry is optional
c. add multiple arguments
d. indicate keyword follows
e. none of the above

 19. What software company did Microsoft partner with to provide cross-
platform mobile development?
a. Google
b. Apple
c. Xamarin
d. Mono
e. Ximirin

 20. ___________ includes a library of classes that enables developers to 
build user interfaces for iOS, Android, and Windows Phone with the 
different platforms’ apps sharing C# code.
a. content pages
b. Xamarin.Forms
c. Web service
d. HTML control
e. none of the above

 21. How do dynamic pages differ from static pages?

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1 
5

Programming Exercises | 1087

 22. Compare and contrast HTML controls with Web Forms controls in 
terms of the code generated and the property values that can be set.

 23. Identify and describe three types of validation controls that can be 
added to a Web application.

 24. What are the hardware requirements for developing iOS using Visual 
Studio?

PROGRAMMING EXERCISES

 1. Create a Web application that enables users to select from a Calendar 
control object the date of their next exam. Using program statements, 
retrieve their selection and then display the date along with an appropri-
ate message. If they select a date in the past, display a message and allow 
them to re-enter a new date. Change background and foreground colors 
for the web page.

 2. The computer club is selling T-shirts. Create a website that allows users 
to enter their first and last names, phone number, and e-mail address. 
Allow users to select sizes (S, M, L, XL, and XXL) and quantity. Add 
statements that process the order by calculating the total cost. All shirts 
except the XXL are $26; the XXL shirt is $30. Retrieve and display the 
name of the customer placing the order. Display the total cost of their 
selection including 7% sales tax.

 3. Using Web Forms controls, create a Web application to store a user’s To 
Do List. Include two TextBox objects, a Button object and a  ListBox 
object. Allow users to input their name in one TextBox and To Do 
tasks into the other TextBox. Use those values to populate the ListBox 
object. Allow users to make a selection for which item to tackle next 
from the list. Display their name and the selection on a Label object 
and then remove that item from the ListBox.

 4. The computer club has decided to take a field trip to the hometown 
of one of the members during spring vacation. To determine the des-
tination, each member has been charged with creating a web page to 
highlight the features of his or her hometown. Create a Web application 
using the ASP.NET Web Forms Site template that contains details about 
your hometown. If you would prefer that the members visit another 
location, you may choose a different locale. Set the properties on the 
form for the controls so the form is aesthetically pleasing. Be sure to 
change both background and foreground colors, font size, and type.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1088 | Chapter 15: Web-Based Applications

 5. Create a similar application to what you developed in Exercise 4 using 
the ASP.NET Empty Web Site template. Include an HTML server con-
trol that causes a message to be displayed (on a Label object) when 
the user clicks a button. The message should include additional details 
about the locale.

 6. Create a dynamic website that functions like a calculator. Add features 
for addition, subtraction, multiplication, division, modulation, and so on.

 7. Create a Web application that enables the user to enter first name, last 
name, and e-mail address. Accept those values and store them in a text 
file. Allow the user to input the path where the file should be stored. 
After retrieving the values from the user, display on the web page both 
the full file path (including the name of the file) and all values stored in 
the file. Confirm that the values are written to the file.

 8. Create a website that retrieves and displays the current department 
chairs from a database. The StudentDataBase.accdb Access database 
used with examples in this book includes a major table that stores the 
major id, major name, department chair, and the department phone 
number. Create a website that references this table, or a database table 
that you create with similar fields. Display on the website the name of 
the major and the chair for the department. Enhance the site by chang-
ing background and foreground colors of the page and the grid storing 
the data.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

APPENDIX A

Visual studio 
Configuration

To increase productivity, you might want to configure the appearance and behavior 
of the integrated development environment (IDE) for Visual Studio. This appendix 
presents suggestions for possible settings.

Customizing the Development Environment
When Visual Studio is launched, it opens the current default Start Page. As shown 
in Figure A-1, you have options of New Project . . ., Open Project . . ., and Open 
from Source Control . . . from the Start Page. Shown below that main level of menu 
options, you see a heading labeled Recent. It shows the last 10 projects opened and 
enables you to quickly reopen the project from that link without having to browse to 
the location where the project is stored. Also included on this default Start Page are 
sections enabling you to Connect to Azure, Discover what’s new, view Product 
Videos, and see Announcements.

You can choose to have this page opened each time you run Visual Studio or deselect 
the checkbox in the extreme left corner and not Show page on startup. You can 
begin customizing your environment even at that point. You can also check the Keep 
page open after project loads if you do want to see the Start Page listed as one of 
the available tabs while you are working on your project.

1089
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1090 | Appendix A: Visual Studio Configuration

FIGURE A-1 Visual Studio Start Page

You have an option to pin an important project right on the Start Page so it will 
always be there. The pushpin is revealed when you move your mouse over the proj-
ect in the Recent projects area. The PresentationGUI and FileAccessApp are 
pinned in Figure A-1. Ten projects are shown under the Recent projects area on the 
left pane in the figure. This number can be changed as described in the following.

You use the Options from the Tools menu as shown in Figure A-2 to make the most 
useful changes.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Customizing the Development Environment | 1091

Environment
After you select Options, the first folder node shown is Environment. When you 
select Environment, the right pane of the dialog box changes to reveal options as 
shown in Figure A-3.

Depending on how the system you are using is configured, the options on your menu may 
vary slightly from the one displayed in Figure A-2.

FIGURE A-2 Using Tools, Options to configure Visual Studio

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1092 | Appendix A: Visual Studio Configuration

As shown in Figure A-3, the Environment node enables you to select either a Blue, 
Light or Dark Color theme. You can also indicate how many items should display 
under the Window menu option. You can specify from 1 to 24. The default is 10. If 
you have more files open than the number you select, older filenames just fall off the 
list, which is also the case for the second option under the Recent area. The default 
for items shown in recently used lists is also 10. This value impacts the File menu 
option and also the Start Page list. Using the Recent Files or Recent Projects and 
Solutions option from the File menu saves time when you are working with the same 
project over a long period. It eliminates the need to browse to the same location 
where the project is stored every time you want to reopen the file. Pinning the project 
to the list, as was described earlier, is also useful if you have a project that gets worked 
on often to keep it from falling off the list.

When you select the Environment node from the Options dialog box, the General 
tab options are displayed. One of the new features with Visual Studio 2015 is the 
option to Apply title case styling to menu bar. If this option is deselected, menu 
options appear in all upper case characters, which was the default for previous edi-
tions. From the Environment, General node dialog box, you also specify whether 
the status bar is displayed and indicate whether the Close button impacts the active 
tool window only. These options are all available when General is revealed or by 
selecting the Environment node.

FIGURE A-3 Environment General options

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Customizing the Development Environment | 1093

From the Environment, Fonts and Colors node, you can change the size and type of 
the font for almost every item that appears in Visual Studio, including dialog boxes, 
windows, and text editor’s text. It is useful to increase the font size if you are perform-
ing paired programming (working as a team of two) at a computer station or if you 
want to project your source code to a screen for others to view. As shown in Figure 
A-4, you have the capability of changing the display item’s background or foreground.

If you review the list of items available to change in the dropdown list of the Display 
Items control shown on the center pane in Figure A-4, you find that there are over 
100 items listed just for the Text Editor.

FIGURE A-4 Setting the fonts and colors

The Environment, Startup node, shown on the left pane in Figure A-4, lets you deter-
mine what is opened when you first start Visual Studio. You can select options such as 
Show Start Page, Open Home Page, Load last loaded solution, Show Open Proj-
ect dialog box, Show New Project dialog box, or Show empty environment. You 
might also want to make changes at the Environment, Web Browser node, where the 
URLs for your Home page and Search page are set.

An interesting feature incorporated into the Visual Studio IDE is a zoom control. 
This feature enables you to increase/decrease the displayed font size of text items. 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1094 | Appendix A: Visual Studio Configuration

Figure A-5 illustrates this option. It is extremely useful if you want to quickly enlarge 
your program statements. Notice the dropdown list in the bottom-left corner. Zoom 
options from 20% to 400% are available.

FIGURE A-5 Zoom capability

Projects and Solutions
You identify the default location where your projects should be saved using the 
 Projects and Solutions node, as shown in Figure A-6. This selection is found in the 
top right corner. Clicking the ellipsis associated with this option opens the Project 
Location dialog box. Like the Environment node, when you click Projects and Solu-
tions, the options available under the General node are displayed. C:\CSharpProjects 
was the value entered for the Projects location for projects created for this book. 
This is an extremely important setting that you should change. It will enable you to 
easily locate your saved projects.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Customizing the Development Environment | 1095

You probably do not want to change the default values for the next two options shown 
in Figure A-6: User project templates location and User item templates location. 
It is probably best to store all templates in a common location. From the Projects and 
Solutions dialog box, you also indicate whether you want to Always show Error List 
if build finishes with errors or to Show Output window when build starts.

If you are working off a network drive you may want to deselect the option Warn 
user when the project location is not trusted. Otherwise, you may get an annoying 
dialog message every time you test your applications indicating that the location is 
not trusted.

FIGURE A-6 Setting the location for Visual Studio projects

You should definitely configure the Visual Studio Projects location setting as shown 
in Figure A-6. You are encouraged to review and explore the other settings available 
on the Environment and Projects and Solutions tabs.

Text Editor
IntelliSense within Visual Studio is a very powerful feature. It can increase your 
productivity and help you avoid introducing typographical errors in your code. It 
automatically generates code. You have the option to turn IntelliSense features  

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1096 | Appendix A: Visual Studio Configuration

on/off under the Text Editor, C#, IntelliSense option as shown in Figure A-7. You 
can adjust the features to fit your preferences.

IntelliSense comes in two modes: Completion and Suggestion. By default, you get 
 Completion mode. Completion mode can be annoying if you try to type the name of 
 something that doesn’t exist. IntelliSense tries to help and pops up only available or 
valid options. Often, you will accidentally get items added you didn’t want. You can 
press Ctrl + Alt + Spacebar to switch to IntelliSense Suggestion mode (as opposed 
to  Completion mode). In suggestion mode, IntelliSense is less aggressive. It does not 
 autocomplete member names after you type open parenthesis or equal symbols. Instead, 
you are able to choose an existing member from a list.

FIGURE A-7 Text Editor IntelliSense settings for C#

If you do not like the way the auto-completion IntelliSense feature of Visual Studio 
is functioning, you can make changes. On the C# IntelliSense dialog box, shown 
in Figure A-7, notice that the first checkbox option is Show completion list after a 
character is typed. IntelliSense provides code elements that you can select from a 
drop-down menu when you are coding. Turning on this feature reduces the number 
of keystrokes required while you are programming.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Customizing the Development Environment | 1097

You can set the editor to display Line numbers, Enable single-click URL naviga-
tion, and display the Navigation bar from the Text Editor, C#, General node as 
shown in Figure A-8.

FIGURE A-8 Text Editor display option

You also specify whether you have Statement completion to Auto list members 
and/or have Statement completion with Parameter information displayed from 
the Text Editor, C#, General option. When you select Display, Line numbers, the 
line numbers are displayed to the left of the source code in the IDE.

The Tabs node, which appears below the Scroll Bars and General options, enables 
you to specify the amount of space inserted when a tab or indent is set and whether 
tabs or spaces are inserted for tabs. From this option, you can also set Smart indent-
ing so that it automatically indents the next line, if a statement doesn’t fit on a single 
line. Smart indenting does not always work the way you think it should. As the name 
implies, it tries to be smart and sometimes you have to override it.

The Formatting option under the Text Editor expands to reveal a number of fea-
tures grouped under General, Indentation, New Lines, Spacing, and Wrapping. As 
shown in Figure A-9, from the Text Editor, C#, Formatting, New Lines option, you 
can decide whether you prefer to place your braces on a new line for types, methods, 
and control blocks. This is how braces have been displayed in this book.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1098 | Appendix A: Visual Studio Configuration

As illustrated in Figure A-9, this is where you indicate whether keywords such as 
else, catch, and finally should appear on a separate line. When you make those 
selections, intellisense places the keywords and braces on separate line and helps with 
proper indentation.

Selecting Indent block contents, Indent case contents, and Indent case labels 
causes the indention to occur automatically and can really increase your productivity. 
You select these settings under the Indentation option for Formatting within the 
Text Editor, C# node.

Explore the Spacing options under the Text Editor, C#, Formatting node. You set 
spacing for method declarations, method calls, casts, delimiters, and binary opera-
tors. You determine whether to have a space inserted between the name and open 
parenthesis or inside empty square brackets. Some of these settings are shown in 
Figure A-10.

FIGURE A-9 Formatting settings for C# text editing

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Customizing the Development Environment | 1099

You also Set spacing for operators under the TextEditor, C#, Formatting, Spac-
ing node. The selection Insert space before and after binary operators is the last 
listed option and was used for examples in this book. This enables you to specify 
whether you want Visual Studio to automatically insert spaces before and after arith-
metic operators, such as + and =. As shown in Figure A-10, Insert space within 
empty argument list parentheses was set under Set spacing for method decla-
rations. Insert space within empty square brackets was also selected. There are 
several other options available to configure your environment. You are encouraged 
to explore Spacing.

Debugging
A number of settings can be changed under the Debugging folder node. You should 
review the options that can be set. They include features such as Ask before deleting 
all breakpoints, Break all processes when one process breaks, and Enable break-
point filters.

FIGURE A-10 Space settings for C# text editing

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1100 | Appendix A: Visual Studio Configuration

The Enable Edit and Continue under the Edit and Continue option lets you edit the 
code without ending the debug session. This allows you to change your source code 
while your program is still running, but in break mode.

HTML Designer
Selections made using this node impact your development environment when you 
are designing websites. If you prefer to start your work on a website by first seeing the 
page where items can be dragged and dropped, select Start pages in, Design View. 
You make this selection on the General node for the HTML Designer or by just 
selecting HTML Designer as illustrated in Figure A-11. The other options for the 
Start pages in are Source View, Split View, and Design View.

FIGURE A-11 HTML Designer

You determine how much of the screen is used for Design versus Source when you select 
Split View. You can have the majority of your screen show the design of your page with 
only a few lines revealing HTML if you prefer. As shown in Figure A-11, you can Split 
views vertically or take the default, which places the HTML tags above the design pane.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Customizing the Development Environment | 1101

The CSS Styling node for the HTML Designer, shown on the left pane in Figure A-11, 
is used to indicate whether to Change positioning to absolute for controls added 
using Toolbox, paste, or drag and drop. Here, you also indicate whether to Use 
<strong> and <em> for bold and italic text.

The Ruler and Grid option under the HTML Designer node has options for grid 
size. You can specify the Ruler and Grid units of pixels, inches, centimeters, or 
points. Once that is determined, you can enter measurements for the Display Grid 
and Snapping Grid using that unit type. You can also specify the Line style and Line 
color from this dialog box.

Windows Forms Designer
Expanding the Layout Settings under the Windows Forms Designer, General node 
reveals options for Width and Height for the Default Grid Cell Size. The Layout 
Mode has value options of SnapLines or SnapToGrid. You also specify whether to 
show the grid and/or to snap objects to the grid when they are placed on the form 
from the Show Grid and Snap To Grid options. Positioning elements on the form 
can be made easier if you select SnapLines in the Layout Mode. Colored lines appear 
on the form as you move or resize elements. This allows you to snap the element to 
vertical or horizontal lines so that you can align them consistently. Some of the Win-
dows Forms Designer, General options are illustrated in Figure A-12.

FIGURE A-12 Windows Forms Designer

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1102 | Appendix A: Visual Studio Configuration

Another option shown in Figure A-12 under the Windows Forms Designer node is 
the Data UI Customization. This dialog box defines which controls appear in the list 
of available controls for items in the Data Sources Window. TextBox, ComboBox, 
Label, LinkLabel, and ListBox are originally selected by default for string data 
types. But you can add a number of other ones, such as CheckBox, PictureBox, 
RadioButton, and RichTextBox for the string data type. You specify which con-
trol for other data type using this dialog box. Then the controls you selected become 
available for you to drag onto your form from the Data Sources Window.

Other Options Settings
Explore the other options on the Tools, Options menu. You will want to examine 
the Database Tools settings. From there you can specify the SQL Server Instance 
Name that you will use for your Data Connections. You can indicate which Panes 
(are) shown by default (Diagram, Criteria, SQL, or Results) from the Query and 
View Designers node. You also specify the Default Query type here. It is initially set 
to the Select query. You can change that to an Insert, Delete, or even a Make Table 
query.

There are lots of options. Spend some time experimenting with them. Change the 
settings and go into the editor and see what works best for you.

Choose Toolbox Items
The Toolbox used with Windows and Web applications can be customized. You can 
remove items or add additional widgets to the dialog box. When Visual Studio is set 
up, it installs in the Toolbox the most regularly used controls. If there are controls 
you hardly use, you can remove them from the list. To remove a control, right-click 
on the control in the Toolbox and select Delete. Besides the objects currently shown 
in the Toolbox, other controls are left out but are still available. To add one or more 
of these left out controls, select Choose Toolbox Items. . . from the Tools menu 
or right-click anywhere in the Toolbox and click Choose Items. . . The dialog box 
shown in Figure A-13 is revealed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Customizing the Development Environment | 1103

The Choose Toolbox Items dialog box displays tabbed panes listing components that 
are installed on your local computer. Select the ones you want to appear in the Tool-
box. When you choose OK, any items checked that are not already in the Toolbox 
will be added, and any items whose checkboxes have been cleared will be removed 
from the Toolbox.

Customize the Toolbars
From the Tools, Customize option you can select which Toolbars are displayed in 
the IDE. Using this option, you not only select the names of the toolbars but you can 
also specify which Commands are to be included within each toolbar. For example, if 
you choose to display the Standard toolbar, you see icons including Navigate Back-
ward, Navigate Forward, New Project, Open File, Save Selected Items, Save All, 
MultiLevel Undo, and MultiLevel Redo. To add icons to a toolbar, from the Com-
mands tab select Add Command. You can move the icon to the position where you 
want it to appear. The Standard toolbar was customized by adding the Help category 
to the toolbar, as shown in Figure A-14.

FIGURE A-13 Add Toolbox Items

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1104 | Appendix A: Visual Studio Configuration

You remove icons in the same manner. As shown in Figure A-14, there is also an 
option to Delete commands from toolbars.

After using the Tools, Options and Tools, Customize menus, you will want to deter-
mine which windows you want open during design. As a minimum, you should have 
available the Solution Explorer and Properties windows. During Windows and Web 
development, the Toolbox should be added. For applications involving data connec-
tions, the Data Sources and Server Explorer should be added.

Configure and Save Windows Layouts
One of the new features available from the Window menu with Visual Studio 2015 
is the option Save Window Layout. You can create a number of different types of 

FIGURE A-14 Customizing the IDE

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Customizing the Development Environment | 1105

applications with Visual Studio, from Console Applications, to Windows  applications, 
to mobile applications to Web applications. There are over 40 different templates for 
different types of applications that can be created. With each of these, you use differ-
ent windows during design. With this new feature, once the workspace is set up with 
the windows you want to have visible when you work with a specific type of applica-
tion, the layout is saved. Then when you want to develop that type of application, sim-
ply select Apply Window Layout as illustrated in Figure A-15 and all those windows 
will open for you automatically. Figure A-15 illustrates saving four separate layouts.

FIGURE A-15 Saving Windows Layout

Two of the layouts, WindowsApp and ConsoleApp, are shown on the right in 
 Figure A-15. The WindowsApp layout, top right, includes not only the Error List win-
dow but also the Solutions Explorer window, Properties window, and the  Toolbox. 
The ConsoleApp layout, bottom right, includes just the Solution Explorer and Error 
List windows.

Spend some time customizing the workspace to best meet your needs. You will find 
that it saves you much time during development and makes you more productive.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

APPENDIX B

Code editor 
tools

There are many features within Visual Studio that make it easier for you to write and 
manage your code. Using IntelliSense and tooltips and understanding the colored 
markings offered up from Visual Studio will increase your productivity. This appen-
dix highlights some of these most useful features.

Another time-saving feature is refactoring. If you find that you want to take a segment 
of code and place it in a method, you can do so using a copy-and-paste approach, or 
you can use the refactoring tools to restructure your source code. The tools automati-
cally promote local variables to parameters and convert blocks of code into a method. 
Both of these features are discussed in this appendix.

You write many types of program statements repeatedly. For example, you write 
while, do, for, if, switch, try. . .catch. . .finally, and foreach statements. 
Every time you use these statements, you type curly braces to show the beginning and 
end of the block, and you spend time formatting to make sure they are syntactically 
correct and consistently placed in your program. One of the more exciting Visual Stu-
dio features in the Code Editor automates their inclusion. This is done through using 
code snippets. Code snippets are discussed in this appendix.

Class diagrams showing the data members, methods, and relationships between 
classes can be generated automatically with Visual Studio. You can add blank class 
diagrams and then add members to the structure or have Visual Studio create dia-
grams from existing code. This appendix also illustrates the use of class diagrams.

There are many features within Visual Studio that make it easier for you to write and 
manage your code. IntelliSense guides and enables you to learn more about the code 
you enter. Some of the features are described later. It begins by discussing IntelliSense.

IntelliSense
IntelliSense, an intelligent code completion context-aware feature is a very powerful 
aid in Visual Studio. It speeds up and reduces the number of typos you might enter. 
It guides and enables you to learn about the code you enter. It includes a number of 

1107
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1108 | Appendix B: Code Editor Tools

features. One feature is called List Members. When you type a trigger character, such 
as a dot, a list of possible options is displayed. If you keep typing, the list is filtered to 
include only members that begin with those characters. You can insert the selection 
into your code by pressing Tab, typing a space, or the character that appears following 
the word selected. Learning to use this feature can greatly cut down on the amount of 
typing needed. Quick Info is another feature of IntelliSense. This feature is discussed 
later with the Colorized Tooltip section.

Syntax Coloring
Code elements are colored differently to distinguish them. Keywords are by default 
shown in blue color in the editor. Types or classes (such as Console and Math) are 
a different shade of blue. Other syntax elements are also colorized, such as string 
literals and comments. The default colors are shown in Figure B-1.

FIGURE B-1 Syntax colors

As illustrated in Figure B-1, strings are displayed using red text, keywords appear in a 
royal blue, framework class identifiers appear in a different shade of blue, while com-
ments appear as green. These default colors and all other colors can be changed from 
the Fonts and Colors, Environment, Options Dialog Box, which you can open from 
the Tools menu.

Colorized Tooltips
You can move your mouse over code segments and get Quick Info about any identi-
fier in your program. You get a short description and often times a method heading 
or class declaration. The Quick Info feature has been enhanced and color has been 
brought into the picture with Visual Studio 2015. Hover the mouse over a method call 
and see its signature as illustrated in Figure B-2.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Error and Warning Marks | 1109

Positioning the mouse over classes also displays a tooltip in color describing the class. 
You can create collapsible areas in your code using the #region/#endregion direc-
tives. Visual Studio also automatically creates collapsible regions for language con-
structs, such as classes and a methods body. Whenever you see the + or − to the left of 
code, it can be expanded or collapsed. An ellipsis is placed on the right side of the line, 
which is shown to also indicate that the segment of code has been collapsed. You can 
hover over the ellipsis to see the hidden code in a tooltip in colorful code. You don’t 
have to click on the ellipsis and open it; Visual Studio will bring inline a tooltip show-
ing the collapsed region. Figure B-3 shows what is revealed as the mouse is moved 
over the ellipsis for a collapsed method.

FIGURE B-2 Colorized tooltip

FIGURE B-3 Collapsible code revealed in color

Error and Warning Marks
Visual studio uses different-colored wavy underlines (known as squiggles) to alert 
you to problems with your code. Red squiggles or red underlines indicate a syntax 
error; green squiggles denote warnings such as a variable has been declared but not 
used. Visual Studio also places yellow or green vertical bars alongside code as alerts or 
warning. These yellow and green bars are referred to as Change Trackers. They allow 
you to keep track of the changes you have made in a file. Changes made since the file 
was opened but not saved are denoted by a yellow bar on the left margin (known as 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1110 | Appendix B: Code Editor Tools

the selection margin). After you have saved the changes (but before closing the file), 
the bar turns green. If you undo a change after you have saved the file, the bar turns 
orange. You can turn this feature off and on from the Text Editor settings by select-
ing Options from the Tools menu. From there select Text Editor, Settings, Track 
changes. The error and warning markers along with the track changes are illustrated 
in Figure B-4.

FIGURE B-4 Error and warning marks

The yellow bar in the selection margin of line 14 in Figure B-4 indicates the file has not 
been saved since making a change on that line. The green bar in the selection margin 
for line 17 indicates there has been a change on that line since the file was opened, but 
it has already been saved. The red squiggly on line 17 under 27.89 indicates a syntax 
error. Clearly you cannot store a floating point value in an integer memory location. 
The green squiggly under someVariable is warning that the memory location is 
defined, but not used. You might also see a light bulb icon in the selection margin or 
elsewhere in the editor.

Quick Action Light Bulb Icon
The yellow light bulb is called the Quick Action Light Bulb. This feature is new to 
Visual Studio 2015. The light bulb provides quick actions, including fixes to syntax 
errors, removal of unnecessary code, and refactoring help. From clicking the down 
arrow beside the light bulb icon, multiple options are shown with preview capability.

Recall a number of using statements that are automatically added based on the 
type of application created. Many times most of these using statements are really 
not needed. The Quick Action Light Bulb alerts you to these types of unnecessary 
lines of code in your program. As shown in Figure B-5, a message suggesting you  
“Remove  unnecessary Usings” is shown under the light bulb.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Quick Action Light Bulb Icon | 1111

Four of the five using statements are highlighted in pink in Figure B-5, indicating they 
could be removed. Under that suggestion, a Preview changes link is available. The 
Quick Action Light Bulb also helps with syntax errors. Figure B-6 provides another 
illustration. This time itemCnt was defined, but cntOfValues wasn’t. As shown in 
Figure B-6 three possible options are suggested to correct the problem. The preview 
window shown on the right in Figure B-6 illustrates how the code will be modified if 
the third option is selected.

FIGURE B-6 Quick Action Light Bulb changes previewed

FIGURE B-5 Quick Action Light Bulb recommendation

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1112 | Appendix B: Code Editor Tools

The Quick Action Light Bulb is launched automatically when Visual Studio feels it 
can help. You can also solicit its help by right-clicking the mouse on an area or press-
ing Ctrl + dot (.).

Peek Definition
The Peek Definition command enables you to view and edit code without switch-
ing away from the code that you are writing. It displays the contents of a method or 
class right inside the application you are developing. Peek Definition and Go To 
Definition show the same information, but Peek Definition shows the segment of 
code in-line in the file you are in, immediately below the existing code. Output from 
the Go To Definition shows the code in a separate code window. Use this feature by 
selecting the option when you right-click the mouse on an identifier or by using the 
Alt + F12 shortcut. It is very useful to quickly look at the definition of a class, method, 
or other structure. Figure B-7 illustrates Peek Definition.

FIGURE B-7 Peek definition feature

Refactoring
Refactoring lets you improve on your code by modifying the internal structure with-
out changing the logic or the external behavior of your program. Sometimes methods 
grow to include more than one major theme. Sometimes you can look at your code 
and see that a method is doing too much. The Extract Method option provides an 
easy way to create a new method from a segment of code.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Refactoring | 1113

Extract Method
The Main( ) method, shown in Figure B-8, does both the calculation and displays 
the results.

FIGURE B-8 Refactoring a method

Notice that the program statement on Line 23 takes the values entered and performs 
calculations with them. You can use the Extract Method from the Refactor menu to 
create a new method to calculate the average. Line 23 was selected prior to choosing 
the Extract Method from the Refactor menu option. Refactor is available from the 
Edit menu. As shown in Figure B-9, a new method is added to the program with a 
call matching the signature for the method. It is initially named “NewMethod.” Both 
the name in the method heading and the method call are highlighted in green and the 
Rename feature is invoked as illustrated in Figure B-9.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1114 | Appendix B: Code Editor Tools

Rename
Rename is an operation that provides an easy way to change the name of identifi-
ers for data types, local variables, namespaces, methods, and properties. To use this 
option, position the cursor on the identifier you want to rename and select Rename 
from the Edit menu. It changes the identifier throughout the program. The Rename 
feature has been enhanced in Visual Studio 2015. You can now also rename any text 
in a string or comment line as is illustrated in Figure B-10. That was not possible in 
the previous versions of Visual Studio.

FIGURE B-9 New method name for the extracted code

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Code Snippets | 1115

Other Refactoring Options
The Refactor, Encapsulate Field option lets you create a property from a local vari-
able and then update your code with references to the new property. There are also 
options to Extract Interface and Remove or Reorder Parameters. Refactoring lets 
you quickly reorganize your code for better reuse and readability. You are encouraged 
to explore the online documentation to learn more about refactoring operations that 
can increase your productivity.

Code Snippets
Code snippets are templates that you can use to insert code. They can help speed 
up the entry of common code constructs and make you more productive. When you 
insert a code snippet, a template is inserted into your program that enables you to fill 
in unique entries. You can use the built-in snippets or create your own. Snippets are 
stored as XML files that you can edit and customize. Snippets are grouped into the 
categories of NetFX30, Office Development, Other, Test, and Visual C#.

FIGURE B-10 Rename feature

An additional check box option of Include overloads is displayed in the Rename dialog 
box when you select to rename an identifier that is overloaded.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1116 | Appendix B: Code Editor Tools

Code snippets are named with a short alias. You activate the snippet by either typing 
the alias and pressing the Tab key twice or by using the IntelliSense menu to insert 
the code snippet. Pressing Ctrl + K + X activates the code snippet list, as shown in 
Figure B-11. In order to see the list of available code snippets that you might want to 
incorporate into your application, select Visual C#.

FIGURE B-11 Code snippet list

When the list is displayed, selecting the name inserts a segment of code at the cursor 
position. The alias for the decrementing for is forr.

Another shortcut for displaying the list of logical code elements that can be inserted in your 
program is to press Ctrl + Spacebar. This pops up a more exhaustive list.

The code snippet aliases are included in the list of available entries. Pressing the Tab 
key twice after selecting the forr alias inserts the code snippet text, as shown in 
Figure B-12.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Class Diagrams | 1117

Notice that the code snippet shown in Figure B-12 inserted the text at the cursor 
position and created an empty for loop. At this point, the editable fields in the code 
snippet are highlighted and the first editable field is selected automatically. The edit-
able fields for the for statement are the initializer variable (i by default) and the Max 
length expression (length by default). You can type a new value for the field or 
press the Tab key to cycle through the editable fields. Clicking on a field places the 
cursor in the field, and double-clicking on a field selects it. You can change the fields 
to reflect the identifiers you use in your program.

Code snippets are simply XML files; you can easily create your own. The file ends 
with a .snippet filename extension. As you find yourself typing the same segment of 
code for multiple applications, you are encouraged to explore the online documenta-
tion to learn more about creating your own shortcuts.

Working with Class Diagrams
You can view your program in a number of different ways, including graphically. Class 
diagrams document the structure of an application by showing data members and 
behaviors of a class. For multiple class applications, they also show the relationship 
between the classes. Right-clicking on the project in the Solution Explorer window 
reveals View, View Class Diagram option. Figure B-13 illustrates the class diagram 
created for the PresentationGUI application created in Chapter 12.

FIGURE B-12 Code snippet inserted into text

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1118 | Appendix B: Code Editor Tools

The application shown in Figure B-13 consists of several classes. The  PresentationGUI 
class is related to the other classes because it instantiates objects of the Student 
class. No line connects the PresentationGUI and Student classes. A relationship 
line connects the Student and Person classes. These two classes are related through 
the Student class being derived from the Person class. Additional classes of 
Resources, Settings, and Program are shown. The ITraveler interface is also 
shown on the figure.

Class Details View
The methods, or behaviors, of the Student class are shown under the class diagram 
in the Class Details pane. This pane can be expanded, as illustrated in Figure B-14.

FIGURE B-13 PresentationGUI class diagram

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Class Diagrams | 1119

The Class Details window provides a considerable amount of information. All of the 
class methods, properties, fields, and events are included. As shown in Figure B-14, 
each of these categories can be expanded to provide additional details, including the 
data type and modifier access level. You can go directly to the code by right-clicking 
on the diagram and selecting View Code.

FIGURE B-14 Class Details view

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1120 | Appendix B: Code Editor Tools

Using the Class Diagram to Add Members
Right-clicking on any of the classes in the class diagram also reveals options to add 
additional methods, properties, fields, or events. This is shown in Figure B-15. Select-
ing any of these options adds the member to the diagram and also automatically gen-
erates the underlying code associated with it.

If the Class Details pane is not displayed, it can be revealed by right-clicking the mouse on 
the class and selecting Class Details.

FIGURE B-15 Adding members using the class diagram

As shown in Figure B-15, additional constructors can be added from the class dia-
gram. The Refactor option shown in Figure B-15 enables you to extract an inter-
face or rename the class. The IntelliSense feature guides you through overriding 
a method. Figure B-16 illustrates the Show Base Class option. The base class for 
Person is Object.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Working with Class Diagrams | 1121

As shown in Figure B-16, Person extends the Object class. All C# classes inherit 
from the Object class; however, the Object class is not automatically shown on 
the diagram. You must select the Show Base Class option to view the Object class.

Other Code Editor Tips
Zoom is one of the more interesting features available with Visual Studio. You can 
press the Ctrl + Mouse wheel to increase and decrease the font size. There is also 
zoom capability available in the extreme left corner, near the status line, in code view 
as was illustrated in Appendix A.

Box Selector is a code editor tool that enables you to select a rectangular region, type 
a line, and have that line repeated for every line part of the region. To do this, hold the 
Alt key while using the mouse to make a vertical section. Then start typing. Whatever 
is typed appears on every line that is part of the region. This could be a useful tool 
for adding comments to blocks of text or to change all data members from public 
to private by typing a single private keyword once the region has been selected.

FIGURE B-16 Show base class for Person (Object)

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1122 | Appendix B: Code Editor Tools

Generate from Usage can increase your productivity by eliminating repetitive typ-
ing. You can, for example, type a method invocation without first creating the method. 
When you receive the error message indicating that the method does not exist, type 
Ctrl + dot (.) to have Visual Studio automatically generate the method heading for 
you. Visual Studio can generate classes, constructors, properties, fields, enum mem-
bers, and methods.

The code editor has many exciting features that increase programmer productivity. 
You are encouraged to use the ones described in this appendix and search the online 
documentation for additional tips.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

APPENDIX C

CharaCter 
sets

The Unicode standard is a universal character encoding scheme that assigns a unique 
numeric value, called a code point, to each character used in many of the written lan-
guages of the world. Over 65,000 characters can be represented. This appendix shows 
a subset of the characters commonly used with the English language. The ASCII 
(American Standard Code for Information Interchange) character set corresponds  
to the first 128 characters of the Unicode character set. Thus, Table C-1 shows many 
of the ASCII and Unicode representations. C# and other .NET-supported languages 
use the Unicode standard.

TABLE C-1 Unicode/ASCII character codes

0 1 2 3 4 5 6 7 8 9

0 Null Bell Back 
space

Horizontal 
tab

1 Line 
feed

Vertical 
tab

Form 
feed

Carriage 
return

2 Cancel Escape

3 (space) ! ” # $ % & ’

4 ( ) * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [ \ ] ^ _ ’ a b c

10 D e f g h i j k l m

11 N o p q r s t u v w

12 X y z { l } - De1

© Cengage Learning

1123
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1124 | Appendix C: Character Sets

The numbers in the first column represent the first digit(s) for the decimal value. 
That value is concatenated to the numbers found in the heading row to form the 
decimal equivalent for that symbol in ASCII and Unicode. For example, the lowercase 
s is located in the row labeled 11 and in the column labeled 5. Its code value is 115.  
A subset of the characters is shown in the table.

The Unicode standard makes it easier to develop applications that can be imple-
mented worldwide. Developers do not have to keep up with which coding schema is 
used because it is a worldwide standard. For additional information, see “The Uni-
code Standard” at www.unicode.org.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

APPENDIX D

OPERATOR 
PRECEDENCE

When an expression has multiple operations to be evaluated, the order of evaluation 
of the operators is determined by the precedence and associativity of the operators 
used in the expression. Most operators are left-associative—meaning the operations 
are performed from left to right. All binary operators are left-associative. The assign-
ment operators and conditional operators are right-associative. Table D-1 shows the 
C# operators by category of precedence. The operators are shown from highest to 
lowest precedence.

TABLE D-1 Operator precedence

Category Example operators

Primary [ ]   ( )   x++   x−−   new   typeof  
dot operator(.)

Unary + − ! ++x −−x (cast) size of

Multiplicative * / %

Additive + −

Shift << >>

Relational and type testing < > <= >= is as

Equality == !=

Logical AND &

Logical XOR ^

(continues)

1125
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1126 | Appendix D: Operator Precedence

Category Example operators

Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Assignment =   *=   /=   %=   +=   -=   <<=   >>=   
&=   ^=   |=

© Cengage Learning

Operators have equal precedence within the category. Thus, in the expression  
answer = aNumber + val1 * val2 / 7, the order of operations would be *, /, +, and =.

TABLE D-1 Operator precedence (continued )

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



© zeljkodan/Shutterstock.com

APPENDIX E

C# KEYWORDS

This appendix lists the reserved words of C# in Table E-1. Each has a special meaning 
associated with it. Notice that all keywords begin with a lowercase letter.

TABLE E-1 Keywords

abstract as base bool break byte

case catch char checked class const

continue decimal default delegate do double

else enum event explicit extern false

finally fixed float for foreach goto

if implicit in int interface internal

is lock long namespace new null

object operator Out override params private

protected public readonly ref return sbyte

sealed short sizeof stackalloc static string

struct switch this throw true try

typeof uint ulong unchecked unsafe ushort

using virtual void volatile while

© Cengage Learning

1127
Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1128 | Appendix E: C# Keywords

There are several other words that have been identified as “contextual keywords.” 
Table E-2 lists these words. Contextual keywords are not as powerful as regular key-
words. They have a special meaning only when used in a specific context. Many of 
these are considered query keywords and are used in query expressions. Some con-
textual keywords, such as partial and where, have special meanings in two or more 
contexts.

TABLE E-2 Contextual keywords

add alias ascending async await descending

dynamic from Get global group into

join let orderby partial remove select

set value var where yield

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1129

Gl o s s a ry

abstract class — Base class that cannot be 
instantiated. It can only be extended.
abstraction — The act of generalizing or 
thinking about an object in general terms. 
Through abstraction, data members and 
 behaviors of a class are identified.
abstract method — A method that includes 
no implementation details (no method body) in 
the declaration. Abstract method declarations 
are permitted only in abstract classes.
accessor — Special type of method used to 
read or retrieve the current state or value of an 
object’s member’s data. Also referred to as getter.
accumulation — An operation commonly found 
in applications that need to add together the values 
that a single variable holds. A variable initialized to 
zero is used to hold the running total. For example, 
to determine the average of a set of values, the val-
ues are normally added to an accumulator variable 
and divided by the number of entries.
Active Server Pages (ASP) — A  Microsoft 
programming model for creating dynamic web 
pages. Using the traditional or classic Active 
Server Pages (ASP) model, code written in 
a scripting language, such as JavaScript or 
VBScript, is added to the HTML file.
ActiveX Data Objects (ADO.NET) — Suite 
of data access technologies used to manipulate 
databases.
actual arguments — The actual data that 
is sent to a method. Actual argument refers to 
the variable or literal that is placed inside the 
 parentheses in the method call. Sometimes 
referred to as actual parameters.
aggregation — See containment.

algorithm — A clear, unambiguous, step-  
by-step process for solving a problem. These 
steps are expressed completely and precisely  
so that all details are included.
American Standard Code for Information 
Interchange (ASCII) — A subset of Unicode, 
in which the first 128 characters correspond to 
the Unicode character set. ASCII consists of the 
alphabet for the English language, plus numbers 
and symbols.
application software — Programs developed  
to perform a specific task. A word  processor, 
such as Microsoft Word, is an example of 
 application software.
argument — The data included inside the paren-
theses during a method call. Parameter often 
refers to items appearing in the heading of the 
method; argument refers to the data appearing in 
the call to the method.
array — A data structure that allows multiple 
values of the same data type to be stored under a 
single identifier.
ArrayList — Listlike structure that can dynam-
ically increase or decrease in length.
array of array — See ragged array.
ASCII — See American Standard Code for 
Information Interchange.
ASP — See Active Server Pages.
ASP.NET — The Microsoft programming 
 framework that enables the creation of 
 applications that run on a Web server and 
 delivers  functionality through a browser.
assembler — Software that converts the assem-
bly programming language, which is a low-level 
programming language, into machine code.

© zeljkodan/Shutterstock.com

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1130 | Glossary

assemblies — Units that are configured and 
deployed in .NET.
assignment operator — The equals symbol 
(=). It is used to perform a compile-time initial-
ization or make an assignment.
attribute — The data member or field of the 
class. For example, one attribute of a Student 
class is studentNumber.
auto-implemented property — Property that 
does not require return or set statements. The 
body of the property is simply written as get; and 
set;.
automatic garbage collection — Releasing 
space back to the operating system for reuse.
automatic postback — An HTTP request to 
the server that is automatically triggered.
auto-property with initializer — An 
auto-property with an assignment statement 
used to initialize the data field.
auxiliary storage — Nonvolatile, permanent 
memory that can hold data for long periods, 
even when there is no power to the system. Also 
called secondary storage.
BAML — Binary XAML or a tokenized, binary 
representation of XAML. When you compile 
an application that contains XAML files, the 
markup gets converted into BAML.
base class — A class from which other classes 
can inherit characteristics. The base class is 
sometimes called the super or parent class. The 
ultimate base class of all classes in C# is object.
base type — The data type of the object. The 
type can be one of the predefined types such as 
int or string, a user-defined class that you create, 
or some other .NET class. All data values placed 
in an array must be of the same base type.
basic programming constructs — The 
three categories of programming statements 
that include simple sequence, iteration, and 
selection.
behavior — A process data goes through. 
The class definition uses methods to define the 
behavior of the data.
beta version — A working version of an appli-
cation that has not been fully tested and may still 
contain bugs or errors.
binary numbering system — Base 2 number 
system that uses two symbols (0 and 1).

binary operator — An operator in C# that 
requires two operands such as for the  operators 
* or /. There must be divisor and dividend 
 operands with the / operator.
bit — Binary digit that can hold one of two 
 values (0 or 1).
block comment — See multiline comment.
Boolean — A data type that can hold the values 
of true or false.
breakpoint — Marker placed in an application, 
indicating that the program should halt execu-
tion when it reaches that point.
bug — An error in a software program that is 
usually caused by a programmer mistake.
byte code — Form of instruction that the Java 
virtual machine executes.
call by value — The value of an argument 
that appears in the method call is copied and 
stored in a separate, different, memory location 
in the called method.
camel case — A naming convention used for 
variable and object identifiers in C#. The first 
letter of the identifier is lowercase and the first 
letter of each subsequent concatenated word 
is capitalized (i.e., amountDue). Also called 
 Hungarian notation.
Cascading Style Sheets(CSS) — Style sheet 
language used to describe how a document, such 
as a website, will look in terms of its layout to 
include elements such as font and colors.
case statement — See switch statement.
cast — The process of making a variable tem-
porarily behave as if it were a different type.
catch block — Code used to deal with a problem 
(the exception handler); also called a catch clause.
catch clause — See catch block.
central processing unit (CPU) — The 
brain of the computer. Housed inside the system 
unit on a silicon chip, it is the most important 
hardware element.
checked exception — Requirement of includ-
ing code within a try. . .catch block. All file inter-
actions in Java are treated as checked exceptions. 
C# Language Specifications — Authorita-
tive source for C# grammar and syntax. Speci-
fication detail information on all aspects of the 
language.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Glossary | 1131

class — A term denoting the encapsulation of 
data and behaviors into a single package or unit. 
Class is the template from which many objects 
are instantiated.
class diagram — A visual representation of 
classes and the relationships between them.
client application — A client application 
that instantiates objects of classes defined else-
where or uses components that were previously 
defined and stored as .dlls. Many client applica-
tions can make use of these same classes and 
components.
client–server relationship — Relationship  
between two computer programs in which one 
program, the client, makes a service request 
from another program, the server, which fulfills 
the request.
client-side controls — See HTML 
controls.
client-side scripts — Code that is embed-
ded in the HTML document. It is executed on 
the client computer normally in a Web browser.
CLR — See Common Language Runtime.
COBOL — (Common Business Oriented 
 Language) High-level programming language 
introduced in the 1950s.
code-behind file — When you build an ASP. 
NET Web application, two separate files are cre-
ated for the user interface. The file storing the 
logic is referred to as the code-behind file.
collection class — Class that enables you to 
store and retrieve groups of objects, such as an 
Array, ArrayList, or Stack.
Common Language Runtime (CLR) — The 
.NET run-time environment that enables the 
code to be compiled and executed. The CLR is 
also responsible for loading predefined .NET 
classes into a program and performing just-in-
time (JIT) compilation.
Compact Framework Class Library (FCL) —  
A new smaller Framework class library that is 
used with mobile and smart devices such as PDAs, 
tablets, and cell phones.
compiler — Software that examines an entire 
program and translates the source code state-
ments written in a programming language such 
as C# into machine-readable format.
compiler error — Language rule violation.

compile-time initialization — Placing a 
value in a variable when it is declared or created.
Component-Based Development — Design 
and develop independent components that can 
be reused and are packaged together to form the 
final application.
compound operators — Shortcut way to write 
an assignment statement that uses the original 
result as part of the computation.
conditional expression — An expression 
that produces a Boolean result. Also known as 
the test condition or simply ‘the test’.
conditional logical operators — C# uses 
two ampersands (&&) and two pipes (||) to rep-
resent AND and OR, respectively. Logical && 
produces a value of true if both of its operands 
are true. Logical || produces a value of true if 
either of its operands are true.
conditional operator — See ternary operator.
console application — Applications that 
send requests to the operating system to  display 
text on the command console display or to 
retrieve data from the keyboard.
constant — A data item defined and initialized 
to keep the same value throughout the life of the 
program.
constructor — A method called whenever an 
object is created. The constructor uses the same 
identifier as the class name.
containment — Classes can have a “has a” rela-
tionship in which a single class is defined to have 
instances of other class types. This concept is 
also called aggregation.
controls — Objects that can display and respond 
to user interactions, such as button clicks.
counter-controlled loop — Used when the 
loop should be executed a specified number of 
times. With a counter-controlled loop, a vari-
able simulating a counter is used as the loop 
control variable to keep track of the number of 
iterations.
CSS — See Cascading Style Sheets.
data — The raw facts or the basic numbers and 
characters that are manipulated to produce use-
ful information.
database — An electronic version of a filing 
cabinet, organized so that you can retrieve and 
use the data.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1132 | Glossary

DLinq (LINQ to SQL) — Version of LINQ that 
focuses on querying data from relational data 
sources.
domain — A range of the values that a data 
item can store. For example, the domain of 
 letterGrades awarded in most college courses 
is the characters ‘A’ through ‘F’.
dynamic binding — The determination of 
which method to call is done at execution time 
or run time, not during the compile phase. The 
decision about which method to call is based on 
what type of data is sent as the argument.
dynamic data type — A type, or class, created 
at run time that can hold any kind of data.
dynamic web pages — Web pages that involve 
processing in addition to rendering the format-
ting of HTML tags.
dynamic website — Web pages that enable 
users to interact and see the results of their 
interactions.
element — An individual variable in an array 
is called an element of the array and is accessed 
through an index. Elements in an array are some-
times referred to as indexed or subscripted variables.
empty bodied loop — A loop that has no 
statements to be performed. Placing the semi-
colon at the end of a conditional expression 
produces a loop that has no body or an empty 
bodied loop.
emulator — A device that simulates the opera-
tion of some type of hardware, such as a smart 
phone.
encapsulate — Used in object-oriented pro-
gramming, the act of combining the attributes 
and behaviors (characteristics and actions) of 
data to form a class.
encapsulation — One of the four major con-
cepts that form the basis of an object-oriented 
programming language. With encapsulation, the 
language provides support for packaging data 
attributes and behaviors into a single unit, thus 
hiding implementation details.
entity — Classes define entities. An entity is 
usually associated with a person, place, or thing; 
it is normally a noun. Through defining a class, 
the entity is described in terms of its current 
state and behaviors.

Database Management System (DBMS) — A 
computer program used to manage and query a 
database.
data file — A computer file that can be pro-
cessed, manipulated, or used as input or output 
by a computer program.
data provider — Used for connecting to a 
database, executing commands, and retrieving 
results. Each data provider includes a collection 
of classes. .NET includes data providers for SQL 
server, OLE DB (Access), ODBC, and Oracle.
dataset — An in-memory cache or representa-
tion of data from a database.
debugging — Methodical process of finding and 
reducing bugs or defects in a computer program.
decimal system — Base-10 numbering system 
that uses 10 symbols.
decimal value type — A value type appropri-
ate for storing monetary data items because it 
allows both integral (whole) numbers and a frac-
tional portion.
decision tree — Design tool used when 
several options are available. It has nodes repre-
senting decision points, lines that branch out to 
represent further conditions, and shows actions 
based on which route is selected.
declare a variable — The act of allocating 
memory for a data item in a program. To declare 
a variable, you select an identifier and determine 
what type of data will appear in the memory cell.
delegate — Special types of .NET class whose 
instances store references (addresses) to meth-
ods as opposed to storing actual data.
derived — A child class. When a class is 
derived from another class, the new class inher-
its all the functionality of the base class.
desk check — The use of sample data to verify 
programming algorithms by mimicking or walk-
ing through each step the computer will take to 
solve the algorithm.
dimension an array — To instantiate an array 
by indicating how many elements to allocate.
distributed computing — Computing that 
takes place when applications are spread over 
more than one computer system.
divide and conquer design — See top-
down design.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Glossary | 1133

to store only the integer portion of the following 
value, an explicit coercion would take the form: 
int answer = (int) 53.77.
Extensible Markup Language (XML) — A 
markup language that provides a format for 
describing data using tags similar to HTML tags.
fall through — A feature associated with 
switch statements in some languages in which 
the break statement(s) are optional. Once a 
match is made, all remaining statements are 
executed until a break or the end is encountered. 
C# enforces a “no fall through” rule with switch 
statements.
flag-controlled loop — A loop that nor-
mally uses a Boolean variable in the conditional 
expression to control the loop. The variable is 
initialized to a value before entering the loop. 
When a condition changes, the variable is 
changed and then the next test of the conditional 
expression causes the loop to terminate.
floating-point value — One of the types 
of numbers in C# that may contain a fractional 
portion. C# supports two types of floating-point 
values: float and double.
focus — When a control is being selected 
for the next activity in a Windows or Web 
application.
foreign key — A common column found in 
two or more tables used to link data in the tables.
formal parameter — The paired group(s) of 
identifier and type that appears in the heading of 
a method.
FORTRAN — (Formula Translator) High-level 
programming language introduced in the 1950s.
general-purpose computer systems — 
Electronic devices that process data under the 
control of a program.
generic catch — No specific exception type 
is listed. Any exception that is thrown is handled 
by executing the code within that catch block.
generics — A feature that allows classes and 
methods to use placeholders, instead of specific 
types, for the data type.
getters — See accessor.
gigabyte — Approximately 1 billion. 230 
(1,073,741,824) bytes abbreviated as GB.

enumeration — A type consisting of a set of 
named constants. Color for example has values 
such as White, Black, Blue and Green.
equality operator — Two equal symbol 
characters (==) used as part of a conditional 
expression for comparing operands. Char and 
string operands are compared using the diction-
ary order. No space is inserted between the two 
equal symbols.
error — Programs may experience an error 
caused by a user action that may cause an excep-
tion to be thrown. Entering the wrong type of 
data from the keyboard is an example of a com-
mon error.
escape character — The backslash(‘\’) 
character.
escape sequence — Combination of the 
escape character (‘\’) followed by another letter 
to represent an action, such as ‘\n’ for newline.
event — A notification from the operating sys-
tem that an action, such as the user clicking the 
mouse or pressing a key has occurred.
event-driven model — The model used by 
Windows and Web applications wherein, once the 
program is executed, it sits in a process loop wait-
ing for an event, such as mouse clicks, to occur.
event firing — When a user clicks a button, 
an event is fired that causes the operating system 
to send a message to a program indicating that a 
registered event has occurred.
event handler — Method that defines what 
should happen when an event such as a mouse 
click on a button or a click on the keyboard occurs.
event wiring — Associating a method in a 
program to an event, such as the user clicking a 
button. The method is automatically called when 
the event occurs.
exception — An unexpected condition in a 
computer program that occurs infrequently and 
is usually associated with error conditions that 
cause abnormal terminations if they are not 
handled.
exception handler — A block of code that is 
executed when an exception occurs.
explicit type coercion — Forcing a vari-
able to be a different type. Explicit type coercion 
is performed using casting in C#. For example, 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1134 | Glossary

items, variables, objects, classes, or methods. 
Some identifiers are predefined; others are user 
defined.
if statement — The selection statement, 
classified as one-way, two-way, or nested, which 
is used in combination with a conditional 
expression to facilitate specifying alternate 
paths based on the result of the conditional 
expression.
IL — See Intermediate Language.
immutable — Something that cannot be 
changed. Objects of the string class store an 
immutable series of characters.
implicit type coercion — Automatic 
 conversion, without using casting, from one 
type to another. Normally conversion occurs 
from less precise to more precise data types. 
For example, if a binary operation involves a 
double and an int, implicit type coercion is  
performed so that both operands are treated  
as double.
increment/decrement operator — The 
operator used for the common arithmetic 
 operation of adding or subtracting the number 
one (1) to or from a memory location. To add or 
subtract one from an operand, place either two 
plus (++) or two minus symbols (−−) before or 
after the identifier. Both are considered binary 
operators.
indefinite loop — See sentinel-controlled 
loop.
index — A numeric value, also called the 
subscript, used to reference the location of 
the variable relative to the first element in the 
array. In C#, the index of the first element is 
always 0.
indexed variable — See element.
infinite loop — A loop that has no 
 provisions for termination. Placing a semicolon 
at the end of the conditional expression can 
 create an infinite loop situation.
information hiding — Making data private 
and only accessible to the class.
inheritance — The concept of defining 
 subclasses of data objects that share some or all 
of the parent’s class characteristics.
inline comment — Single-line comment 
 indicated by two forward slashes.

GitHub — Web-based repository hosting service 
that offers source control management and revi-
sion control.
graphical user interface (GUI) — The 
menus, tabs, buttons, pictures, and text that 
enable users to interact with applications.
GUI — See graphical user interface.
hashing — Technique used where data is 
coded or encrypted following some type of 
algorithm. The same algorithm is used to 
decrypt or convert the message back to a read-
able form.
hashTable — A collection of key/value pairs 
that are organized based on the hash code of the 
key.
HCI — See human–computer interaction.
heading — The first line of a method. It 
includes the visibility modifier, return type, 
and the identifier along with the parameter list 
enclosed in parentheses.
hexadecimal numbering system — The Base 
16 number system with powers of 16. Uses the 
symbols 0-9 and A-F.
high-level programming language — 
A modern programming language that is 
designed to be easy to read and write because 
it is written in English-like statements. High-
level programming languages include C#, 
Visual Basic, FORTRAN, Pascal, C++, Java, 
and J#.
HTML — See Hypertext Markup Language.
HTML controls — Controls added to a web 
page that are rendered by the browser when the 
page is displayed. When added to a web page, 
they map straight to HTML formatting tags. 
human–computer interaction (HCI) — A 
field of research that concentrates on the design 
and implementation of interactive computing 
systems for human use.
Hungarian notation — See camel case.
Hypertext Markup Language (HTML) — A 
language, consisting of tags, used to create web 
pages.
IDE — See Integrated Development 
Environment.
identifiers — The names of elements that 
appear in a program, such as the names of data 

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Glossary | 1135

iterative approach — An approach used by 
programmers, which calls for frequent return 
to the design and/or analysis phases to make 
 modifications as a program is being developed.
jagged array — See ragged array.
Java — High-level programming language 
introduced in 1995, originally called Oak.
JavaScript — A scripting language that Web 
developers use to create interactive websites. 
The script is embedded in the file that contains 
the HTML tags.
JIT — See just-in-time.
JITer — The Common Language Runtime 
tool used for a just-in-time compilation, which 
 converts the IL code into CPU specific code.
JScript — The Microsoft implementation of 
JavaScript.
jump statement — A statement that changes 
the sequential order of statement execution 
by transferring control to a different point in 
the program. The break statement is one jump 
 statement. When encountered inside a switch 
statement, control is redirected to the statement 
on the outside of the switch block.
just-in-time (JIT) — The second 
 compilation. JIT converts the intermediate 
 language code into the platform’s native code.
keyword — Predefined reserved identifier that 
has a specially defined meaning for the compiler.
kilobyte — Approximately 1 thousand. 210 
(1,024) bytes abbreviated as KB.
Language Integrated Query — .NET com-
ponent that defines a set of query operators that 
can be applied to a number of different data 
sources including arrays, databases, and XML 
data sources.
language specifications — See C# 
 Language Specifications.
left-associative — Mathematical term 
used to describe the order of operations in an 
expression. Expression is performed from left to 
right. All binary operators, except the equality 
operators and the conditional operator (?:) are 
left-associative.
length of an array — The number of 
 elements of an array the size of the array.
LINQ — See Language Integrated Query.

instance — An example of something. An 
object is an instance of a class.
instance variable — Data member 
 associated with an object of a class.
instantiate — To create an instance of a 
class. If you define a template (blueprint) for a 
class (house), you instantiate the class when you 
 create an object (construct the building).
integer (int) — One of the types of numbers 
in C#. A whole number, between a certain range 
of values, that contains no decimal point and can 
be positive or negative.
Integrated Development Environment 
(IDE) — A program environment, such as 
Visual Studio .NET, in which you type your 
source code statements, debug, compile, and 
run your application. IDEs include a number of 
useful development tools: IntelliSense (pop-up 
windows with completion options), color coding 
of different program sections, and online help 
and documentation.
IntelliSense — A feature of the Integrated 
Development Environment (IDE) that attempts 
to sense what you are going to type before you 
type it. When the IntelliSense window pops up, 
you can quickly select from the pull-down menu 
without having to complete the typing.
interface — The front end of a program. It is 
the visual image you see when you run a program, 
and it allows users to interact with programs.
interface keyword — A type similar to a 
class that is totally abstract. Interfaces contain 
no implementation details for any of their mem-
bers; all their members are considered abstract. 
Classes that implement the interface must define 
details for all of the interface’s methods.
Intermediate Language (IL) — When no 
syntax errors are found during compilation,  
.NET source code is converted into the 
 Intermediate Language (IL). All languages 
 targeting the .NET platform compile into  
an IL. IL code must be compiled a second  
time before results are seen.
iteration structure — A looping structure.  
Iteration enables you to identify and block  
together one or more statements to be repeated 
based on a predetermined condition. Also called 
repetition.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1136 | Glossary

methods — How behaviors are implemented in 
C#. Similar to functions found in other languages.
Microsoft Intermediate Language (MSIL) —  
C# code generated by compiler.
mixed mode expression — When an expres-
sion has operands of different types.
Model-View-Controller (MVC) — An  
ASP.NET Web application framework that 
implements the model-view controller pattern 
for designing websites where each component 
can be designed and tested independently.
multicast delegate — Provides functional-
ity to be wired to more than one method. When 
the multicast delegate is used, multiple methods 
are called automatically, one after the other. 
The (+=) and (−=) operators are used to add or 
remove methods to and from the delegate chain 
or invocation list.
multiline comment — A remark in code that 
explains its function. A forward slash followed 
by an asterisk (/*) marks the beginning of a mul-
tiline comment, and the opposite pattern (*/) 
marks the end. Also called a block comment.
mutator — Special type of method used to 
change the current state or value of an object’s 
member’s data. Also referred to as setter.
mutually exclusive set of controls — A 
set of controls of which only one can be selected 
at a time. Radio buttons are often included in 
this category.
namespace — Container providing context for 
information created to hold a logical grouping of 
unique identifiers or symbols.
native code — See machine language.
nested if...else statement — When you 
place an if statement as the statement to be 
executed within an if statement, you create 
a nested if...else statement. If no else is 
included, the construct is referred to as a nested 
if statement.
NET — An environment layer between the oper-
ating system and applications for developing and 
running code.
NET Framework — Large library of coded solu-
tions to common programming problems and a 
virtual machine that manages the execution of 
programs written in a variety of programming 
languages.

lining up — Rule related to space alignment 
with a nested if. . .else statements. The rule for 
 matching else is that an else goes with the closest 
previous if that does not have its own else.
literal — The numbers, characters, and 
combinations of characters used in a program. 
They can be assigned to a variable or used in an 
expression and their values stay constant. For 
example, 5 is a numeric literal, “A” is a character 
literal, and “Bob” is a string literal.
logical negation operator — The excla-
mation symbol (!). It is a unary operator that 
negates its operand and is called the NOT 
 operator. It returns true when operand1 is 
false. It returns false when operand1 is 
true.
logical operators — Symbols (&), (&&), 
(|), (||), and (!) used to connect or negate 
expressions.
logic error — An error in programs that 
causes an abnormal termination of a program or 
produces incorrect results.
loop condition — The conditional expression 
or the logical condition to be tested. A loop con-
dition is enclosed in parentheses and is similar to 
the expressions used for selection statements.
loop control variable — Used with a 
 counter-controlled loop. A loop control variable 
is a variable that simulates a counter.
loop — See iteration.
low-level programming language — 
 Programming language close to machine 
 language, not easy to read or understand.
machine language — Code that can be read by 
a computer. Also called native code.
main memory — See random-access memory.
Master Page — Web page template that pro-
vides a common look for individual content pages.
matching if...else — See lining up.
megabyte — Approximately 1 million. 220 
(1,048,576) bytes abbreviated as MB.
methodology — A plan or approach for solving 
computer-related problems.
method definition — The heading and the 
body of the method, which includes everything 
enclosed in curly braces.
method invocation — Method call.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Glossary | 1137

out — Used to implement pass by reference. 
Unlike the ref keyword, out can be used for 
methods that allow users to enter new values 
inside the method. The keyword out must be 
placed both with the parameter and also in the 
argument list.
overloaded methods — Multiple methods 
with the same name, but each method has a 
 different number or type of parameter.
overloaded operator — Operators that 
behave differently based on the type of operands 
they receive. The following are overloaded oper-
ators: (+), (==), and (!=).
override keyword — A keyword that can be 
added to the method heading to allow a method 
to provide a new implementation (method body) 
of a method inherited from a base class.
page validation — Every control field on the 
page that has a validation control is checked when 
page validation occurs to determine whether it 
passes the validation rules. By default, page vali-
dation occurs when Click events are fired.
parallel arrays — Two or more arrays that 
have a relationship.
parameter — The paired data type and identi-
fier that appears in the heading of the method.
parameter array — When a method uses the 
params modifier, the parameter is considered a 
parameter array. It is used to indicate that the 
number of arguments to the method may vary.
parent class — See base class.
partial class — When the definition for a 
class is split into two or more files. The source 
code files are combined when the application is 
compiled and run.
Pascal case — A naming convention used for 
class, method, namespace, and property identi-
fiers. With Pascal case, the first letter in the 
identifier and the first letters of each subsequent 
concatenated word are capitalized.
pass by reference — Send to a method the 
address of the variable, so that if changes are 
made to the variable in the method, the changes 
will also occur to the calling variable.
pass by value — Send to a method a copy of 
the contents of the variable, so that if changes are 
made to the variable in the method, the changes 
will not occur to the calling variable.

not equal operator — An exclamation point 
followed by a single equal symbol (!=). No space 
is embedded between the exclamation point and 
equal symbol.
NOT operator — See logical negation operator.
null (empty) statement body — When you 
place a semicolon at the end of a parenthesized 
expression, such as the expression used with a 
loop or selection statement, you are creating a 
null (empty) statement body.
object — An instance or example of a class. 
Object is also the base class of all derived classes 
in C#.
object-oriented analysis, design, and 
programming — A programming methodology 
that focuses on determining the objects to be 
manipulated rather than the processes or logic 
required to manipulate the data.
object-oriented approach — An approach 
to programming that focuses on determining the 
data characteristics and the methods or behav-
iors that operate on the data.
object-oriented programming (OOP) 
 language — For a language to be considered a 
true object-oriented programming (OOP) lan-
guage, it must support the following four major 
concepts, which C# and the .NET platform 
embrace: abstraction, encapsulation, inheritance, 
and polymorphism.
octal numbering system — The Base 8 num-
bering system that uses powers of eight. Uses 
symbols 0 through 7.
off-by-one error — A common programmer 
error in which a loop body is performed one too 
many or one too few times.
one-way selection statement — A one-
way selection statement is used when a single 
expression needs to be tested. When the result of 
the expression is true, additional processing is 
performed.
OOP — See object-oriented programming.
operating system — The system software 
that is loaded when a computer is powered on 
and that oversees and coordinates the resources 
on a computer. Examples of operating systems 
include Windows 8, Android, and Unix.
order of operations — The order in which 
calculations are performed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1138 | Glossary

pseudocode — A tool used during the program-
ming design stage to develop an algorithm. As 
the name implies, with pseudocode, steps are 
written in “pseudo” or approximate code format, 
which looks like English statements.
query contextual keyword — Keywords that 
have special meaning only when used in a query 
expression.
queue — A simple first-in-first-out (FIFO) 
collection.
ragged array — A multidimensional array 
that has a different number of columns in one or 
more rows. Jagged, or ragged arrays,  differ from 
rectangular arrays in that rectangular arrays 
always have a rectangular shape, like a table. Jag-
ged arrays are called “arrays of arrays.” One row 
might have 5 columns; another row, 50 columns.
raise an exception — To throw an excep-
tion. When a program encounters an error such 
as division by zero during run time, and the pro-
gram cannot recover from the error, it raises or 
throws an exception.
random-access memory (RAM) — The device 
that holds a computer’s instructions and data. 
Also commonly called main memory.
rectangular two-dimensional array — 
A two-dimensional array visualized as a table 
divided into rows and columns. Much like a 
spreadsheet in which the rows and columns 
intersect, data is stored in individual cells.
recursion — Technique where a method calls 
itself repeatedly until it arrives at the solution.
redistributable version — Smaller down-
load that includes CLR and class library.
ref — Used to implement pass by reference. The 
ref keyword cannot be used unless the original 
argument is initialized. The keyword ref must be 
placed both with the parameter and also in the 
argument list.
relational database — Data structure that 
stores data in a tabular format with each row 
representing a record and each column repre-
senting a field.
relational operators — Operators used to 
test variables to see if one is greater or less than 
another variable or value. The symbols used for 
relational operators are >, <, >=, and <=.

polymorphism — The ability of classes to pro-
vide different implementations of methods based 
on what type of argument is used for the call or 
which object invokes the method behavior. Poly-
morphism is one of the four major concepts that 
form the basis of an object-oriented program-
ming language.
precedence of the operators — The order 
in which the individual operators are evaluated 
when an expression contains multiple operators.
pre-processor directive — Indicates that 
an action should be taken before processing. 
Preprocessor directives are often associated with 
conditionally skipping sections of source files or 
reporting certain types of errors. C# does not 
actually perform a preprocess.
pre-test loop — A conditional expression is 
tested before any of the statements in the body 
of the loop are performed. If the conditional 
expression evaluates to false, the statement(s) 
in the body of the loop is (are) never performed. 
The while and for statements are both pretest 
types of loops.
primary key — A column (field) or combina-
tion of columns that uniquely identify a row in 
a table.
primary storage — The internal or main 
memory of a computer system.
prime the read — The act of inputting a value 
before going into the body of the loop.
primitive — The basic set of built-in data types. 
Data types in C# are implemented as classes.
procedural programming — A programming 
approach that is process oriented and focuses on 
the processes that data undergo from input until 
meaningful output. This approach is effective for 
small, stand-alone applications.
program — A set of instructions that tells the 
computer exactly what to do. Also referred to as 
software.
programming language — A set of syntactical 
and semantic rules for how to write computer 
instructions.
property — Considered smart fields, they pro-
vide access to private data members.
prototype — A mock-up of screens depicting 
the look of the final output of a program.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Glossary | 1139

semantic meaning — The meaning of a pro-
gramming instruction statement rather than the 
rules for how it should be written.
sentinel-controlled loop — A type of loop 
that is terminated by entering or encountering 
a sentinel value. Sentinel-controlled loops are 
often used for inputting data when you do not 
know the exact number of values to be entered.
sentinel value — A value used to terminate 
a loop. It should be an extreme or dummy value 
that should not be processed, such as a nega-
tive value when only positive scores are to be 
processed.
server controls — Controls that are treated 
as objects, complete with data, behaviors, and 
properties. The Web server has access to these 
controls. Also referred to as Web controls, Web 
Forms server controls, ASP server controls, or 
simply Web Forms controls.
server-side scripts — Code that requires 
processing to be performed at the server level 
before a web page can be delivered.
setter — See mutator.
short-circuit evaluation — Evaluation of 
second and subsequent expressions is performed 
only when necessary. As soon as the value of the 
entire expression is known, evaluation stops. For 
example, in a conditional expression combined 
using &&, when the first expression evaluates to 
false, there is no need to evaluate the second 
expression.
short-circuiting logical operators — 
Operators that enable the minimal execution 
of code to produce the final result. The logical 
AND (&&) and OR (||) operators are the short-
circuiting logical operators in C#.
signature — The name of the method, modi-
fiers, and the types of its formal parameters. Dif-
fers from the method heading in that the heading 
also includes the return type for the method and 
identifiers for the data type.
simple sequence — One of the three basic 
programming constructs that causes sequential 
execution of programming statements. Execution 
begins with the first statement and continues 
until the end of the method or until another type 
of construct (loop or selection) is encountered.

render — To convert a web page from HTML 
to a formatted page on the client computer that 
requested the page.
repetition — See iteration structure.
right-associative — Actions in an expres-
sion that are performed from right to left. The 
assignment operators (such as =, +=, *=) and 
conditional operator (?:) are right-associative. All 
other binary operators are left-associative.
round trip to the server — Each request 
to view a web page requires a round trip to the 
server on which the page is stored. The user 
requests the page via Hypertext Transfer Pro-
tocol by typing the Web address into a Web 
browser. That request is forwarded to the Web 
server on which the page is stored. The page is 
then sent back as a Hypertext Markup Language 
document where it is rendered (converted from 
HTML) to a formatted page on the client com-
puter that requested the page.
row major language — Languages that store 
data from two-dimensional arrays by row in 
contiguous memory locations. All elements from 
row 0 are placed in memory first followed by all 
elements from row 1 and so on.
run-time error — Errors that surface when 
the program is executed. Usually the program 
compiles without any problems, runs, and may 
even produce some type of result.
scope — The region in the program in which 
a variable exists. For example, if a variable 
is declared in a method, it can be used in 
that method only. It is out of scope in other 
methods.
sealed class — Class that cannot serve as a 
base class. It cannot be inherited.
secondary storage — See auxiliary storage.
selection statement — A statement used for 
decision making that allows you to deviate from 
the sequential path laid out by a simple sequence 
and perform instead different statements based 
on the value of an expression.
selector — With the switch statement, this 
is the expression enclosed inside the paren-
theses. It follows the word “switch.” Its value 
determines, or selects, which of the cases is 
executed.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1140 | Glossary

static web page — A web page that does not 
require any processing on the client computer or 
by a Web server. It is precreated, resides on the 
server’s hard drive, and basically is delivered as 
an HTML document.
Step Into — Debugger command that indi-
cates the program halts at the first line of code 
inside the called method.
Step Out — Debugger command that causes 
the rest of the program statements in the called 
method to be executed. It then returns control to 
the method that called it and halts so that code 
can be examined.
Step Over — Debugger command that indi-
cates the entire called method should execute 
before halting.
stepwise refinement — See top-down design.
string interpolation — A feature that 
enables you to place variables directly in a string 
literal as opposed to using number placeholders 
and arguments.
Structured English — A tool used during 
the programming design stage to develop an 
algorithm using a mixture of English and code 
statements.
style sheet — A file or form that defines the 
layout of a document to include fonts, text align-
ment, borders, spacing, and other formatting 
elements.
subscript — See index.
subscripted variable — See element.
super class — See base class.
switch statement — A multiple selection 
structure that allows you to perform a large num-
ber of alternatives based on the value of a single 
variable. This variable or expression must evaluate 
to an integral or string value. It cannot be used 
with double, decimal, or float variables but 
is appropriate for short, int, long, char, and 
string data types. Also called a case statement.
syntax — Rules for writing programs.
syntax error — Violation of any of the rules of 
the language caught by the compiler.
ternary operator — A ternary operator 
consists of a question mark and a colon (? :) and 
provides a way to express a simple if...else 
selection statement. Also called the conditional 
operator.

single entry and single exit — 
 Guidelines for providing only one way to enter 
and exit loops, selection statements, and meth-
ods. You violate the single entry and single exit 
guideline when you use break and continue 
statements within the loop body or when you 
write a method that has more than one return 
statement inside the method body.
single inheritance — Class that can extend 
or derive from at most one class.
single-line comment — A remark in code that 
explains its function. Two forward slashes (//) are 
used to mark the beginning of a single-line com-
ment; the comment is terminated at the end of 
the current line when the Enter key is pressed.
size of an array — See length of an array.
software — Computer programs or instruc-
tions that perform a task or manage the func-
tions of a computer.
software maintenance — Updating or chang-
ing an application.
source code — Program statements written 
using a programming language, such as C#.
specifications — Description of what the 
program should accomplish.
SQL (Structured Query Language) — A 
computer language used to create tables, or 
insert, delete, query, or update data in a table.
stack — A simple last-in-first-out (LIFO) 
collection.
stack trace — A listing of all the methods that are 
in an execution chain when an exception is thrown.
state-controlled loop — A variable is initial-
ized to some value before entering the loop. When 
a condition changes, the variable is changed. The 
next test of the conditional expression causes the 
loop to terminate. A state- controlled loop is simi-
lar to a sentinel-controlled loop and is sometimes 
called a flag-controlled loop.
stateless — A stateless web page does not 
retain its values from one trip to the Web server 
to the next.
static — Modifier added to methods to indi-
cate the method belongs to the class itself, not 
to a specific object of the class. To invoke the 
static methods, the method name is preceded 
by the class name (as opposed to an object’s 
name).

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Glossary | 1141

uniform resource locator (URL) — An 
address of a file on the Internet that consists 
of the protocol, the computer where the file is 
located, and the file’s location on that computer.
uppercase — One of three .NET conventions 
for naming identifiers. All uppercase characters 
are used for the names of constant literals and 
for identifiers that consist of two or fewer letters.
URL — See universal resource locator.
validation controls — Controls that can be 
added to a web page that enable user input to be 
validated or checked by the server to ensure that 
the information entered is valid or is in the right 
format.
value type — A fundamental data type of 
the C# language that is copied when passed as 
an argument to a method. Can include built-
in floating and integral types or user-defined 
types.
variable — The representation of an area in 
the computer memory in which a value of a par-
ticular data type can be stored.
VBScript — A scripting language used to add 
additional functionality to web pages beyond 
what HTML formatting tags do. Used with tra-
ditional ASP applications. VBScript is a subset of 
Microsoft Visual Basic 6.0.
verbatim string literal — Take the string 
exactly as it is. By preceding a string literal with 
the at symbol (@), the characters are interpreted 
exactly as they are typed. Using @-quoted string 
literals eliminates the need to include an extra 
backslash before the backslash when it is part of 
the string.
Visual Studio — A suite of products that 
includes several programming languages, includ-
ing C# along with a large collection of develop-
ment and debugging tools.
Web application — A collection of one or 
more related files or components stored on a 
Web server. Web applications are also called 
websites.
Web controls — See server controls.
Web Forms — A tool of ASP.NET technology 
that enables the building of programmable web 
pages that serve as a user interface for Web 
applications.
Web Forms controls — See server controls.

test condition — See conditional expression.
Test Driven Development (TDD) — 
 Programming methodology that emphasizes 
fast, incremental development and writing tests 
before writing code.
test plan — The strategy devised to test code. 
Usually includes plans for testing extreme values, 
identifying possible problem cases, and ensuring 
that these cases are tested.
the test — See conditional expression.
throw an exception — See raise an exception.
throw back — To send an exception backward 
through the call chain until a method is found 
that can handle the exception or until it reaches 
the operating system, which halts the program 
execution.
top-down design — A design methodol-
ogy that divides a problem into a number of 
subproblems. Each subproblem is then further 
subdivided into smaller units until the method is 
manageable. Also called the divide-and-conquer 
approach or step-wise refinement.
truncate — To chop off the fractional part of 
a number. For example, if the number 3.87 is 
placed in an integer variable, the integer can only 
hold the whole number portion; thus, .87 is trun-
cated and 3 is stored in the variable.
two-dimensional array — See rectangular 
two-dimensional array.
two-way if statement — An if state-
ment with the else portion included. With 
a  two-way if statement, either the true 
statement(s)  following the if is (are) executed 
or the false statement(s) following the else, 
but not both.
unary operator — An operator that requires a 
single operand. Examples in C# are the ++ and −− 
operators that increment and decrement by one.
unhandled exception — When a computer 
program runs and encounters an error it can-
not handle, it raises an exception. If none of the 
methods include code to handle the error, the 
common language run time handles the excep-
tion by halting the entire application.
Unicode — The character set used by program-
mers of C#. The Unicode character set uses 16 
bits to represent a character; thus, 216 or 65,536 
unique characters can be represented.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1142 | Glossary

WPF — See Windows Presentation Foundation.
wrap — Associating a delegate to one or more 
methods, so that when a delegate is used, the 
method(s) is (are) automatically called.
WYSIWYG — Acronym for “What you see is what 
you get”.
Xamarin — Software company whose engineers 
created Mono and later developed cross- platform 
software to build and design mobile apps.
XAML — eXtensible Application Markup 
 Language. Think of the XAML file as an 
HTML file, with beginning and ending tags, for 
 Windows applications.
XHTML (Extensible HyperText Markup 
Language) — A markup language that extends 
HTML and is designed to work in conjunction 
with XML-based documents.
XLinq (LINQ to XML) — Version of LINQ that 
focuses on querying XML data.
XML — See Extensible Markup Language.

Web Forms server controls — See server 
controls.
Web server — Software that hosts or delivers 
a Web application. The hardware on which the 
Web server software is loaded is often called a 
Web server, but it is the software that makes the 
equipment special and thus enables the com-
puter to be called a server.
Windows application — Applications 
designed for the single platform desktop that 
receive messages from the operating system 
when an event occurs.
Windows Presentation Foundation — 
A vector-based, resolution-independent 
 Application Program Interface (API)  alternative 
to using Win Forms for creating Windows 
 interfaces that incorporate documents, media, 
two- and three-dimensional graphics, and 
 animations into an application. The latest  version 
of the Visual Studio IDE was built using WPF.
wiring an event — See event wiring.

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1143

In d e x

Bold page numbers indicate definitions.

A
Abs() method, 158
abstract classes,  

729–733, 735, 736,  
742–746, 754, 757, 760, 774

abstracting out attributes, 19
abstraction, 19, 700
abstract keyword, 730, 733, 

737, 745–746
abstract members, 735–744
abstract methods, 730–733, 

738
AcceptButton property, 

558, 569, 609, 827
AcceptsReturn property, 

550, 571
AcceptsTab property, 550
Access.accdb file, 1063
Access databases, 960–963, 

1051–1052
AccessDataSource class, 

1060–1061, 1069
AccessDataSource  

object, 1051
access keys, 618
access modifiers, 141, 142, 

705–707
accessors, 208, 217–218
accumulation, 104–105
acrord32.exe program, 489
actions, encapsulated, 19
actual arguments, 144
Ada programming language, 3
AddDays() method, 1046, 

1049–1050
AddHours() method, 1046
Addition compound operator 

(+=), 105, 598
Addition operator (+), 98, 100
Add() method, 476, 489, 493, 

546, 606, 610, 613, 743
AddMinutes() method, 1046
AddMonths() method, 1046
AddYears() method, 1046
ADO.NET, 25, 908, 910–937, 

1051
AdRotator class, 1069
AgeIncrementer.cs file, 154
Age property, 745
aggregation, 703
Ajax, 998
algorithms, 11, 16, 54, 122, 

365–366, 488, 746–752
Alignment property, 647, 954
American Standard Code for 

Information Interchange 
(ASCII), 75, 869

anArray array, 405
Anchor property, 543
AND keyword, 918
AND (&) operator, 268
AND (&&) operator, 265–266, 

268–269, 285, 354
anonymous data type, 83
App.config file, 946, 948
Appendalltext() method, 

853
AppendText() method, 

551, 853

assembly languages, 21–22
assignment operator (=), 

95, 106, 260, 296–297, 
423–424

assignment statements, 94–97, 
104, 206, 295

AssignSectionNumber() 
method, 144

attributes, 19, 198
Attributes property, 858
AutoFlush property, 862
Auto Hide feature, 525
auto implemented properties, 

212–213
automatic garbage collection, 

352, 536
AutoPostBack property, 

1034, 1036
AutoScroll property, 529
AverageDiff.cs file, 

408–409

B
BackColor property, 529, 

543, 547, 549, 554, 569, 
571–572, 601, 609, 613, 
628, 662–664, 767, 952, 
1066

BackgroundImage () 
method, 544

BackgroundImage property, 
543, 682, 827

balance variable, 372
BAML (binary XAML), 645
base array class, 413
base case, 365–366
base classes, 518, 703, 704–709, 

722–724, 729–730,  
733–736, 745, 754, 757, 808

:base() constructor, 711
base keyword, 710–711
base types, 275, 401–402
base type values, 401
BASIC (Beginner’s All Purpose 

Symbolic Instruction 
Code), 7, 22

basic programming constructs, 
258

BeginDbTransaction() 
method, 914

behaviors, 11, 19, 21, 84
berber object, 211, 213, 214, 

217, 231
beta version, 24
BinaryFileAccess.cs file, 

880–881
BinaryFiles.cs file, 881
binary files, reading and 

 writing, 876–877
BinaryInputTestFile.

bin file, 879
binary numbering system, 

72–75
binary operators, 100, 107, 

295–296
BinaryReader class, 

875–882
BinarySearch() method, 

414, 476

one-dimensional arrays, 460
parallel arrays, 428, 436
parameter arrays, 425–426
pass by reference, 420–423
queries, 978
ragged arrays, 470
read-only access, 412–413
reference variables, 420–423
relationships, 428
as return types, 429
sentinel-controlled access, 

411–412
size of, 401
string, 493
subscript, 401, 406
subscripted variables, 401
two-dimensional arrays, 

460–470, 493
user-defined objects, 

428–429
zero-based, 402, 406

arrays of arrays, 470
ascending query contextual 

keyword, 976
ASC (ascending) SQL keyword, 

917
as keyword, 1053
AskForExamScore() 

method, 223
AskForMajor() method, 

223
AskForStudentName() 

method, 223
AskForStudentNumber() 

method, 223
ASP (Active Server Pages), 999
.asp file extension, 1000
ASP.NET, 25, 27, 1014,  

1016–1019, 1042–1043
ASP.NET Web Forms Site 

template, 1014–1015
automatic code generation, 

1014–1015, 1031
classes, 1000
connecting to Access data-

base, 1060–1061
CSS (Cascading Style Sheets), 

1012–1016
MasterPage, 1007
MVC (Model-View-Control-

ler) model, 1001
programming models, 1001
Web applications, 1000–1001
Web forms, 27
Web Forms model, 

1001–1018
Web server controls, 

1025–1029
ASP.NET Development Server, 

1000–1001
ASP.NET Empty Web Site tem-

plate, 1016–1019, 1035
ASP.NET Web Forms Site tem-

plate, 1003–1015
.aspx.cs files, 1014–1015, 

1024–1026, 1032, 1044
.aspx files, 1025, 1043, 1079
assemblers, 7
assemblies, 715, 735

Application class, 437, 519
ApplicationException 

class, 810–811, 817, 823, 
832

Application Programming 
Interface (API), 639

Application.Run() 
method, 530, 835

applications, 52–57
breakpoints, 790–793
commands for controlling 

execution, 788–789
communications link with 

database, 957
connecting to data source, 

937–975
console applications, 28–29, 

514
debugging, 50–52
Debug versions, 861
entity data model, 939
mobile, 1071–1079
multiple-language, 720
Release versions, 861
two files for, 227–232
Web applications, 27
Windows applications, 28, 

28, 514
application software, 7
ArgumentNull  Exception 

error, 157
arguments, 38, 144–145, 752
ArithmeticException 

class, 812
arithmetic operations, 98–100, 

104–110
arithmetic operators, 100–107, 

296
Array class, 400–401,  

413–419, 447, 742–743
ArrayList class, 460,  

475–479, 485, 742–744
ArrayListExample.cs 

file, 477
arrays, 356, 401, 403–404, 447

arrays of arrays, 470
assignment operator (=), 

423–424
base type, 401–402
classes, 426–435, 747
declaring, 401–406
dimensioning, 403
elements, 401, 402, 406–413, 

470
foreach statements, 

412–413
index, 401, 406–408
indexed variables, 401
inheritance, 413
initialization, 404–406
iterating or moving through, 

356–357
jagged, 470
length, 401, 404–406
as method parameters, 

419–426
multidimensional arrays, 

470–475
nested loops, 360

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1144 | Index

BinaryWriter class, 
875–882

BindingNavigator class, 
954–956

BindingNavigator 
 controls, 954–956

BindingSource controls, 
954–956

binDebug directory, 652, 867, 
880, 914, 963

BitArray class, 486–487
BitArray collections, 

486–487
bits (binary digits), 72
black box concept, 146, 745
block comments, 31–32
BonusApp application, 275
BonusCalculatorApp 

class, 274
BonusCalculator.cs file, 

273–274
bool data type, 258–259, 

270–271, 421
Boolean expressions, 258–259
Boolean variables, 92–93, 151, 

258, 270–271
Bound Column 

 Property_Frozen 
property, 952

Bound Column 
 Property_ToolTip 
Text property, 952

break keyword, 290
breakpoints, 788, 790–793
break statements, 353, 

368–370
Brushes class, 734
btnCalculate_Click() 

method, 572, 578
btnCompute_Click() 

method, 555–556, 558
btnCompute object,  

554–555
btnNew Button object, 609
btnNew_Click() event-

handler method, 607, 609
btnPlaceOrder_Click() 

event handler, 651
btnReset_Click() 

method, 572
btnRetrieve control, 966
btnShowMembers_Click()  

method, 1052, 1060, 
1066–1067

btnShowNextMeeting_
Click() method, 1049

btnSubmit_Click() event-
handler method, 832, 
1029

btnSubmit() event-handler 
method, 826, 1038

btnUpdate_Click() event 
handler, 936

BufferedStream class, 883
bugs, 24, 801–803
Build Host, 1074
Button class, 539, 703
ButtonClick event, 603, 995
button1_Click() method, 

599–600
button2_Click() method, 

599–600
Button controls, 607
buttonName_Click event, 

603
Button1 object, 554

delegates, 594
derived classes, 518, 540, 

709–715
fields, 200
flexibility, 206
full-featured, 206
fully qualifying references to, 

517–518
general, 702
generic, 746–751
“has a” relationship, 703
inheritance, 20, 518, 540
instances, 20, 84, 198, 204, 

216, 600
instantiating, 20, 82, 204
interfaces, 735–736, 913
methods, 138, 148, 743–46
modifiers, 140
names, 36, 89, 244, 518
.NET, 33
.NET Framework, 36
.NET Framework class 

library (FCL), 85
objects, 426
parent, 213
partial, 734–735
Pascal case style, 144
predefined, 36, 41
private data members, 758
protecting data, 200–201
renaming, 47
representing controls, 538
reusing, 25, 33
sealed, 733–734
specialized, 702
System namespace, 32–34
templates, 198–199, 201, 203
testing, 219–232
totally abstract, 735–744
user-defined, 83, 703
user interface, 565
utility, 852
Windows applications, 518

class keyword, 33, 36
class library, 702, 716, 719, 754
Class Library template, 716, 

736, 760–762, 767
class methods, 141, 164, 167, 

209, 215, 222, 280, 301, 
416, 520

Class property, 1018
ClearDrinks() method, 

661
ClearForm() method, 896
Clear() method, 414, 476, 

489, 491, 546, 551, 609
ClearSelected() method, 

612
Click() event, 554–555, 630, 

636, 826
click events, 539, 553, 621, 647
client applications, 725–729, 

772
client/server relationship, 999
client-side processing, 998
client-side script, 998
Clone()method, 414, 476, 

481
Close() method, 862, 864, 

871, 875–877, 914, 922, 
925, 935

Club class, 755–757, 764–765, 
767

Club.cs file, 765
ClubForm.cs file, 608
ClubForm form, 601–602

CarpetCalculator exam-
ple, 116–125

CarpetExampleWith 
ClassMethods class, 
167

carpet object, 227
case statements, 289, 

292–293
casting, 110
catch clauses, 804–805, 808, 

813–816, 819, 823, 826, 
838, 875, 886

CausesValidation prop-
erty, 1041

.cd file extension, 203
Ceiling() method, 158
CellStyle Builder, 953
ChangeDatabase() 

method, 914
ChangePassword class, 1069
CharacterCasing prop-

erty, 550
characteristics, 19
characters, 96, 151–153, 263, 

480
character sets, 75
char class, 796
char data type, 84, 87, 88, 96, 

289, 405
char literals, 96
CheckBox class, 538, 630
CheckBox control, 1034
check boxes, 630–634, 651
CheckBoxList control, 1034
CheckBox objects, 630–634, 

652, 655, 659
CheckedChanged() event, 

631–632, 636, 995, 1034, 
1037

checked exceptions, 822
CheckedItems property, 

651–652
CheckedListBox control, 

651
Checked property, 631, 636, 

637, 768
CheckStateOK() method, 

832
child classes, 709
ckBxDive object, 631
ckBxSnorkel object, 631, 

636
ckBxSwim_CheckChanged() 

method, 632
ckBxSwim object, 631
ckBxWater_Checked 

Changed() event- 
handler method, 685

C# Language Specifications, 
786

class diagrams, 11, 19, 54,  
121–122, 180, 201–203, 713

classes, 11, 19–20, 40–41, 
83–84, 198, 700

abstract, 729–733, 735–736
arrays in, 426–435, 747
ASP.NET, 1000
attributes, 198
base class, 518, 729–730
behaviors, 198
code-behind file, 1007
components, 702
data characteristics, 11
data providers, 911
data types, 83
defining, 36, 199, 735

Button objects, 538–539, 
543, 546, 553–558, 594, 
599, 603, 727, 864, 1025, 
1031, 1036

buttons, 342–343, 543, 
553–558, 618–619, 949, 
966–967

by Query contextual 
 keyword, 976

bytecode, 13, 23, 43
byte data type, 87, 88, 421
bytes, 72

C
C, 6, 22
C#, 6, 21–23, 24–26

case sensitivity, 48, 79
row major language,  

461, 465
strongly typed language, 

95, 752
syntax, 12

C++, 6, 22, 25, 260, 402, 733
CalculateAverage ByDay()  

method, 465
CalculateAverageByMeal()  

method, 466
CalculateAverageDepth()  

method, 829
CalculateAverage() 

method, 209, 210,  
218–219, 223

CalculateAvgSteps() 
method, 182

Calculate_Click() 
method, 803

CalculateDistance() 
method, 182

CalculateMilesPer 
Gallon() method, 144

CalculateNFactori 
alIteratively() 
method, 364–366

CalculateSalesTax() 
method, 144

CalculateTime() method, 
182

calendar, 1043–1050
Calendar control, 1038, 

1043–1050
call by reference, 170–172, 

174–175, 421
call by value, 170, 174, 175,  

422
CalorieCounter applica-

tion, 466–469
CalorieCounter.cs file, 

466–468, 473–474
calories array, 461, 466
calories.Length prop-

erty, 466
CancelButton property, 569
CanFocus property, 543
CanSelect property, 543
Capacity property, 476
Captain class, 34
Car class, 198
CarpetCalculatorApp.

cs file, 229–231
CarpetCalculator class, 

203–204, 207, 214, 216, 
217, 227, 229, 231–232

CarpetCalculator() 
 constructor, 207, 215

CarpetCalculator.cs file, 
122, 227–229

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Index | 1145

cmboFlowers ComboBox 
control, 615

cmboFlowers_ KeyPress() 
method, 615

cmboFlowers_Selected 
IndexChanged() 
method, 615

cmboSpecial_Selected 
IndexChanged() 
event handler method, 
685

cmboSpecial_
TextChanged() event-
handler method, 685

c object, 875
COBOL (Common Business 

Oriented Language), 5, 22
code, 41

automatically created, 44–45
compiling, 43–50
Microsoft Intermediate 

 Language (MSIL), 13
readability, 98
responding to events, 537
reusing, 167, 204, 821

code-behind files, 999–1001, 
1002, 1007, 1043, 1060, 
1077

Code Editor window, 524, 533, 
537, 552, 555

collection classes,  
486–493, 742

collections, 702
bit values, 466–467, 500
controls, 546
iterating or moving through, 

356–357, 743
key/value pairs, 487–489
last-in-first-out (LIFO) 

objects, 491, 747
managing, 742
type of values in, 356

collisions, 488
color, 521
colorDialog control, 623
Color property, 519
ColumnHeadersDefault 

CellStyle_Back 
Color property, 952

ColumnHeadersDefault 
CellStyle_Font 
property, 952

ColumnHeadersHeight 
property, 952

columns, 908, 939
ComboBox class, 538, 612
ComboBox objects, 612–617, 

652, 655, 659, 683
CommandBuilder class, 957
CommandBuilder object, 

931
Command class, 912
command line, 42
CommandText property, 916, 

929, 958–959, 961, 962, 
969, 1053

CommandType property, 958
comments, 30–32, 187
common language runtime 

(CLR), 13, 146, 149, 536, 
720, 744–745, 800–801, 
805, 873–874

common type system  
(CTS), 85

Compare() method, 263, 
480–481, 1046

manually adding statements 
for, 546

methods, 538–539
moving, 541
mutually exclusive set  

of, 1036
naming, 554, 580, 686, 1032
placing, 541
properties, 519, 538, 558, 

1032
resizing, 542, 552
selecting, 541, 603
showing and hiding, 544
smart tag, 1060
Standard controls, 

1029–1038
tab order, 553, 648
text and visual effects, 536
validation controls, 

1038–1043
valid entries, 797
Web applications,  

1019–1029
Windows forms, 932
Windows Presentation Foun-

dation (WPF), 640, 641
Controls property, 663
ControlToValidate 

 property, 1039–1040
Convert class, 156–157,  

274, 275, 278, 802
ConvertInputValue() 

method, 144
Convert.ToBoolean() 

method, 156
Convert.ToChar() 

method, 156
Convert.ToDecimal() 

method, 156, 275
Convert.ToDouble() 

method, 156, 275
Convert.ToInt32() 

method, 156, 275
Copy()method, 414, 416, 

481, 853
CopyTo()method, 414,  

743
Cos() method, 158
counter-controlled loops, 

328–334, 348–355, 371, 
400, 407

Count property, 476, 486, 489, 
491, 610, 651–652

C# programs, 30–41
CreateDbCommand() 

method, 914
CreateDirectory() 

method, 857
Create() method, 853
CreationTime property,  

859
cryptography, 487
.cs file extension, 36, 46, 533, 

537, 1014
.csproj file extension, 47
CSS (Cascading Style Sheets), 

1001
defining style attributes for 

HTML controls, 1021
modifying styles, 1014
style sheets, 1012–1013
Web Forms page,  

1012–1019
Culture property, 1018
currency format specifier, 

110–112

Connection property,  
916, 1063

Connections class, 912
ConnectionStringBuilder 

class, 916
connection strings, 914–916, 

945–946, 948, 1052
console applications, 28–29, 

38, 44–45, 514–516, 798
Console class, 34–36, 38–39, 

41, 54, 145, 148, 151, 409
Console.WriteLine() 

method, 282, 297, 361, 
873

Console.Write() method, 
369

constants, 9, 79, 89, 94, 98, 
140–141, 176, 289

const keyword, 94
const modifier, 140
constructed, 20
constructors, 204–207, 245

arguments, 712
calling, 215–217, 519
default value, 421
delegates, 596
derived classes, 711–712
displaying, 222
multiple arguments, 427
public access modifiers, 

204, 705
signatures, 207

ContainerControl class, 
540

containment, 703
Contains() method, 476, 

489, 491
Content class, 1069
Content property, 640, 643
contextual keywords, 77–79
continue statements, 353, 

369–370
Control class, 526, 538–540, 

543–563, 611, 652, 1002, 
1069–1071

ControlCollection class, 
546

controls, 517, 620
adding and removing, 546, 

974–975
aligning, 521, 552, 603
binding to data, 948,  

954–956
classes representing, 538
client-side, 1019–1025
collections, 546
common form-type controls, 

1035–1038
copying and pasting, 542
data, 1069
data binding, 1050–1051, 

1060
default events, 530, 603
deleting, 541
disabling, 797
focus, 553
fonts, 601
HTML, 1019–1025
HTML server controls, 

1025–1029
identifiers, 643
instantiating, 558
invisible, 797
labels, 546
layout, 542
login, 1069

CompareValidator control, 
1039

compiler errors, 786
compilers, 6, 13, 42, 50–51
compile-time initialization, 81, 

404, 461
compiling code, 43–50
component-based develop-

ment, 701–702, 715
ComponentModel. 

Component class, 540
components, 20–21, 543, 

701–702, 715–725
Component Tray, 618,  

620, 623
compound arithmetic 

 operations, 104–106
compound operators, 104, 105
ComputeAverageForMonth() 

method, 439
ComputeAverage()method, 

435
ComputeCharges() 

method, 11
ComputeCost_Check 

Changed() method, 632
ComputeCost_Checked 

Changed() event- 
handler method, 636–637

Compute object, 558
concatenating strings, 99, 111, 

153, 606, 617, 744
concatenation operator (+), 111
Concat() method, 332
conditional expressions, 259, 

791
bool data type, 270–271
checking for errors, 803
counter-controlled loops, 329
do...while statements, 

357, 360
equality operator (==), 

260–262
explicit comparisons, 311
for statements, 349,  

352–353, 407
identifying operands, 

259–260
logical operators, 265–268
loops, 343
one-way if statement, 271
relational operators,  

262–265
sentinel-controlled loops, 

336, 337
short-circuit evaluation, 

268–270
testing, 327
three-dimensional arrays, 

472
two-way if statements, 

276–283
while statements, 326–327

conditional logical operators, 
265

conditional operators, 294, 297
ConfigToolsExample 

object, 952
ConfigToolsExample 

 solution, 964, 967
configuration file, storing con-

nection string, 945–946
Configure Data Source wizard, 

1064, 1067
Connection object, 925–928, 

1052

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1146 | Index

depth array, 406
derived classes, 518, 540, 704, 

709–715, 730, 733–734, 
756–757

descending query contex-
tual keyword, 976

Designer.cs file, 632
Design view, 542, 1044
desk check, 12, 55, 122, 788
desk-check table, 238
Details view, 973–975
DetailsView class, 1069
DetailsView control, 1048, 

1051
DetermineMiles() 

method, 742
DetermineMonthly 

Earnings() method, 
37

DeterminePrice() 
method, 167

DetermineTuitionCosts() 
method, 21

development, component-
based, 701–702, 715

dialog boxes, 883–887
displaying other options, 646
message boxes, 341–344
multiple-page, 645–651
opening, 884
predefined, 341–342
predefined standard 

 Windows, 622–630
setting or getting name of 

file, 883
user intervention, 343

Dialog controls, 622–623
Dictionary class, 493
dictionary collection, 493
digit placeholder custom 

numeric format speci-
fier, 114

dimensioning arrays, 403
DinerGUI example, 652–685
Directory class, 850, 852, 

854–855
directory classes, 852–860
DirectoryInfo class, 850, 

852, 857–860
DirectoryName property, 

858
DirectoryNotFound 

Exception class, 822, 
850

DirectoryNotFound 
Exception object, 
867–869

Directory property, 857
DirectoryStructure.cs 

file, 854–855
DiscloseBufferedData()  

method, 862
DisplayArrayContents()  

method, 420
DisplayDailyAverage() 

method, 468
DisplayInstructions() 

method, 164, 181
DisplayItems() method, 

426
DisplayMember property, 

974
DisplayMessage() 

method, 145
DisplayNFactorial() 

method, 365

Integral, 87–89
numbers, 83
predefined, 85–86
primitive, 86
user-defined, 83
value types, 86–87

DataViewGrid controls, 
949–950

Date property, 1046
dates, formatting, 1045
DateTime class, 1045–1047, 

1049
DayOfWeek enumeration, 856
DayOfWeek property, 1047
DayOfYear property, 1047
Day property, 1047
DaysInMonth() method, 1047
DbCommand class, 913
dbConn connection string, 1053
DbConnection class, 

913–914
dbConn object, 916
DbDataAdapter class, 913
DbDataReader class, 913
DBExample.cs file, 925–927
DBMS (database management 

systems), 7, 908–909
dbReader objects, 921, 923
Debug class, 829, 838–839
Debugger, 786, 788–790
debugging, 788–795

applications, 50–52
breakpoints, 788, 790–793
execution control, 788–789
mode, 792
stepping through code, 794
watches, 795–796

Debug property, 1018
Debug versions, 861
Debug.WriteLine() 

method, 838
Decimal data type, 86–87, 

91–92, 161, 214, 274, 421
decimal numbers, 116
decimal numeric format speci-

fier, 112
decimal system, 72–73
decimal variables, 97
decision trees, 121, 284
declaration conventions, 127, 

186–187
decrement operator (–), 100–104
Default.aspx.cs file, 

1016, 1024
Default.aspx file, 1006–

1007, 1009–1010, 1016, 
1063

DefaultCellStyle prop-
erty, 953

default constructor, 204–207
default events, 603
default statements, 289–290
default values, 651
definition, 140
definition of methods, 38
delegate class, 594, 596
DelegateExample.cs 

file, 597
delegate keyword, 594
delegates, 594–600
DeleteCommand property, 

932, 957–958, 962, 971, 
1067

Delete() method, 853, 857
DELETE SQL statement, 919, 

928, 932, 957, 971, 1067

testing connection, 942–943
updating, 928–929, 933–937, 

947, 956–957, 964
views, 947

DataBind() method, 1052
data controls, 1069
data fields, 200–201, 203
DataFile property, 1060
data files, 850–851, 861
DataGridView controls, 932, 

948, 953–954, 1050
DataGridView objects, 933, 

935–936, 980
DataList class, 1069
DataList control, 1051
DataMember database, 936
DataMember property,  

932–933, 935–936
data members, 36

Camel Case, 231
encapsulating, 142
initial values, 204, 208
private access, 200–204 

210, 222
public access, 773

Data namespace, 1053
Data.Oledb namespace, 

1053
data providers, 911–914
data reader, 921–925
DataReader class, 912, 1050
DataSet class, 930, 

1050–1051
DataSet Designer, 939, 

957–967
DataSetExample.cs file, 

933–935
dataset objects, 930, 935, 939, 

946–956, 968–973, 980, 
1053

datasets, 929, 938–939
data adapters, 931–932, 

956–957
extending functionality, 

957–966
populated from multiple 

tables, 968
processing database records, 

929–937
visual representation, 

957–958
data source

Access, 960–963
adding, 938–946
configuration tools, 937–975
databases, 941–942
identifying, 976
Microsoft Access Database 

File, 941–942
SQL Server, 940, 960–963
testing connection, 942–943
types, 938

Data Source Configuration 
Wizard, 931, 937, 943–
945, 1053, 1060–1061

DataSource property, 932, 
933, 935, 974, 1050

Data Sources window, 938–
939, 948, 954, 975, 980

data types, 82–83, 116
algorithms and, 746–752
converting, 156–157, 161
decimal, 91–92
floating-point, 90–91
fundamental, 86
identifiers, 121

custom numeric format speci-
fiers, 114

CustomValidator control, 
1039

D
dailyAverage array, 

464–465
data, 72

binary numbering system, 
72–75

binding controls to, 954–956, 
1050

bits (binary digits), 72
byte-level, 860
bytes, 72
character sets, 75
classes, 83, 200–201
constants, 9, 94
databases, 911, 916–920
data reader, 921–925
displaying, 948
formatting, 948
grouping, 486
identifiers, 77–80
literals, 81–82
memory locations, 76–82
objects, 84
queues, 490–491
retrieving from keyboard, 

28–29
synchronous and asynchro-

nous transfer, 882
tables, 909
tabular form, 1050–1060
text format, 885
types, 82–83, 116
unsigned byte array, 882
variables, 81

DataAdapter class, 912, 930, 
932–933, 957, 1052, 1053

data adapters, 931–932, 956–957
databases, 908

accessing, 908–909
communications link with 

applications, 957
connecting to, 910, 914–915, 

925–928, 940–942, 
1051–1052

connection strings, 914–915
data, 920–928
data binding, 948, 1050
data reader, 921–925
data source, 937–975
displaying, 964
editing, 1067–1068
exceptions, 916
fields, 929, 1066
formatting data, 948
LINQ, 979–981
listing available, 941
local copy, 944–945
multitier applications, 910
naming, 942
passwords and username, 

942
primary keys, 1067
processing at local level, 910
read-only data, 921, 928, 

1067
records, 921, 929–937
relational, 908–909
retrieving data, 916–920, 964
security, 920
tables, 947, 950–953, 

968–973

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Index | 1147

FileStream class, 875, 878, 
881, 883

file streams, 860–863
FileSystemInfo class, 

852, 857
FillByLastName() 

method, 966
Fill() method, 928, 932, 

935, 964, 966, 968, 1053
FillPointsScoredArray()

method, 427
Finalize() method, 93
finally blocks, 804–805, 

815
FindStringExact() 

method, 612
FindString() method, 612
first-generation computers, 3
firstName property, 

706–707
firstStudentObject 

object, 223–224
FirstWindows.Form1.cs 

file, 530–531
FirstWindows.Form1.

Designer.cs file, 
531–533

FirstWindows.Program.
cs file, 532

fixed point format specifiers, 
111–112

fixed point numeric speci-
fier, 113

flag-controlled loops, 346, 360
float data type, 83, 86–87, 

90–91, 101, 109, 161, 
214, 421

floating-point values, 83, 90, 
311

floating-point variables, 355, 
819

FloatingPtDivision 
Exception class, 818, 
820–821

Floor() method, 158
flowcharts, 16, 284
Flush() method, 862, 864
focus, 553
Focused property, 543
Focus() method, 544, 553, 

556
Focus property, 553
fontDialog control, 623
Font property, 520, 529, 543, 

545–549, 554, 570, 601, 
609, 613, 624, 628, 634, 
662, 767, 1034

fonts, 601
FontSize property, 1029
FontStyle property, 571
foreach statements, 326, 

356–357, 369–370, 412–
413, 416–417, 421, 447, 
463–464, 468, 606

ForeColor property, 529, 
543, 549, 554, 570–572, 
602, 610, 613, 624, 767

foreign keys, 919
formal parameters, 144
FormatException catch 

clause, 839
Format() method, 481, 485
format specifiers, 110–115, 214
Form class, 518, 521, 526, 

538–540, 594, 701, 704, 
713, 714, 756

filtering multiple, 813–816
input output (IO), 821–822
raising, 800–801
run-time, 811
system-defined, 811
throwing, 278, 800–801, 811, 

820–821
thrown back, 801
unhandled, 797–798, 801
user-defined, 811

ExecuteReader() method, 
921

.exe file extension, 42, 715
Exists() method, 853–854, 

857, 891
Exists property, 858
Exit() method, 520
explicit cast, 464
explicit type coercion, 109–110
Exp() method, 161
expressions, 107–109, 275, 

295–297
Extension property, 858
F
Fact() method, 366
Faculty class, 702
falling through, 290
false keyword, 93
FieldCount property, 922
fields, 426, 908
fifth-generation computers, 

3–5
FileAccessApp.cs file, 

870–871
FileAccessApp.

Designer.cs file, 
870, 874

FileAccessAppDialogs.
cs file, 885–886

FileAccessAppWith 
Using.cs file, 874

File class, 850, 852–857, 
869, 877

FileDialog class, 883–887
File.Exists() method, 

869
file extensions, 42
FileInfo class, 851–852, 

857–860
FileIOException class, 

897
FileLoadException class, 

822, 851
FileMode enumerated type, 

879
FileMode.Open enumerated 

type, 881
FileName property, 884, 887
FileNotFoundException 

class, 822, 851, 869, 875
files, 862–852

backup or removal, 855
buffering, 883
checking availability, 854
closing, 850
exception classes, 822
formatting name, 872
full path, 881
manipulating, 852–857
random access, 875–876
reading from, 869–873
restricting to one class, 36
standard, 897
stored data, 850, 860
writing to, 850, 863–869

EndStatement() method, 
595, 596

EndsWith() method, 481
English Narrative, 120
Enter() event, 612
entities, 19, 198
Enumerated types, 86, 879
enumerations, 93, 855–856, 879
enum keyword, 856
equality operator (==), 260–

262, 264–265, 288, 311, 
479–480, 819

Equals() method, 93, 213, 
481, 489

equals query contextual 
 keyword, 976

Error List window, 51, 525, 787
ErrorMessage property, 

1039–1040
Error output device, 809
errors, 801–803

compiler errors, 786
debugging, 788–795
run-time errors, 787–788

escape character (), 39
escape sequences, 39–40, 

96, 484
EventArgs class, 821
event-driven model, 338
event-handler, 514–515
EventHandler() delegate, 

600
event-handler methods, 516, 

554, 599, 864, 1002, 
1036–1038

event handlers, 514–515,  
600–601, 615–617, 633

event handling, 599–600, 821
event-handling Web sites, 1007
events, 514–515

code to respond to, 537
default, 530, 603
delegates, 599
displaying, 554
firing, 515, 538
interfaces, 736
listing, 528
methods, 599–601
registered event handlers, 601
registering, 515, 631–633, 

636–637, 640
server controls, 1065–1067
Standard controls, 1032, 1034
Windows forms, 537–538, 

1032
wiring methods to, 621–622

event wiring, 599
excepObj.Message prop-

erty, 821
excepObj object, 820–821
ExceptionApp.cs file, 

805–806
Exception class, 808–812, 

821, 832, 837
Exception classes, 810–822
exception handlers, 800, 804
exception handling, 803–809, 

839, 897
exception objects, 808–809, 

820–821
exceptions, 786, 796–803, 839

checked, 822
custom, 817–820
databases, 916
division by zero, 800, 807, 

815

DisplayOutput()method, 
421

DisplayResults() 
method, 144, 164, 181, 
214

DisplayStats()method, 
435

DisplayStyle property, 966
Dispose() method, 536, 862
Dive CheckBox object, 633
divide-and-conquer approach, 

10, 18
DivideByZeroException 

class, 812
division by zero, 51, 800, 807, 

815
Division compound operator 

(/=), 105
Division operator (/), 98, 259
DLinq, 981
Dock in Parent 

 Container property, 
953

do keyword, 359
domains, 9
DoSomething() method, 

176–177
double data type, 83–84, 87, 

90–91, 108, 110, 161, 214, 
403–406, 421, 435

do...while statements, 326, 
357–360, 362, 369–370

Drink_CheckChanged() 
event-handler method, 
685

DropDownList control,  
1034

DropDownStyle property, 
613–614

d variable, 355
dynamic binding, 745
dynamic data type, 752–753
dynamic keyword, 110, 752
dynamic link library (DLL) 

files, 715–721, 725–729
dynamic variables, 752
dynamic Web pages, 998–999
dynamic Web sites, 998

E
Eat() method, 702
elements, 401–402, 462

accessing, 406–413
intializing to null value, 470
retrieving number from 

array, 486
else clauses, 286–288
Employee class, 563–564, 

567, 569, 572
Employee.cs file, 573–576
empty bodied loops, 327
emulator, 1074

deploying Windows Phone 
Apps, 1078–1079

Enabled property, 543, 551, 
553

Enable property, 797
EnableSessionState 

property, 1018
encapsulated, 19
encapsulation, 210, 700, 705
EndOfStreamException 

class, 822, 850
# endregion preprocessor 

directive, 533

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1148 | Index

hexadecimal numbering 
 system, 74–75

HiddenField class, 1070
Hide() method, 544
high-level programming 

 languages, 6, 22
Hour property, 1047, 1049
HTML (Hypertext Markup 

Language), 25, 641, 994, 
997, 1021–1022

HTMLControl class, 1002
HTML controls, 1019–1026, 

1031
HTML document file, 

1017–1019
HTMLExample program,  

1025
HTML files, 995–997
HTML server controls, 

1025–1029
HTML tags, 1031
HTTP (Hypertext Transfer 

Protocol), 994, 999
Hub App, 1076
human–computer interaction 

(HCI), 520
HyperLink class, 1070
Hyper-V virtual machine, 1078

I
IBM, 3, 72, 916
ICloneable interface, 

742–743
.ico file extension, 682
ICollection interface, 

742–743
Icon property, 662, 681
icons, 344–345, 681–682
IDataAdapter interface, 913
IDataReader interface, 913
IDataRecord interface, 913
IDbCommand interface, 913
IDbConnection interface, 

913
IDbDataAdapter interface, 

913
user-defined, 875

identifiers, 77–80, 144
arrays, 404
base type, 402
constructors, 204, 207
controls, 643
data types, 121
inline comments, 89
keywords, 77–79, 484
local variables, 165–166
methods, 144
names, 79–80
namespaces, 35
.NET, 148
Pascal case, 79, 144
row and column indexes, 466
scope, 165–166
self-documenting, 89
Standard controls, 1031
@ symbol, 79
uppercase, 79
user-defined, 77
visible, 165

IDeserialization 
Callback interface, 743

ID property, 1018, 1032, 1036
IEnumerable interface, 

742–743, 976, 978
if...else selection state-

ments, 271–289, 839

GetLength() method, 165–
167, 462, 464, 470, 472

GetLowerBound() method, 
463, 470

Get() method, 966
GetName() method, 922
GetNoOfSqYards()method, 

208
GetNumberStrides() 

method, 182
GetOrdinal() method, 922
GetParent() method, 857
GetRange() method, 476
GetResults() method, 

819–820
GetSalesData() method, 

495
GetScores()method, 429
get, set, and value 

 keyword, 211–212, 218
GetSleepAmt() method, 

707–709, 713, 720
GetStartLocation() 

method, 742
GetString() method, 922
getters, 208
GetType() method, 213, 922
GetUpperBound() method, 

463, 470
GetValue()method, 415
GotFocus() event, 612
goto statement, 370
GraduateStudent class, 21
graphical user interfaces 

(GUIs), 3, 26, 28, 337, 
516–520, 563, 566, 569, 
640, 645, 652

graphic file types, 682
greater than (>)operator, 

262–263 
greater than or equal (>=) 

operator, 262–263 
GridColor property, 952
GridView control, 1038, 

1050–1060, 1067
GridView objects, 1050, 

1060, 1064–1065, 1067
GroupBox controls, 634, 636
GroupBox objects, 634, 636, 

640, 767
group clause, 976
GroupName property, 1036
group query contextual 

 keyword, 976

H
Happy.jpg file, 1022
“has a” relationship, 703
hashing, 487–489
Hashtable class, 487–489, 

742–744
hash tables, 488–489, 493
Header property, 640
HeaderText property, 951, 

972
headings, 140
HelloWorld class, 36, 77
HelloWorld.cs file, 46
Hello World program, 

29–30, 45
HelloWorldProgram 

namespace, 35, 77
HelloWorldProgram proj-

ect, 43, 47, 48
Help file, 811
HelpLink property, 811

FrmSayingsGUI.
Designer.cs file, 864

FrmSayingsGUI_Load() 
method, 864–865

FrmWaterDepth class,  
824–825, 839, 888–889, 892

FrmWaterDepth.cs file, 
832–834, 892–895

FrmWaterDepth.
Designer.cs partial 
class, 834

FrmWaterDepth form, 835
FrmWaterDepth_Load() 

method, 896
from clause, 976, 978
from query contextual 

 keyword, 976
FROM SQL clause, 919
Frozen property, 951
FullName property, 858
fundamental data types, 86

G
GardeningForm application, 

628–630
GardeningForm.cs file, 

625–627
GardeningForm.

Designer.cs file, 630
general classes, 702
general numeric format speci-

fier, 113
general-purpose programming 

languages, 258
generic catches, 805–808
GenericClass class, 749
generic classes, 746–751
generic collection classes, 477
generic methods, 746, 751–752
generics, 746–752
generic types, 749
GetAttributes() method, 

854, 856
GetBoolean() method, 922
GetChar() method, 922
get contextual keyword,  

211–212, 519, 706–707
GetCreationTime() 

method, 853, 857
GetCurrentDirectory() 

method, 857, 859
GetDecimal() method, 922
GetDestination() 

method, 742
GetDimension() method, 

167
GetDirectories() 

method, 857
GetDouble() method, 922
GetEnumerator() method, 

743
GetExerciseHabits() 

method, 731, 733, 738
GetExpenses() method, 

237
GetFiles() method, 857, 

859
GetHashCode() method, 93, 

213, 489
GetInt16() method, 922
GetInt32() method, 922
GetInt64() method, 922
GetLastAccessTime() 

method, 853
GetLastWriteTime() 

method, 853

Form1 class, 518–519, 530, 
537

FormClosing event, 
537–538

Form_Closing() event,  
875

FormClosing() method, 
869

Form1 constructor, 519
Form1.cs file, 530, 534, 537, 

558
Form1.Designer.cs file, 

530, 536, 558–563
Form Designer window,  

524–525, 537–538, 
540–543, 552, 554, 558, 
599, 601, 603, 621

Form1_FormClosing() 
method, 537

FormLoad() event-handler 
method, 601, 980

Form_Load() event-handler 
method, 651, 1042

Form1_load() event- 
handler method, 530

Form1_Load() method, 552
Form object, 540, 543, 546, 

558, 563, 609, 613, 652, 
682

Form1 object, 526–529, 537, 
601

forms, 342, 526
background color, 602
binding controls to data, 948, 

954–956
building at run time, 534
buttons, 553–558
check boxes, 630–634
clutter, 521
controls, 541, 546, 620, 651, 

974–975
default font, 601
default tabs, 647
Details view, 973–975
dragging items onto, 938, 949
erasing values, 580
formatting tabs, 647
grid expanding, 950
images, 682
multiple tables data, 968
naming, 601–602
navigating and manipulating, 

954–956
predefined standard 

Windows dialog boxes, 
622–630

radio buttons, 634–637
separating into sections or 

categories, 648
tab controls, 645–651
tab order, 648
title bar caption, 526
visibility, 530

FormView control, 1069
for statements, 326, 348–356, 

360–362, 364–365, 
369–371, 407, 447

FORTRAN, 5, 22
fourth-generation computers, 3
framework base classes, 25
FratSorority class,  

756–757, 764–765, 767
FratSorority.cs file, 

765–766
FrmSayingGUI.cs file, 

864–865

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Index | 1149

Label objects, 540, 543, 
545–546, 594, 602, 
623–625, 631, 652, 864, 
870, 926, 973–974, 994, 
1025–1026, 1036, 1050, 
1067

Language-Integrated Query 
(LINQ), 908

Language property, 1018
LargestValue.cs file, 

280–281
LastAccessTime property, 

858
LastIndexOf()method, 415
LastIndexOf() method, 

476, 482
last-in-first-out (LIFO) objects, 

747
LastName property, 707
LastWriteTime property, 

858
lblMessage object, 886
lblOutput control, 623, 625
Leave() event, 612
left-associative, 296
left-associative operators, 107
length of arrays, 401
Length property, 407, 410, 

427, 462, 466, 482, 486, 
797, 858–859

less than (<) operator, 262–263 
less than or equal (<=) opera-

tor, 262–263 
let query contextual keyword, 

976
Lines property, 550
lining up, 286–288
LinkButton class, 1070
linked lists, 490
LINQ (Language-Integrated 

Query), 975–982
LINQ to SQL, 981–982
Linux, 5
Lisp, 7
ListBox class, 538, 604, 703
list boxes, 601–603, 655
ListBoxExample example, 

609–610
ListBox objects, 601–607, 

612–613, 615–617, 652, 
655, 659, 870, 873, 926, 
995, 1034, 1036–1038

List class, 476
listlike structure, 475–478
literals, 81–82, 98, 109, 112
Load() event, 826
LoadPostBackData() 

method, 1042
LoadViewState() method, 

1042
LoanApp class, 372, 377
LoanApp.cs file, 381–383
LoanApplication example, 

371–383
Loan class, 373–375
Loan.cs file, 378–381
Loan objects, 372–373
local variables, 165–166, 200, 

299, 367, 565, 566
Location property, 438, 519, 

529, 532, 544, 546
logical negation operator, 267
logical operators, 265–268, 296
logic errors, 15, 51, 788
Login class, 1070
Login controls, 1069

Intramural class, 756–757, 
761, 765, 767

Intramural.cs file, 761
int.TryParse() method, 

366
InvalidDataException 

class, 865
invalid paths, 867, 873
inValue variable, 234, 299, 

335, 873
IOException class, 865, 882
IO.IOException class, 822
“is a” relationship, 702, 709, 736
IsNumber() method, 796
IsPostBack property, 1042, 

1046
Item property, 476, 487, 489, 

493
Items collection, 628, 664
Items property, 602, 606, 610, 

611, 616, 652
iteration, 258
iteration statements, 365–368
iteration structures, 326
iterative approach, 12
ITraveler interface, 

737–740

J
jagged arrays, 470
Java, 6, 22, 23, 25

accessor methods, 208
call by reference, 172
checked exceptions, 822
equal symbol (=), 260
Microsoft Intermediate 

 Language (MSIL), 13
reference parameters, 172
restricting files to one class, 

36
Unicode, 75
values entered as strings, 153
Web applications, 23
zero-based arrays, 402

JavaScript, 998, 999
Java Virtual Machine (JVM), 43
JITer, 13, 43
JoggingDistance example, 

178–185
join query contextual 

 keyword, 976
JOIN SQL clause, 918
JScript, 998–999
jump statements, 290
just-in-time (JIT) compila-

tion, 13
just-in time compiler, 43

K
keyboard, 28–29, 34
KeyPress() event, 612, 

615, 617
KeyPress() event-handler 

method, 615
Keys property, 489
keywords, 33, 77–79, 87, 484

L
Label class, 703
Label controls, 1032, 1033
label object, 553
label1 object, 548
label2 object, 548
label3 object, 548
label4 object, 548
label5 object, 548

Input (Button) HTML 
control, 1023

Input (Reset) HTML 
 control, 1023

Input (Submit) HTML 
control, 1023

InputJoggingTime() 
method, 181–182

input output (IO) exceptions, 
821–822

Input Text controls, 1022
InputValuesLoops.cs 

file, 335
InputValues() method, 

422–423
in query contextual keyword, 

976
InsertCommand property, 

932, 957–958, 962, 971, 
1067

Insert() method, 476, 482, 
743

InsertRange() method, 
476

INSERT SQL statement, 928, 
932, 957, 971, 1067

instance data members, 746
instance methods, 142, 

207–214
instances, 20
instance variables, 200, 208, 

299
instantiating, 82

classes, 204
objects, 20

Int32 class, 157
int data type, 83–84, 87–88, 

108, 156, 161, 214, 289, 
404, 421

integers, 83, 85, 108, 116, 275, 
289, 302, 744

Integral data type, 86–89
integrals, 289–294 
integral values, 401, 461
integral variables, 89
integrated development envi-

ronment (IDE), 12, 42, 51
automatically generating 

code, 44–45, 55
compiling code, 13, 43–50
help feature, 545
IntelliSense feature, 147
reporting errors in programs, 

786
separating source code into 

files, 530
smart window, 46
templates, 44
Web applications, 1017
Windows forms, 517

IntegratedSecurity 
property, 915

IntelliSense feature, 12, 
147–152, 166, 222, 343, 
534, 1071

interface object, 758
interfaces, 516, 735–744, 754, 

758, 760–761, 913
Interface template, 736
Intermediate Language (IL), 43
internal access modifier, 222
interpreters, 6
int keyword, 152
into query contextual 

 keyword, 976
int.Parse() method, 803

nested, 283–289
one-way if statement, 

271–276
ternary operator (?:) express-

ing, 294–295
two-way if statements, 

276–283
if selection statement, 271
if statements, 346, 369, 417, 

421, 624, 875
break statements, 368–369
checking input values, 796
curly braces, 290
else clause, 271–288, 294, 310
else clause, 797

IFunding.cs file, 761
IFunding interface, 757
IIS (Internet Information 

 Services), 1000–1001
IList interface, 742–743
ImageButton class, 1070
Image class, 1070
ImageIndex property, 544
ImageList property, 544
ImageMap class, 1070
Image object, 1022
Image property, 544, 966
images, 652
immutable, 480
implicit conversion, 37, 161, 

404
implicit type coercion, 108–109
implicit type conversion, 

108–109
increment operator (++), 

100–104
indefinite loops, 334
indexed variables, 401
indexes, 401, 406–408, 797
IndexOf() method, 415, 

476, 482
inFile.Close() method, 

870
inFile object, 873, 875, 887
infinite loops, 327, 329, 

353–354
information hiding, 19
info.txt file, 863
inheritance, 20, 213, 700–701, 

702
arrays, 413
base classes, 704–707
classes, 518, 540
“is a” relationship, 702, 709
.NET Framework class 

library (FCL) classes, 
703–704

object class, 703
polymorphism, 745–746
sealed classes restricting, 

733–734
single, 519, 733, 746

InitializeComponent() 
method, 534–537, 558

Initialize() method, 447
inline comments (//), 31, 89
INNER JOIN SQL statement, 

918, 968
in/out parameter, 495
in/out specifier, 495
in parameter, 495
input, 9, 40, 860, 1038–1043
InputAge() method, 144
InputEndPointsWith 

While.cs file, 330–331

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1150 | Index

Microsoft Access Database File 
data source, 941–942

Microsoft.Build.Build 
Engine.Invalid 
ProjectFile 
 Exception class, 811

Microsoft Excel, 7
Microsoft Intermediate Lan-

guage (MSIL), 13, 25, 43
Microsoft.Windows-

Mobile.DirectX.
DirectXException 
class, 810

Microsoft Word, 7
MinimizeBox property, 529
Min() method, 159
Minute property, 1047, 1049
MinValue property, 1047
mixed expressions, 108–109
mobile applications, 2, 4

Android Apps, 1074
development platforms,  

1071
iOS Apps, 1074
running the App, 1078
Silverlight, 1075
Universal Apps, 1076–1077
Windows Phone Apps, 1075
Xamarin, 1071–1073
Xamarin.Forms, 

1073–1074
XAML, 1075

Mobile app project template, 
1073

Modified property, 550
modifiers, 140–142
Modify Style configuration 

wizard, 1014
Modulus compound operator 

(%=), 105
Modulus operator (%), 98, 

99, 488
monetary data items, 91–92
MonthCalendar class, 538
MonthlyExpense property, 

234
Month property, 1047
MouseEnter() event, 612
MouseEventArg() event, 

600
MouseHover() event, 612
MouseLeave() event, 612
Move() method, 853, 857
multicast delegates, 598
MultiColumn property, 611
multidimensional arrays, 360, 

462, 470–475
multilanguage independence, 

25
multiline comments (/* */), 

31–32
MultiLine property, 550, 

629, 647
MultipleCatches.cs file, 

813–814
multiple selection structure, 

289–294
Multiplication compound 

operator (*=), 105
Multiplication operator (*), 

98, 259
multiplicative operators, 106
multitier applications, 702,  

910
multiway if statements, 288, 

293

MessageBox.Show()
method, 416, 683

Message property, 808, 811, 
821, 837, 868

method body statements, 
38–41

method invocation, 38
methodologies, 7, 10–11

object-oriented program-
ming (OOP), 18–21

structured procedural pro-
gramming, 15–18

methods, 10, 37, 40, 198
abstract methods, 730–733
arguments, 37–38, 144–145, 

171, 425–426, 773
arrays, 419–426, 428–429
body, 145–146
calling, 146–148, 365, 

744–746
class diagrams, 121
classes, 138
constructors, 204–207, 

215–217
custom, 163–170
data needed for, 144–145
definition, 38, 138, 140, 163, 

209–210
delegates, 594–595, 598
derived classes, 709
encapsulating, 142
events, 537, 599, 621–622
exceptions, 811
generic, 746, 751–752
heading, 140
identifiers, 144
inheritance, 707–708
instance methods, 207–214
interfaces, 736
local variables, 165, 200
modifier, 867
modifiers, 37, 140–142
named parameters,  

175–177
naming, 37, 89, 144, 245
.NET Framework class 

library (FCL), 140, 163
nonvalue-returning, 37, 

181, 182
one entry and exit, 143, 

165, 187
overloaded, 148, 705, 708
overriding, 214, 707–709
parameters, 144–145,  

175–177, 594
Pascal case style, 144
predefined, 148–157, 538
renaming, 632
return statement, 165
return type, 37, 142–143, 

149, 163, 171, 594–595
sealed, 734
signatures, 37, 149–150, 167, 

594, 598
stack trace, 802–803
static, 141–142, 429
tracing, 811
user-defined, 163–170
value-returning, 40, 161,  

163, 165–170, 182, 
594–595

variables, 171
virtual, 708–709, 746
void, 163–164

Microsoft Access, 7, 908–909, 
914–915

ManateeApp example, 436, 
439–445

Manatee class, 439
ManateeCount property, 438
ManateeSighting class, 

436–440
ManateeSighting.cs file, 

440–444
MarshalByRefObject 

class, 540, 852
@ Master directive, 1009
MasterPage, 1007
MasterPageFile property, 

1018
master pages, 1008–1012
Math class, 141, 157–162, 215
mathematical equations, 

98–100
mathematical functions, 

157–170
MaxLength property, 550
Max() method, 159, 162
MaxValue property, 1047
meetingDate object, 

1049–1050
member.accdb data-

base, 933, 935, 1053, 
1062–1063

Member class, 922, 927
Member.cs file, 923–924
members, 222, 735–744
memory, 72, 76–82, 536
MemoryStream class, 882
menuAbout_Click() 

event-handler method, 
630, 685

menuClearOrder_Click() 
event-handler method, 
685

menuColor_Click() event-
handler method, 624, 630

menuColor property, 621
menuDisplayOrder_Click() 

event-handler method, 
685

menuEditDrink_Click()
event-handler method, 
685

menuEditEntree_Click() 
event-handler method, 
685

menuEditSpecial_Click() 
event-handler method, 
685

menuExit_Click() event-
handler method, 621, 
630, 685

menuExit property, 621
menuFont_Click() event-

handler method, 621, 
623–624, 630

menuHelp property, 621
MenuItems property, 662
Menu objects, 652, 660–661
menuPlaceOrder_Click 

()event-handler method, 
685

Menu property, 620, 662
menus, 617–630, 655
MenuStrip class, 538, 

618–622
MenuStrip control objects, 

617–630, 655
MessageBox class, 338–345, 

418, 596, 836
message boxes, 341–344, 346

LoginStatus class, 1069, 
1070

Log() method, 159
long data type, 87–88, 161, 

289, 421
loop body, 332, 400
loop condition, 326
loop control variables, 328–

329, 343, 352–353, 355
looping statements, 365–368
loops, 326, 370–371

advanced statement stan-
dards, 385

break statements, 368–370
conditional expressions, 343
continue statements, 370
counter-controlled, 328–334, 

400, 407
do...while statements, 

326, 357–360
empty bodied, 327
flag-controlled, 346
foreach statements, 326, 

356
immediate exit, 368–369
indefinite, 334
infinite, 327, 329, 353–354
nested, 360–365, 472
null-bodied, 354
number of times performed, 

334–337
posttest, 357–360
pretest, 327, 349–350
prime the read, 336–337
sentinel-controlled, 334–337, 

411–412
single entry and single exit 

guidelines, 370
state-controlled, 345–347
for statements, 326,  

348–355
variables, 349
while statements, 326–347
Windows applications, 

337–345
low-level programming 

 languages, 7, 22
1stBxEntree_Selected 

IndexChanged() 
event-handler method, 
685

1stBxEvents ListBox 
control, 602

1stBxEvents_Selected 
IndexChanged() 
method, 604, 606

1stBxEvents. 
SelectedItems.
Count  property, 610

1stBxTrees control, 620

M
machine language, 6
MainMenu class, 538
MainMenu control, 618,  

620
Main()method, 36–37, 45, 

55–56, 138, 141, 146, 151, 
175, 200, 219, 223–224, 
232, 237, 239, 365, 419, 
515, 519, 536, 625, 803, 
834

MainWindow.xaml.cs 
file, 643

ManateeApp.cs file, 
444–445

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Index | 1151

override keyword, 142, 214, 
232, 708, 733

overriding methods, 214, 
707–709

P
Padding properties, 954
PadLeft() method, 482
PadRight() method, 482, 

860
Page class, 1054
@ page directive, 1007
Page.IsValid property, 

1042
Page life cycle, 1042–1043
Page_Load() event, 1007
Page_Load() event-handler 

method, 1015, 1042, 1045
Page object, 1017
Page_Pre_Init() method, 

1042
Page_Unload() event- 

handler method, 1042, 
1045

page validation, 1041
Panel control, 634
Panel objects, 636
parallel arrays, 428, 436
parameter arrays, 425–426
parameterized expressions, 960
parameterized queries, 

960–964
parameterized values, 962
parameters, 144, 164, 170–177, 

182, 419–426, 594, 600
Parameters property, 958
params parameter, 171
params parameters, 425–426
parent class, 213, 540, 704, 

709
Parent property, 858
ParseInt32() method, 803
Parse() method, 154–157, 

274, 278, 557, 802, 1047
parsing numbers, 154–157
partial classes, 530, 558, 625, 

664, 734–735, 769, 832
partial keyword, 704, 735, 

1016
Pascal Case, 79, 126
Pascal case identifiers, 231
Pascal case style, 144, 186
passed by reference, 420–423, 

752
PassingArray.cs file, 424
PasswordChar property, 550
PasswordRecovery control, 

1069
paths, 858, 860, 867, 873
PathTooLongException 

class, 822
PaymentAmount property, 

375
pdf files, 489
PeekChar() method, 864
Peek() method, 491, 862
Pen class, 734
percent numeric format 

specifier, 113
Person class, 702, 722, 725, 

729–733, 738, 744
Person.cs file, 717–718
Person.dll file, 722–723
PersonNamespace 

namespace, 719–720, 725
PHP, 999

OdbcConnection class, 914
off-by-one error, 331
OldDbCommandBuilder 

class, 931
OleDbCommand class, 913, 

916, 921, 929
OleDbCommand.Execute-

Query() method, 928
OleDbConnection class, 

913, 914
OleDbConnectionString 

Builder class, 916
OleDbDataAdapter class, 

913, 931, 935–936
OleDb data provider, 912–914
OleDbDataReader class, 

913, 920–925
OleDb namespace, 1053
OnClick() function, 

1025–1026
one-dimensional arrays, 460
one-way if statements,  

271–276, 285
one-way selection statements, 

271
on query contextual keyword, 

976
OpenFileDialog control, 

884
openFileDialog1 object, 

883, 886
Open() method, 914, 929, 935
OpenStateChanged() 

method, 914
operands, 98, 260–262
operating systems, 5
operators, 100–104, 106–107, 

261, 295–297
optional parameters, 175–177
Oracle, 7, 908
orderby query contextual 

keyword, 976
Order class, 652–654, 656, 

658, 664, 682–683
Order.cs file, 665–668
OrderGUI class, 654, 664, 685
OrderGUI.cs file, 677–681
OrderGUI.Designer.cs 

file, 668–677
OrderGUI_Load() event-

handler method, 682, 685
Order instance data member, 

683
order of operations, 106–110
Organization class, 756–

760, 764–765
Organization.cs file, 

759–760
Organization.dll file, 761
OrganizationNamespace 

namespace, 760
organizing layout, 540
OR keyword, 918
OR (|) operator, 268
OR (||) operator, 265–269, 354
out keyword, 171, 173, 175
out modifier, 279
out parameter, 171, 174, 279, 

495
output, 339, 872
Output type property, 418
Output window, 151–153, 525, 

829, 839
overloaded methods, 148, 705
overloaded operators, 100, 261
overridden methods, 713–715

not equal operator (!=), 260–
261, 265, 479

not equal to (<>) operator, 918 
NOT keyword, 918
NOT operator (!), 267–268
Now property, 1047
n! recursive example, 366–368
null-bodied loops, 354
null (empty) statement body, 

275
number array, 356
Number FormatException, 

815
number numeric format 

 specifier, 113
numbers, 83, 110–115, 146, 

154–157, 263
numeric data types, 86–87, 

154, 214, 275
numeric format specifiers, 

112–114
numeric hash code, 488
numeric literals, 274
numeric operations, 110–115
numeric values, 278, 796–797
O
object array, 427
object class, 11, 93, 463, 489, 

538–539, 598, 703, 714, 
744, 746, 811, 865

Object data source, 938
ObjectDataSource 

 controls, 1051
object data type, 746
object-oriented analysis, 

design, and program-
ming, 19

object-oriented approach, 198
object-oriented development, 

701
object-oriented methodologies, 

11, 198
object-oriented programming 

(OOP), 15, 18–21
black box concept, 146
encapsulation, 210

object-oriented programming 
(OOP) languages, 36, 
700–701

base class, 704
derived classes, 704
inheritance, 702–729

objects, 18–20, 84–85, 121, 
198–204, 426, 702

adding to queue, 491
creation, 82
deselecting, 548
event handlers, 633–634
events, 527–528
First-In-First-Out collection 

of, 490
instantiating, 20, 519
last-in-first-out (LIFO), 491
methods, 630–631
naming, 89, 554
representing string, 604
scope, 873
state, 200
storing and retrieving groups 

of, 486–493
streams, 882

Object.ToString() 
method, 703

object type, 93, 749
octal numbering system, 74

mutators, 208–209, 211
mutually exclusive set of 

 controls, 1036
MVC (Model-View-Controller) 

model, 1001

N
nameArray array, 978
name clashing problems, 55
named parameters, 175–177
Name property, 544, 549,  

551–552, 554, 569,  
601–602, 613–615, 618, 
621, 623, 631, 643, 767–769, 
827–828, 872–873, 1032

names, 11
namespace reference error, 724

namespaces, 28, 32–35, 
40–41, 44, 77, 538–540, 
873–874

namespaces, 409, 719, 912, 914
naming conventions, 125–126, 

186
native code, 13, 29
navigation controls, 1031
nested if...else state-

ments, 283–289, 301
nested if statements, 283, 

301–302, 310, 637
nested loops, 360–365, 472
.NET, 13, 23–25

classes, 33
common language runtime 

(CLR), 13, 146, 536
identifiers, 79, 148
Microsoft Intermediate 

 Language (MSIL), 13
namespaces, 28
.NET Framework, 13
polymorphic programming, 

746
predefined classes, 41
single inheritance, 733, 746

.NET Framework, 13, 27, 41
classes, 25, 36
collection classes, 486
common type system (CTS), 

85
data providers, 911
interfaces, 742–744
LINQ (Language-Integrated 

Query), 976
Redistributable version, 43
runtime version, 43

.NET Framework class library 
(FCL), 25, 27, 33, 41, 83, 
148, 720

classes, 85, 703–704
documentation, 743
methods, 140, 148, 163
predefined icons, 344–345

NetworkStream class, 
882–883

new keyword, 216, 401, 403, 
405, 470, 536

NewLine property, 862
new operator, 218, 231, 630
Next() method, 347
n factorial (n!) calculations, 

362–364
NFactorial.cs file, 

362–364
N format specifier, 469
nonvalue-returning methods, 

181
NoOfSqYard property, 231

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1152 | Index

RealEstateInvestment 
class, 237, 239, 243

RealEstateInvestment.
cs file, 240–243

RealEstateInvestment 
example, 233–243

records, 908
rectangular two-dimensional 

arrays, 460–470. See also 
two-dimensional arrays

recursion, 365–368
recursive calls, 365–368
Redistributable version, 43
Reference Manager, 340, 597
reference parameters, 171
reference types, 85, 93, 479
reference variables, 420–423
ref keyword, 171, 173, 175, 

278–280, 752
RegForm.cs file, 638–639
RegForm.Designer.cs 

file, 637
RegForm example, 641–643
# region preprocessor direc-

tive, 533
registering events, 631–633
RegistrationApp applica-

tion, 641
RegularExpression 

Validator control, 
1039, 1042

relational databases, 908–909
relational operators, 262–265, 

296, 918
relationships, 428, 939
relative paths, 860
Release versions, 861
RemoveAt() method, 476
Remove() method, 476, 483, 

489, 546, 743
RemoveRange() method, 

476
rendered, 995
Repeat() method, 476
repetition structures, 326
Replace() method, 483
RequiredFieldValidator 

control, 1039–1040
result string, 606
Result TextBox, 604
return keyword, 142–142, 

163, 165
ReturnsSimpleString 

delegate, 595, 596, 598
return statements, 165, 

181–182, 208, 370
return type, 142–143, 149, 163, 

171, 429, 594–595
Reverse()method, 415–416, 

476
right-associative, 297
right-associative operators,  

107
RightToLeft property, 635
Ritchie, Dennis, 22
Root property, 858
Round() method, 160
round-trip to servers, 994
RowHeadersDefault 

CellStyle_Back 
Color property, 952

row major language, 461, 465
rows, 908
Ruby on Rails, 999
Run() method, 519, 536–537

button and text box for, 
966–967

displaying results, 960, 961, 
971

executing, 966
LINQ, 975–976
looping through results, 921
parameterized, 960–964
records returned, 960
strings, 975

Query Builder, 959–961, 965, 
968–971, 1065

Query contextual keyword, 
976

query expressions, 976–981
querying SQL Server data-

bases, 981–982
query languages, 910
Queue class, 490–491, 742
queues, 490–491
quoted string literals, 484
@-quoted string literals, 484
R
radButtons_Checked 

Changed() method, 
1037

RadioButton class, 538
RadioButton controls, 

634–635, 1034
RadioButtonList controls, 

1034
RadioButton objects, 

634–637, 652, 655, 659, 
767, 772, 995

radio buttons, 630, 634–637
ragged arrays, 470
raising exceptions, 800–801
Random class, 347
RangeValidator control, 

1039, 1042
range variables, 976
Rank property, 462
ReadBlock() method, 863
ReadBoolean() method, 

877
ReadByte() method, 877
ReadBytes() method, 877
ReadChar() method, 877
ReadChars() method, 877
ReadDecimal() method, 

877, 882
ReadDouble() method,  

877
ReadInt32() method, 877, 

882
ReadKey() method, 38–40, 

49, 56–57, 139, 154
ReadLine() method, 38–40, 

141, 151, 153–154, 336, 
400, 412, 514, 516, 869, 
873–874

Read() method, 38–40, 49, 
138, 151–153, 860, 862, 
877, 882, 922

read-only properties, 211, 
700–701, 706–707

ReadOnly property, 550
ReadString() method, 

877, 882
ReadToEnd() method, 863
RealEstateApp.cs file, 

239–240
RealEstateDb.mdf file,  

915

ProgrammingMessage 
class, 55

ProgrammingMessage 
example, 52–57

ProgrammingMessage 
namespace, 55

programs, 4
abnormal terminations, 801
altering flow of control, 

368–370
break mode, 790
documenting, 31
executing, 43
manipulating data, 975
methods, 138
query expressions, 979–981
testing, 14
unconditional transfer of 

control, 368–370
Program source code file, 46
projects

building instead of running, 
719–722

compiling, 48
copying database into, 

944–945
information about, 47
naming, 44, 201, 522

PromptForMore 
 Calculations() 
method, 365

properties, 147, 210–212, 
217–218

alphabetizing, 527–528
categories, 527–528
changing, 526, 528–529
controls, 519
interfaces, 736
listing, 640
naming conventions, 211, 244
predefined, 538
private member fields, 706
read-only, 211, 700–701, 

706–707
selecting, 526
setting, 551, 601–602, 640
Standard controls, 1032, 1036
this keyword, 534
validation controls, 1039
Windows forms, 519, 526–

529, 1032
Properties window, 526–529, 

536, 542, 543, 551, 554–
556, 558, 569, 599, 601, 
619–621, 633, 636, 637, 
640, 884, 950, 958, 968, 
1014, 1017, 1037

protected access modifiers, 
222, 709–710

protected members, 222, 773
prototypes, 12, 53
pseudocode, 11, 16, 54, 57, 

120, 180, 237, 258
public access modifiers, 204, 

705, 709
public members, 773
PurchasePrice property, 

236
Push() method, 491, 747–748
Python, 7, 999
Q
qualifiers, 161
queries

adding to application, 938
building, 959

PictureBox class, 538, 682
PictureBox control, 652
pile object, 217
PizzaApp.cs file, 648–651
PlayerApp application, 435
PlayerApp class, 435
PlayerApp.cs file, 432–434
Player application, 429–435
Player class, 426–429
Player.cs file, 430–432
Player object, 429–430
plush object, 216
pointers, 85
pointsScored array, 

426–428
polymorphic programming, 

745–746
polymorphism, 21, 700–701, 

709, 744–746
Pop() method, 491, 747–749
Portable Class Library (PCL), 

1074
postdecrement operators, 101
postincrement operators, 101
posttest loops, 357–360
Pow() method, 146, 157, 159
precedence, 295–297
predecrement operators, 101
preincrement operators, 101
preprocessor directives, 533
PresentationGUI assem-

bly, 772
PresentationGUI class, 

704, 713, 726–727, 740–
742, 744, 758, 767–769

PresentationGUI.cs. 
file, 769

PresentationGUI.
Designer.cs file, 704

PresentationGUI project, 
725–729

pretest loops, 327, 349–350
pricePerSqYard property, 

210–211, 231
Price property, 231
primary keys, 919, 931, 982
PrimeRead.cs file, 336–337
priming the read, 336–337, 412
primitive data types, 83, 86
PrintResults() method, 

283
private access modifier, 705
private data members,  

200–204, 209, 223, 434, 
651, 700, 705, 758, 773

private instance variables, 208
private modifiers, 208
problem solving, 7–11
procedural designs, 11
procedural methodologies, 10
procedural programming, 

15–18
processes, 11
process logic, 120–121
process loop, 514–515
Program class, 46
Program.cs file, 530, 

536–537, 625, 834, 864, 
870, 874

programming, 7, 10
programming languages, 6–7, 

10, 21–23
general-purpose, 258
row major language, 461,  

465
syntax, 6, 12, 29, 55

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Index | 1153

stack data type, 491
StackExample.cs file, 492
stacks, 491–493, 747, 811
stack trace, 802–803
StackTrace property, 811
stand-alone components, 

715–725
Standard controls, 1029
.aspx file, 1032
automatic postback, 1034
common form-type controls, 

1035–1038
event-handler methods, 

1036–1038
events, 1032, 1034
HTML tags, 1031
identifiers, 1031
naming, 1032
properties, 1032
setting properties, 1036
Toolbox, 1030–1031
Visual Studio, 1030–1034

standard decimal notation, 90
standard files, 855
standard query operators, 976
Start() method, 198
StartPosition property, 

529, 532
StartsWith() method, 483
StateControlled.cs file, 

346–347
state-controlled loops,  

345–347, 371
stateless, 995, 1024
state management, 1034–1035
statements, 40

conditional expressions, 803
repeating, 365–368
rule violations, 42
semantic meaning, 29
separating with commas, 349

StatePicker.cs file, 
291–292

static class, 409
static keyword, 37, 141, 

163–164, 166, 222, 733
static methods, 141, 156, 161, 

165, 429, 520
StaticMethods class, 421
StaticMethods.cs file, 

420–421
static modifiers, 141–142
static Web pages, 995–998
stepping through source code, 

794
stepwise refinement, 17
Stop() method, 198
StoreDataInFile() 

method, 896
Stream class, 860, 875
StreamReader class, 851–852, 

860–863, 869–870
StreamReader objects, 

873–874
streams, 850–851, 862–883
StreamWriter class, 

560–863, 866, 887–888, 
895–89

StreetAddress property, 
236

string arguments, 110, 154–157
string arrays, 428, 474, 493
StringBuilder class, 480
String class, 263, 479–486

Size property, 519, 529, 542, 
544, 546, 613, 828, 859

.sln file extension, 47, 1005
Smalltalk, 22
smart tag, 1060
Snorkel CheckBox object, 

633
software, 4–7
software development process, 

7–15
software maintenance, 18
Solution Explorer window, 

42, 46, 201, 243, 338, 
418, 524, 533, 536–537, 
597, 599, 641, 643, 722, 
736–737, 758, 771, 1017, 
1043, 1063, 1077

solution file, 47
solutions, 10–12, 198–201, 788
Sorted property, 604, 

610–611
Sort()method, 415–416, 476
source code, 12, 29, 533

changing filename, 46
comparing Visual Studio and 

user-created, 534–537
compiling into .dll files, 715
compiling with Visual Studio 

IDE, 43–50
expanding or collapsing, 533
preprocessor directives, 533
renaming, 47, 55
rule violations, 42
separating into files, 530
stepping through, 794

Source property, 811
Source view, 1044
spacing conventions, 126, 186, 

245, 311
special escape sequences, 96
specialized classes, 702
specifications, 8–9
SpeedingTicket example, 

298–309
Split() method, 483
SQL (Structured Query 

 Language), 910, 916–918, 
931, 982

SqlCommand class, 912
SqlConnection class, 912
SqlConnection objects, 915
SqlConnectionString 

Builder class, 916
SqlDataAdapter class, 913
SQL data provider, 912
SqlDataReader class, 

912, 921
SqlDataSource class, 1060, 

1070
SqlDataSource controls, 

1034
SQL injection attacks, 920
SQL pane, 960–961
SQL queries, 916–920,  

957–959, 1060–1061
SQL Server, 7, 908, 940,  

960–963, 981–982
SQL statements, 957, 959–960, 

962
Sqrt() method, 141, 160
SquaredValues.cs file, 

338–339
SquareInputValue.cs 

file, 155
Stack class, 491, 742,  

747–748, 750–751

self-documenting identi-
fiers, 89

semantic meaning, 29
sentinel-controlled access, 

411–412
sentinel-controlled loops, 

334–337, 360, 371
sentinel values, 334, 337, 411
server controls, 1025–1029
servers, 994–995
SetAll() method, 487
set contextual keyword, 

211–212, 707, 758
set contextual keyword, 519
SetCreationTime class, 

853
SetCurrentDirectory() 

method, 857
SetFine() method, 301, 793
SetFirstName() mutator 

method, 707
SetFundingAmt() method, 

765
SetLastAccessTime class, 

853
SetLastWriteTime class, 

853
Set() method, 487
SetNoOfSqYards() 

method, 209, 217, 232
SetSelected() method, 

612
SET SQL clause, 920
setters, 208
SetValue()method, 415
setVisibility() method, 

572
Shared Asset Project (SAP), 

1074
SharePoint data source, 938
ShoalArea class, 823, 829, 

832, 888–889, 895
ShoalArea.cs file, 829–832, 

889–892
ShoalArea objects, 825, 837
ShoalAreaRecord property, 

892, 896
short-circuit evaluation, 268–

270, 311
short-circuiting logical opera-

tors, 268
short data type, 87–88, 289, 

421
ShowColor property, 625
ShowDialog() method, 

884–886
ShowEffects property, 625
ShowFuelConsumption() 

method, 198
Show() method, 338,  

341–344, 544, 597
SightDate property, 438
signature, 37, 149–150, 207, 

237, 237, 594, 598, 600
Sign() method, 160
Silverlight, 1075
single inheritance, 518, 733, 

746
Sin() method, 160
Site.css file, 1012, 1013, 

1034
SiteMapPath class, 1070
Site.master file, 1009
Sites.css file, 1014
size of arrays, 401

run-time errors, 15, 51–52, 
787–788

run-time exceptions, 811
r variable, 464–466
S
s array, 427
SaveFileDialog class, 883
SaveFileDialog object, 

887
sbyte data type, 87, 88, 421
scalable component develop-

ment, 25
scientific notation, 90
scientific numeric format 

specifier, 113
scope, 165–166, 351, 873
score array, 406–407, 413
score.Length property,  

410
Score1 property, 218–219
Score2 property, 218–219
Score3 property, 218–219
scripting languages, 998–999
ScrollableControl class, 

540
ScrollBars property, 550, 

629
sealed classes, 733–734
SealedClassExample 

class, 734
sealed keyword, 733
sealed methods, 734
sealed modifier, 733–734
second-generation comput-

ers, 3
Second property, 1049
section separator custom 

numeric format speci-
fier, 114

Seek() method, 875, 883
select clause, 976, 978
SelectCommand property, 

931, 957–959, 961,  
969–971, 1053

SelectedDate property, 
1044, 1046, 1049

SelectedIndexChanged()  
event, 603, 604, 612, 995

SelectedIndexChanged() 
event-handler method, 
614, 616, 617, 630

SelectedIndexChange() 
event, 630

SelectedIndex property, 
611

SelectedIndices property, 
611, 616

SelectedItem property, 
604, 606, 611

SelectedItems property, 
606, 611, 616

SelectedTab property, 647
SelectionMode property, 

606, 610–611, 617, 628, 
1036

selection statements, 258, 
271–289, 311

Select() method, 544
selector, 289
select query contextual 

 keyword, 976
SELECT SQL statement, 916–

918, 957, 961, 968–969, 
971, 1067

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1154 | Index

System.Windows.Forms.
ListControl class, 
613

System.Windows.Forms 
namespace, 28, 517–519, 
535, 538, 546, 594, 597, 
617, 643, 704, 714

System.Windows 
namespace, 643

T
TabControl objects, 

645–651
TabIndex property, 544,  

554–555, 571, 610, 648, 828
TableAdapterManager 

class, 956–957
TableAdapterManager 

objects, 980
tableAdapterManager.

UpdateAll() method, 
962

TableAdapter objects,  
958–959, 964–966, 968, 980

TableAdapter Query Configu-
ration Wizard, 964–966

table adapters, 957–958
TableBindingSource 

objects, 980
Table class, 1070
TableDataAdapter class, 

931
tables, 121, 460

columns, 908, 917–918
connecting multiple, 

968–973
creation, 939
customizable, 948
data, 908
dragging onto forms, 949
editing columns, 950–953, 

1066
fields, 908, 921
foreign key, 919, 956–957
formatting cells, 953–954
as object properties, 939
primary keys, 919, 931
records, 908
relationships, 939, 969
retrieving results from 

 multiple, 918
rows, 908, 917–919, 980
sorting, 953, 1066
updating, 920
Web Forms pages, 1019

tab order, 648
TabPage Collection Editor, 647
tabPage2 object, 647
TabPages property, 647
tabs, 645–651
Talk() method, 702
Tan() method, 160
TargetSite property, 811
TaxApp.cs file, 558
TaxApp form, 546–547, 

551–558
TempAgency.cs file, 

497–499
TempAgency example,  

493–499, 563–580
TempAgencyForm class, 572
TempAgencyForm.cs file, 

576–578
TempAgencyForm.

Designer.cs file, 
576–578

System.EventHandler 
delegate type, 599

System.Exception class, 
810–812, 822

System.FormatException 
class, 156, 812

System.IndexOutOf 
RangeException 
class, 812

System.InvalidCast 
Exception class, 812

System.IO.IOException 
class, 812, 822, 879

System.IO. 
IsolatedStorage. 
IsolatedStorage 
Exception class, 810

System.IO namespace, 
861–862, 897

System.Linq namespace, 
976

System namespace, 32–35, 41, 
54, 87, 148, 156–157, 535, 
594, 626, 703, 808, 861

System.NullReference 
Exception class, 812

System.Object class, 821
System.OutOfMemory 

Exception class, 812
System.RankException 

class, 812
System.Runtime.

Remoting. 
MetadataServices.
SUDSGenerator 
Exception class, 810

System.Runtime.Remoting.
MetadataServices.
SUDSParser  Exception 
class, 810

Systems.Collections 
namespace, 486

system software, 5–7
system stack, 367
System.String class, 479
Systems.Windows.

Forms.Control class, 
543–545

Systems.Windows.Forms 
namespace, 341

System.SystemException 
class, 810, 817

System.Text namespace, 
535

System.Threading.
Tasks namespace, 535

System.Web.UI namespace, 
1002

System.Windows.Forms
namespace, 883

System.Windows.Forms.
AxHost. 
InvalidActiveX 
StateException 
class, 810

System.Windows.Forms 
class, 418

System.Windows.Forms.
Control class, 538–539, 
541–563

System.Windows.Forms.
dll assembly, 340

System.Windows.Forms. 
EventArgs class, 626

System.Windows.Forms.
Form class, 518, 703

subscripted variables, 401
subscripts, 401, 406, 797
Substring() method, 483
Subtraction compound opera-

tor (-=), 105, 598
Subtraction operator (-), 98
Subtract() method, 1047
SummedValues.cs file, 

328–329
.suo file extension, 1005
super class, 21, 704
SwapData() method, 752
Swim CheckBox object, 

632–633
switch statements, 289–294, 

310, 368, 370, 832
@ symbol, 79
syntax, 6, 12, 29, 55
syntax errors, 6, 13, 14, 50–51, 

622
System.Application 

Exception class, 810
System.Argument Exception 

class, 811
System.Arithmetic 

Exception class, 811
System.Array class, 410
System.ArrayType 

 MismatchException 
class, 811

System.Collections.
Generic namespace, 
493, 535

System.ComponentModel.
Design.Exception 
Collection class, 810

System.ComponentModel 
namespace, 535

System.Configuration. 
SettingsPropertyIs 
ReadOnly  Exception 
class, 810

System.Data.Common 
namespace, 914

System.Data namespace, 
535, 914

System.Data.Odbc 
namespace, 912

System.Data.Odbc.
OdbcConnection 
class, 913

System.Data.OleDb 
namespace, 913, 914

System.Data.OleDb.
OleDbConnection 
class, 913

System.Data. 
OracleClient 
namespace, 912

System.Data. 
OracleClient.
OracleConnection 
class, 913

System.Data.SqlClient 
namespace, 912

System.Data. SqlClient.
SqlConnection class, 
913

system-defined exceptions, 811
System.Diagnostics 

namespace, 829, 833, 839
System.Drawing 

namespace, 535, 664
System.Error. WriteLine() 

method, 809

string data type, 84–85, 93, 
111, 289, 479–480, 484, 
556, 749

String.Format() method, 
110

string interpolation, 484–486
string literals, 97, 99, 150, 484
string objects, 484
strings, 38, 93, 213–214,  

289–294, 416, 479–486
accessing elements in, 480
comparing, 261–262, 480
concatenating, 99, 111, 153, 

606, 617, 744
converting, 275, 278, 744,  

802
format specifiers, 112
inability to modify, 480
length, 797
literal values, 112
mutable series of characters, 

480
objects representing, 604
queries as, 975
relational comparisons, 263
returning, 708–709
single-character, 156
switch statements, 

290–292
testing characters in, 

796–797
Unicode characters, 479, 869
values data types, 157, 

278–280
verbatim, 861, 914

StringToNumber() 
method, 803

string variables, 99, 172, 
233, 262, 274, 289, 480, 
797, 802

Stroustrup, Bjarne, 22
Struct types, 86
Structured English, 120–121, 

180, 237
structured procedural pro-

gramming, 15–18
structures, 93
StudentApp class, 219–221
StudentApp example, 223
Student class, 200–201, 

218–219, 222, 224–227, 
702, 719–727, 729, 730, 
737–740

Student() constructor, 204
Student.cs file, 720–721
StudentDataBase 

 ConnectionString 
connection string, 946

StudentDataBaseData 
Set.xsd file, 947, 958, 
968

StudentGov example, 
754–764

StudentNamespace 
namespace, 720, 726

Student object, 204–205, 
727, 745

StudentTableAdapter 
object, 958

Style property, 1014, 1018
style sheets, 1012–1013
StylesheetTheme property, 

1017
subclasses, 21, 709
subdirectories, 857

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Index | 1155

var data type, 753–754
variables, 81

adding or subtracting one 
from, 100

assigning values to, 94–97
Boolean, 92–93
casting, 110
changing values, 94–97
checking current value, 791
compile-time initialization, 

81, 404
declaring, 81–82, 89, 200, 

354
default value, 82, 216
dynamic, 752
evaluating contents, 258–259
get property, 211–212
implicitly typing, 753, 979
initializing, 81
instances, 200
literal values, 96
local, 165, 200
loop control variables, 328
names, 89
observing while program 

runs, 795
operands, 98
performing alternatives, 

289–294
referring to same methods, 

171
scope, 165, 351
set property, 211–212
temporarily behaving as 

 different type, 110
testing for multiple values, 

283
uninitialized, 173
visibility, 352

var keyword, 753, 979, 981
VaryingArguments.cs file, 

425–426
VBScript, 999
verbatim string literals, 484
verbatim strings, 861, 914
virtual keyword, 733, 745
virtual methods, 708–709, 

734, 745
virtual modifier, 708–709
visible, 165
Visible property, 544–545, 

570–572, 635, 741,  
768–769, 797, 1066–1067

Visual Basic, 6, 22–23, 25
Visual C#, 24
Visual C++, 24
visual configuration tools, 

1060–1066
Visual C# template, 1035
Visual F#, 25
Visual Studio, 12, 13, 24

automatically generating 
code, 524, 539

automatically modifying 
code, 55–56

calling methods, 147
conditional expressions, 327
documentation, 743
error messages, 50–51
inspecting code generated by, 

533–537
integrated development 

 environment (IDE), 28, 42,  
517

project creation, 43
properties, 1032–1034

UndergraduateStudent 
class, 21

unhandled exceptions, 
801–802

Unicode, 75, 88, 93, 96, 152, 
261–263, 479, 869

Unified Modeling Language 
(UML) notation, 19, 758

Universal Apps templates, 
1076

UnknownSize class, 412
UnknownSize.cs file, 

411–412
UpdateAll() method, 956
UpdateCommand property, 

932, 957–958, 962, 971, 
1067–1068

Update() method, 928, 933, 
935, 957, 964

UPDATE SQL statement, 920, 
928, 932, 957, 971, 1067

URI (Universal Resource 
 Identifier), 1065

URL (Uniform Resource 
 Locator), 994

UsePredefinedMethods.
cs file, 416–417

user-defined
classes, 83, 703, 704
data types, 83
exceptions, 811
identifiers, 77, 148, 856
instance methods, 207–214
methods, 163–170
objects, 428–429

user interface class, 569
users

actions causing exceptions to 
be thrown, 802

displaying information to, 
338–339

ushort data type, 87–88, 421
using directive, 341
using directive, 32–35, 148
using statements, 47, 55, 411, 

419, 466, 875
utility classes, 852
V
validation controls, 1038–1043
ValidationSummary class, 

1070
validator controls, 1040–1041
ValidInput.cs file, 

333–334
value contextual keyword, 

211–212
value data types, 85, 86–87, 

216
value parameters, 173
Value property, 1027
value-returning methods, 161, 

163, 165–170, 182
values

accumulating, 104–105
averaging, 104
constants, 141
displayed as money, 111
int data type, 84
mapping from set of keys 

to, 493
parameterized, 962
parsing incompatible, 156
testing for range of, 294
unassigned, 335

Values property, 489

ToLower() method, 483
toolbar, 861
Toolbox, 524, 540–541, 548, 

558, 618, 620, 640–641, 
646, 827, 974–975, 1019, 
1030–1031

ToolStripButton class, 966
ToolStripMenuItem 

objects, 621
ToolStripTextBox  control, 

966
ToolTip control, 620
ToolTip property, 629
tool tips, 620
ToolTipText property, 951
top–down design, 10, 17
ToString() method, 93, 115, 

213–214, 223, 232, 384, 
410, 435, 463, 469, 484, 
598, 604, 703, 745, 821, 
892, 923, 927

TotalInterestPaid 
 property, 375

ToUpper() method, 484
Trace class, 829, 838–839
TraceMode property, 1018
Trace property, 1018
Trace.WriteLine() 

method, 838
TreeView class, 1070
TreeView control, 1068
TrimEnd() method, 484
Trim() method, 484
TrimStart() method, 484
TrimToSize method, 476, 

490
true keyword, 93
truncating numbers, 83
try block, 804–805, 813, 816
try...catch blocks, 839, 

851, 854, 856, 860, 874, 
926, 1045

try...catch...finally 
blocks, 786, 804–808, 
823

try clause, 875
TryParse() method, 278–

280, 309, 333, 410
try statement, 832
two-dimensional arrays, 460–

470, 493. See also rect-
angular two-dimensional 
arrays

two-way if statements, 
276–283

txtBxAddNew TextBox 
object, 607

txtBxLastName control, 966
txtBxResult object, 604
txtBxResult text box, 602
txtPurchase object, 551
txtPurchase TextBox 

object, 554–557
txtTotalDue object, 551, 

557
type casting, 109–110
type conversion, 109–110
typed accessors, 923
U
UICulture property, 1018
uint data type, 87–88, 421
ulong data type, 87–88, 421
unary operators, 100, 106–107, 

295

temp array, 423
temperature array, 422–423
ternary operator (?:), 294–295, 

311
the test, 259
test condition, 259
Test Driven Development 

(TDD), 15
testing, 14
TestOfCustomException 

class, 818–819
TestOfGenericStack 

class, 750
TestOfStack class, 748
TestOfStateException

class, 888, 896
TestOfStateException 

class, 825, 832, 837
TestOfStateException.

cs file, 832, 837
test plans, 14
TestRef() method, 175
TextAlign property, 546, 

548, 551, 571–572, 769
TextBox class, 538, 703
TextBox controls, 606–607, 

613, 617, 1036
text boxes, 580, 609, 631, 640, 

966–967
TextBox objects, 540, 543, 

549–553, 567
TextBox objects, 602, 607, 

609, 615, 631, 727, 828, 
864, 973, 1034, 1039

TextChanged() event, 607, 
615, 630, 683

text editors, 42
text files, 860, 863–869, 876, 

888–889
TextFile template, 872
text format, 860
Text objects, 594
Text property, 519, 526, 529, 

534, 544–549, 552–557, 
570–572, 601, 604, 606, 
610–611, 613, 615–617, 
623, 628–629, 631, 
635–636, 647, 662–664, 
767–768, 828, 952, 966, 
974–975, 1018, 1025–
1026, 1029, 1041

TextReader class, 851–852, 
860

TextUpdate() event, 615
TextWriter class, 851–852, 

860
Theme property, 1018
thin clients, 522
third-generation computers, 3
this keyword, 206, 534, 600
thousand separator custom 

numeric format speci-
fier, 114

three-dimensional arrays, 
470–471

throwing exceptions, 800–801, 
820–821

thrown back, 801
throw statements, 370
TicketApp class, 301
Ticket class, 299, 792, 793
Ticket object, 300
Title property, 147, 1018
ToArray() method, 476
ToCharArray() method, 483
Today property, 1047–1048

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1156 | Index

Windows Presentation Foun-
dation (WPF) template, 
523

Windows programs, 797
Windows Task Manager, 327
WindowWidth property, 147
winForm object, 519
WordWrap property, 550
WPF_Example.xaml file, 644
wrap, 598
Write7BitEncodedInt() 

method, 876
WriteLine() method, 38, 

41, 57, 101, 110, 111, 115, 
138, 141, 143, 145–148, 
150–152, 154, 162, 
167, 175, 213, 220, 223, 
272, 330, 337, 514, 829, 
860–863, 873

Write() method, 38–39, 
110, 112, 115, 141, 145, 
148–151, 154, 167, 213, 
337, 514, 861–863, 873

WYSIWYG (what you see is 
what you get), 1019

X
Xamarin

Visual Studio, 1071–1073
Xamarin.Forms, 

1073–1074
Xamarin.Forms, 1073–1074
XAML (Extensible Applica-

tion Markup Language), 
641–645, 1075

.xaml file extension, 641

.xaml files, 641
Xerox Palo Alto Research 

 Center (PARC), 22
XHTML (Extensible Hyper-

text Markup Language), 
997, 998

XLinq, 981
XML (Extensible Markup 

 Language), 25, 32, 641
Xml class, 1070
XmlDataSource control, 

1051–1060
XML documentation 

 comments (///), 32
Y
YearBuilt property, 236
Year property, 1047–1059
yield contextual keyword, 78

Z
zero-based arrays, 402, 406
zero placeholder custom 

numeric format  specifier, 
114

default class name, 518
design elements, 520–522
displaying code, 526
event-driven model, 338
event handlers, 514–515
events, 514–515
exception handlers, 802
graphical user interface (GUI), 

28, 337, 516–520, 563
Hypertext Markup Language 

(HTML), 641
inheritance, 703–704
interfaces, 516
loops, 337–345
Main() method, 519
notifying user of closing, 537
process loop, 514, 515
receiving messages from 

operating system, 514
running, 533
source code files, 625
starting and stopping, 520
statements, 515
System.Windows.
Forms.dll assembly, 
340

user interface, 516
viewing code, 523
Visual Studio, 28, 522–526
windows, 519, 524
Windows Forms, 526–538
Windows Presentation Foun-

dation (WPF), 639–645
Windows application template, 

601
Windows Application type, 338
Windows dialog boxes, 

622–630
Windows Form object, 524
Windows forms, 526–563, 735

automatic generation of, 517
clutter, 521
controls, 517, 526–538, 

735, 932
events, 537
properties, 519, 526–529
prototypes, 542
updating, 971–973

Windows Forms Application 
template, 517, 703, 725, 
767

Windows Forms Application 
type, 340

Windows.Forms.Con-
trol.OnClick() 
method, 803

Windows Forms controls, 1032
Windows Phone Apps

emulator, 1078–1079
Visual Studio, 1075

Windows Presentation Foun-
dation (WPF), 639–645

validation controls, 
1038–1043

Visual Studio development, 
1000–1001

Web Forms page, 1003–1018
WebControl class, 1002
WebControls application, 

1047–1059
WebControls.Button 

class, 1027
WebControls Web site, 

1035–1038
Web forms, 27

control classes, 1069–1071
GridView control, 

1050–1060
Standard controls, 

1030–1031
Web Forms model, 1001–1018
Web Forms page, 1003–1015, 

1025–1029
Web pages, 25

background color, 1017
calendar months display, 

1043–1050
dynamic, 998–999
events automatically firing, 

1042
loading, 1042–1043
messages, 994
Page life cycle, 1042–1043
page validation, 1041
postback to server, 995
rendered, 994
requests to view, 994–995
stateless, 995, 1007
static, 995–998
valid values, 1042
Web Forms page, 1006–1008
WYSIWYG (what you see is 

what you get), 1019
Web servers, 994
Web services, 25
Web sites, 994, 998, 1003–

1016, 1042–1043, 1068
WHERE clause, 917–919, 965, 

978
where query contextual key-

word, 976
while keyword, 359
while statements, 326–347, 

350–351, 365, 369–371, 
873

whole numbers, 87–89, 116
width specifier, 115
Windows, 5, 519, 524
Windows applications, 28, 

224, 514
beginning execution, 514
classes, 517–518
versus console-based applica-

tions, 514–516

Visual Studio (Continued)
renaming source code files, 

55
reopening application, 47
Solution Explorer tab, 340
solution file, 47
Standard controls, 

1030–1031
System namespace, 34
tools and wizards, 42
using statements, 47, 411, 

466
Web development, 

1000–1001
Windows applications, 28
Windows-based application 

creation, 522–526
Windows Forms Application 

template, 703
Windows Phone Apps, 1075
Xamarin, 1071–1073

Visual Studio Installed Tem-
plates pane, 522

void keyword, 37, 163, 181, 
595

W
Walk() method, 702
WAP (Wireless Access 

Protocol)-enabled 
devices, 522

w array, 417–421
watches, 795–796
waterDepth array, 419–420
WaterDepth example, 823–

839, 888–896
Web and Smart devices design 

templates, 522
Web applications, 224, 

994–999
ASP.NET, 1000–1001
browser-neutral user inter-

faces (UIs), 27
common form-type controls, 

1035–1038
controls, 1019–1029
debugging and running from 

IDE, 1017
dynamic Web pages, 

998–999
events, 1034
file extensions, 995
HTML controls, 1031
Java, 23
Navigation controls, 1030
Page life cycle, 1042–1043
programming model, 

994–995
property settings, 1031
reopening, 1005
Standard controls, 1030
static Web pages, 995–998

Copyright 2016 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


	Cover������������
	Half Title�����������������
	Title������������
	Statement����������������
	Copyright����������������
	Brief Contents���������������������
	Table of Contents������������������������
	Preface��������������
	Ch 1: Introduction to Computing and Application Development������������������������������������������������������������������
	Ch 1: In This Chapter, You Will:
	Ch 1: Introduction�������������������������
	History of Computers���������������������������
	System and Application Software��������������������������������������
	Software Development Process�����������������������������������
	Programming Methodologies��������������������������������
	Evolution of C# and .NET�������������������������������
	Why C#?��������������
	Types of Applications Developed with C#����������������������������������������������
	Exploring the First C# Program�������������������������������������
	Elements of a C# Program�������������������������������
	Compiling, Building, and Running an Application������������������������������������������������������
	Debugging an Application�������������������������������
	Creating an Application������������������������������
	Ch 1: Coding Standards�����������������������������
	Ch 1: Resources����������������������
	Ch 1: Quick Review�������������������������
	Ch 1: Exercises����������������������
	Ch 1: Programming Exercises����������������������������������

	Ch 2: Data Types and Expressions���������������������������������������
	Ch 2: In This Chapter, You Will:
	Ch 2: Introduction�������������������������
	Data Representation��������������������������
	Memory Locations for Data��������������������������������
	Types, Classes, and Objects����������������������������������
	Predefined Data Types����������������������������
	Integral Data Types��������������������������
	Floating-Point Types���������������������������
	Decimal Types��������������������
	Boolean Variables������������������������
	Declaring Strings������������������������
	Making Data Constant���������������������������
	Assignment Statements����������������������������
	Order of Operations��������������������������
	Formatting Output������������������������
	Width Specifier����������������������
	Ch 2: Coding Standards�����������������������������
	Ch 2: Resources����������������������
	Ch 2: Quick Review�������������������������
	Ch 2: Exercises����������������������
	Ch 2: Programming Exercises����������������������������������

	Ch 3: Methods and Behaviors����������������������������������
	Ch 3: In This Chapter, You Will:
	Ch 3: Introduction�������������������������
	Anatomy of a Method��������������������������
	Calling Class Methods����������������������������
	Predefined Methods�������������������������
	Methods in the Math Class��������������������������������
	Types of Parameters��������������������������
	Ch 3: Coding Standards�����������������������������
	Ch 3: Resources����������������������
	Ch 3: Quick Review�������������������������
	Ch 3: Exercises����������������������
	Ch 3: Programming Exercises����������������������������������

	Ch 4: Creating Your Own Classes��������������������������������������
	Ch 4: In This Chapter, You Will:
	Ch 4: Introduction�������������������������
	The Object Concept�������������������������
	Constructor������������������
	Writing Your Own Instance Methods����������������������������������������
	Calling Instance Methods�������������������������������
	Ch 4: Coding Standards�����������������������������
	Ch 4: Resources����������������������
	Ch 4: Quick Review�������������������������
	Ch 4: Exercises����������������������
	Ch 4: Programming Exercises����������������������������������

	Ch 5: Making Decisions�����������������������������
	Ch 5: In This Chapter, You Will:
	Ch 5: Introduction�������������������������
	Boolean Expressions��������������������������
	Conditional Expressions������������������������������
	if. . .else Selection Statements���������������������������������������
	Switch Selection Statements����������������������������������
	Ternary Conditional Operator ? :���������������������������������������
	Order of Operations��������������������������
	Ch 5: Coding Standards�����������������������������
	Ch 5: Resources����������������������
	Ch 5: Quick Review�������������������������
	Ch 5: Exercises����������������������
	Ch 5: Programming Exercises����������������������������������

	Ch 6: Repeating Instructions�����������������������������������
	Ch 6: In This Chapter, You Will:
	Ch 6: Introduction�������������������������
	Why Use a Loop?����������������������
	Using the While Statement��������������������������������
	Using the for Statement Loop�����������������������������������
	Using the Foreach Statement����������������������������������
	Using the Do. . .while Structure���������������������������������������
	Nested Loops�������������������
	Recursive Calls����������������������
	Unconditional Transfer of Control����������������������������������������
	Deciding Which Loop to Use���������������������������������
	Ch 6: Coding Standards�����������������������������
	Ch 6: Resources����������������������
	Ch 6: Quick Review�������������������������
	Ch 6: Exercises����������������������
	Ch 6: Programming Exercises����������������������������������

	Ch 7: Arrays�������������������
	Ch 7: In This Chapter, You Will:
	Ch 7: Introduction�������������������������
	Array Basics�������������������
	Array Declaration������������������������
	Array Access�������������������
	Array Class������������������
	Arrays as Method Parameters����������������������������������
	Arrays in Classes������������������������
	Ch 7: Coding Standards�����������������������������
	Ch 7: Resources����������������������
	Ch 7: Quick Review�������������������������
	Ch 7: Exercises����������������������
	Ch 7: Programming Exercises����������������������������������

	Ch 8: Advanced Collections���������������������������������
	Ch 8: In This Chapter, You Will:
	Ch 8: Introduction�������������������������
	Two-Dimensional Arrays�����������������������������
	Multidimensional Arrays������������������������������
	ArrayList Class����������������������
	String Class�������������������
	Other Collection Classes�������������������������������
	Ch 8: Coding Standards�����������������������������
	Ch 8: Resources����������������������
	Ch 8: Quick Review�������������������������
	Ch 8: Exercises����������������������
	Ch 8: Programming Exercises����������������������������������

	Ch 9: Introduction to Windows Programming������������������������������������������������
	Ch 9: In This Chapter, You Will:
	Ch 9: Introduction�������������������������
	Contrasting Windows and Console Applications���������������������������������������������������
	Graphical User Interfaces��������������������������������
	Elements of Good Design������������������������������
	Using C# and Visual Studio to Create Windows-Based Applications����������������������������������������������������������������������
	Windows Forms��������������������
	Ch 9: Controls���������������������
	Ch 9: Coding Standards�����������������������������
	Ch 9: Resources����������������������
	Ch 9: Quick Review�������������������������
	Ch 9: Exercises����������������������
	Ch 9: Programming Exercises����������������������������������

	Ch 10: Programming Based on Events�����������������������������������������
	Ch 10: In This Chapter, You Will:
	Ch 10: Introduction��������������������������
	Delegates����������������
	Event Handling in C#���������������������������
	ListBox Control Objects������������������������������
	ComboBox Control Objects�������������������������������
	MenuStrip Control Objects��������������������������������
	CheckBox and RadioButton Objects���������������������������������������
	Windows Presentation Foundation (WPF)��������������������������������������������
	TabControl Objects�������������������������
	Ch 10: Coding Standards������������������������������
	Ch 10: Resources�����������������������
	Ch 10: Quick Review��������������������������
	Ch 10: Exercises�����������������������
	Ch 10: Programming Exercises�����������������������������������

	Ch 11: Advanced Object-Oriented Programming Features�����������������������������������������������������������
	Ch 11: In This Chapter, You Will:
	Ch 11: Introduction��������������������������
	Object-Oriented Language Features����������������������������������������
	Component-Based Development����������������������������������
	Inheritance������������������
	Abstract Classes�����������������������
	Sealed Classes���������������������
	Partial Classes����������������������
	Interfaces�����������������
	Polymorphism�������������������
	Generics���������������
	Dynamic��������������
	Ch 11: Coding Standards������������������������������
	Ch 11: Resources�����������������������
	Ch 11: Quick Review��������������������������
	Ch 11: Exercises�����������������������
	Ch 11: Programming Exercises�����������������������������������

	Ch 12: Debugging and Handling Exceptions�����������������������������������������������
	Ch 12: In This Chapter, You Will:
	Ch 12: Introduction��������������������������
	Errors�������������
	Exceptions�����������������
	Exception-Handling Techniques������������������������������������
	Exception Classes������������������������
	Ch 12: Coding Standards������������������������������
	Ch 12: Resources�����������������������
	Ch 12: Quick Review��������������������������
	Ch 12: Exercises�����������������������
	Ch 12: Programming Exercises�����������������������������������

	Ch 13: Working with Files��������������������������������
	Ch 13: In This Chapter, You Will:
	Ch 13: Introduction��������������������������
	System.IO Namespace��������������������������
	File and Directory Classes���������������������������������
	File Streams�������������������
	BinaryReader and BinaryWriter Classes��������������������������������������������
	Ch 13: Coding Standards������������������������������
	Ch 13: Resources�����������������������
	Ch 13: Quick Review��������������������������
	Ch 13: Exercises�����������������������
	Ch 13: Programming Exercises�����������������������������������

	Ch 14: Working with Databases������������������������������������
	Ch 14: In This Chapter, You Will:
	Ch 14: Introduction��������������������������
	Database Access����������������������
	ADO.NET��������������
	Data Source Configuration Tools��������������������������������������
	Language-Integrated Query (LINQ)���������������������������������������
	Ch 14: Coding Standards������������������������������
	Ch 14: Resources�����������������������
	Ch 14: Quick Review��������������������������
	Ch 14: Exercises�����������������������
	Ch 14: Programming Exercises�����������������������������������

	Ch 15: Web-Based Applications������������������������������������
	Ch 15: In This Chapter, You Will:
	Ch 15: Introduction��������������������������
	Web-Based Applications�����������������������������
	ASP.NET��������������
	Web Forms Page���������������������
	Ch 15: Controls����������������������
	Web Forms Standard Server Controls�����������������������������������������
	Validation, Custom, and Composite Controls�������������������������������������������������
	Mobile Applications��������������������������
	Ch 15: Coding Standards������������������������������
	Ch 15: Resources�����������������������
	Ch 15: Quick Review��������������������������
	Ch 15: Exercises�����������������������
	Ch 15: Programming Exercises�����������������������������������

	Appendix A: Visual Studio Configuration����������������������������������������������
	Appendix B: Code Editor Tools������������������������������������
	Appendix C: Character Sets���������������������������������
	Appendix D: Operator Precedence��������������������������������������
	Appendix E: C# Keywords������������������������������
	Glossary���������������
	Index������������

		2016-05-07T11:13:48+0000
	Preflight Ticket Signature




